

DETERMINACIÓN DEL LÍMITE LÍQUIDO, DEL LÍMITE PLÁSTICO Y DEL ÍNDICE DE PLASTICIDAD DE LOS SUELOS COHESIVOS - METODO A

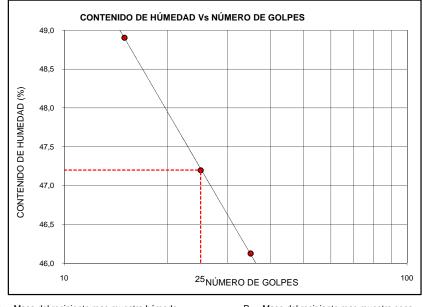
NTC - 4630-99 Referencia SYP-PT-DT-I005-6/15

PROYECTO:SENA (COMPLEJO PALOQUEMAO) - AV. CARRERA 30 # 15-53FECHA DE ENSAYO:2016-02-08CLIENTE:TECNICAS COLOMBIANAS DE INGENIERIA S.A.SORDEN DE TRABAJO No.7461DIR CLIENTE:CALLE 53 A No 28-67 OFC 101INFORME DE ENSAYO No.7461-294CÓDIGO:1145

EQUIPOS:	Cazuela No: 06	Balanza No: 03	Horno No: HN-01
LQUII OO.	Cazuela No. 00	Dalariza No. 03	FIGHTO INC. FIIN-OT

SONDEO: 6 MUESTRA: 2 PROFUNDIDAD(m): 1,00 - 1,45

DESCRIPCIÓN: Arcilla, color gris, con oxidación, estructura homogénea.


OBSERVACIONES: Ensayo realizado a humedad natural.

	L	ÍMITE LÍQUIC	00	LÍMITE PLÁSTICO		CONTENIDO DE HUMEDAD	
Golpes	35	25	15	-	-	-	-
Recipiente No.	271	338	347	378	469	533	91
P _{1 (g)}	45,11	46,15	46,32	22,48	22,42	22,44	151,76
P _{2 (g)}	34,52	34,95	34,92	20,28	20,31	20,21	127,11
P _{3 (g)}	11,56	11,22	11,61	11,17	11,66	10,93	18,85
ω (%)	46,1	47,2	48,9	24,1	24,4	24,0	22,8

LIMITE LIQUIDO (%)
LIMITE PLÁSTICO (%)
ÍNDICE DE PLASTICIDAD (%)
CLASIFICACIÓN U.S.C.S. GENERAL

CLASIFICACIÓN U.S.C.S PASA T-40 ÍNDICE DE LIQUIDEZ ÍNDICE DE CONSISTENCIA ÍNDICE DE FLUIDEZ

C L -0,054 1,062 7,561

Peso de la muestra inicial (g)	-
Peso retenido en el tamiz # 40 (g)	-
Porcentaje retenido en el tamiz # 40	-

 P_1 = Masa del recipiente mas muestra húmeda P_2 = Masa del recipiente mas muestra seca ω = Contenido de humedad de la muestra

P₃ = Masa del recipiente

ING. JOHN O. ORDUZ GÓMEZ

SUB DIRECTOR TÉCNICO

LOS RESULTADOS PRESENTADOS CORRESPONDEN ÚNICAMENTE A LA MUESTRA SOMETIDA A ENSAYO. EL LABORATORIO NO ES RESPONSABLE DEL PROCESO DE MUESTREO. ESTE INFORME NO PUEDE SER REPRODUCIDO EN SU TOTALIDAD NI PARCIALMENTE, SIN LA AUTORIZACIÓN ESCRITA DEL LABORATORIO QUE LO EMITE. ESTE INFORME NO ES VÁLIDO SIN LA FIRMA ORIGINAL DE QUIEN REVISÓ Y APROBÓ, Y EL SELLO.

REVISÓ Y APROBÓ

DΖ

DETERMINACIÓN DEL LÍMITE LÍQUIDO, DEL LÍMITE PLÁSTICO Y DEL ÍNDICE DE PLASTICIDAD DE LOS SUELOS COHESIVOS - METODO A

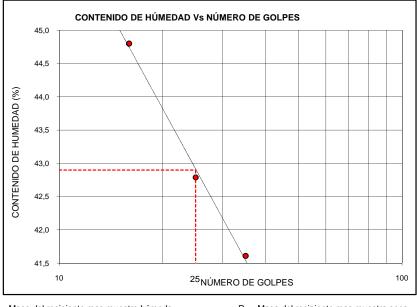
NTC - 4630-99 Referencia SYP-PT-DT-I005-6/15

PROYECTO:SENA (COMPLEJO PALOQUEMAO) - AV. CARRERA 30 # 15-53FECHA DE ENSAYO:2016-02-08CLIENTE:TECNICAS COLOMBIANAS DE INGENIERIA S.A.SORDEN DE TRABAJO No.7461DIR CLIENTE:CALLE 53 A No 28-67 OFC 101INFORME DE ENSAYO No.7461-295CÓDIGO:1145

EQUIPOS:	Cazuela No: 06	Balanza No: 03	Horno No: HN-01

SONDEO: 6 MUESTRA: 4 PROFUNDIDAD(m): 3,50 - 3,95

DESCRIPCIÓN: Arcilla, color gris, con oxidaciones amarillas, estructura homogénea, húmeda.


OBSERVACIONES: Ensayo realizado a humedad natural.

	L	ÍMITE LÍQUIC	00	LÍMITE PLÁSTICO		CONTENIDO DE HUMEDAD	
Golpes	35	25	16	-	-	-	-
Recipiente No.	558	637	298	352	380	292	89
P _{1 (g)}	43,52	44,70	42,30	23,62	24,17	23,53	159,82
P _{2 (g)}	34,07	34,70	32,52	21,37	21,76	21,02	128,10
P _{3 (g)}	11,36	11,33	10,69	11,54	11,26	10,17	17,13
ω (%)	41,6	42,8	44,8	22,9	23,0	23,1	28,6

LIMITE LIQUIDO (%)
LIMITE PLÁSTICO (%)
ÍNDICE DE PLASTICIDAD (%)
CLASIFICACIÓN U.S.C.S. GENERAL

CLASIFICACIÓN U.S.C.S PASA T-40 ÍNDICE DE LIQUIDEZ ÍNDICE DE CONSISTENCIA ÍNDICE DE FLUIDEZ

.T-40 **C L**0,279
0,716
9,381

Peso de la muestra inicial (g)	-
Peso retenido en el tamiz # 40 (g)	-
Porcentaje retenido en el tamiz # 40	-

P₁ = Masa del recipiente mas muestra húmeda

 P_2 = Masa del recipiente mas muestra seca ω = Contenido de humedad de la muestra

P₃ = Masa del recipiente

REVISÓ Y APROBÓ

ING. JOHN O. ORDUZ GÓMEZ

LOS RESULTADOS PRESENTADOS CORRESPONDEN ÚNICAMENTE A LA MUESTRA SOMETIDA A ENSAYO. EL LABORATORIO NO ES RESPONSABLE DEL PROCESO DE MUESTREO. ESTE INFORME NO PUEDE SER

DΖ

DETERMINACIÓN DEL LÍMITE LÍQUIDO, DEL LÍMITE PLÁSTICO Y DEL ÍNDICE DE PLASTICIDAD DE LOS SUELOS COHESIVOS - METODO A

NTC - 4630-99 Referencia SYP-PT-DT-I005-6/15

PROYECTO:	SENA (COMPLEJO PALOQUEMAO) - AV. CARRERA 30 # 15-53	FECHA DE ENSAYO:	2016-02-08
CLIENTE:	TECNICAS COLOMBIANAS DE INGENIERIA S.A.S	ORDEN DE TRABAJO No.	7461
DIR CLIENTE:	CALLE 53 A No 28-67 OFC 101	INFORME DE ENSAYO No.	7461-296
CÓDIGO:	1145		

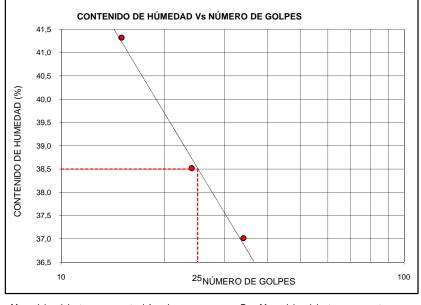
EQUIPOS:	Cazuela No: 06	Balanza No: 03	Horno No: HN-01
LQUII OU.	Oazucia i vo. 00	Dalariza No. 05	TIOTHO INC. THE OT

7,35 - 7,80 SONDEO: MUESTRA: PROFUNDIDAD(m):

Arcilla arenosa, color gris claro, con tonos amarillos, estructura homogénea, húmeda. DESCRIPCIÓN:

OBSERVACIONES: Ensayo realizado a humedad natural.

	L	ÍMITE LÍQUID	0	LÍMITE PLÁSTICO			CONTENIDO DE HUMEDAD
Golpes	34	24	15	-	-	-	-
Recipiente No.	355	482	478	353	534	555	106
P _{1 (g)}	41,81	45,10	45,71	22,95	23,23	23,13	167,45
P _{2 (g)}	33,67	35,74	35,66	20,96	21,19	21,09	138,52
P _{3 (g)}	11,68	11,44	11,34	11,34	11,49	11,31	16,92
ω (%)	37,0	38,5	41,3	20,7	21,0	20,9	23,8


LIMITE LIQUIDO (%) LIMITE PLÁSTICO (%)ÍNDICE DE PLASTICIDAD (%) CLASIFICACIÓN U.S.C.S. GENERAL

39
21
18
CL

CLASIFICACIÓN U.S.C.S PASA T-40 ÍNDICE DE LIQI ÍNDICE DE CON ÍNDICE DE FLU

UIDEZ	0,155
NSISTENCIA	0,817
JIDEZ	12,120

CL

Peso de la muestra inicial (g)	-
Peso retenido en el tamiz # 40 (g)	-
Porcentaje retenido en el tamiz # 40	-

P₁ = Masa del recipiente mas muestra húmeda

P₂ = Masa del recipiente mas muestra seca ω = Contenido de humedad de la muestra

P₃ = Masa del recipiente

REVISÓ Y APROBÓ DΖ

> ING. JOHN O. ORDUZ GÓMEZ SUB DIRECTOR TÉCNICO

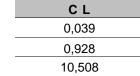
DETERMINACIÓN DEL LÍMITE LÍQUIDO, DEL LÍMITE PLÁSTICO Y DEL ÍNDICE DE PLASTICIDAD DE LOS SUELOS COHESIVOS - METODO A

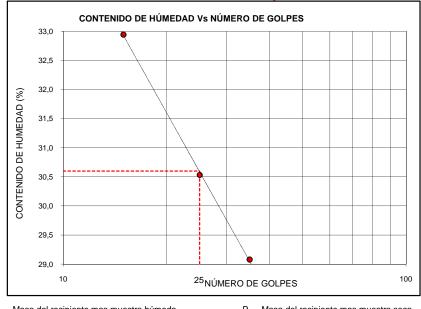
NTC - 4630-99 Referencia SYP-PT-DT-I005-6/15

PROYECTO:SENA (COMPLEJO PALOQUEMAO) - AV. CARRERA 30 # 15-53FECHA DE ENSAYO:2016-02-08CLIENTE:TECNICAS COLOMBIANAS DE INGENIERIA S.A.SORDEN DE TRABAJO No.7461DIR CLIENTE:CALLE 53 A No 28-67 OFC 101INFORME DE ENSAYO No.7461-297CÓDIGO:1145

EQUIPOS:	Cazuela No: 06	Balanza No: 03	Horno No: HN-01	
EQUIPOS.	Cazuela No: 06	Balanza No: 03	HOINO NO. HIN-U I	

SONDEO: 6 MUESTRA: 9 PROFUNDIDAD(m): 10,10 - 10,55


DESCRIPCIÓN: Arcilla, con gravas y arena, color gris.


OBSERVACIONES: Ensayo realizado a humedad natural.

	L	ÍMITE LÍQUIC	00	LÍI	CONTENIDO DE HUMEDAD		
Golpes	35 25 15			-	-	-	-
Recipiente No.	640	371	344	443	447	385	54
P _{1 (g)}	39,02	44,09	44,06	24,77	24,30	24,25	218,81
P _{2 (g)}	32,71	36,49	35,86	22,64	22,26	22,11	187,32
P _{3 (g)}	11,01	11,60	10,97	11,31	11,41	10,78	25,54
ω (%)	29,1	30,5	32,9	18,8	18,8	18,9	19,5

LIMITE LIQUIDO (%)
LIMITE PLÁSTICO (%)
ÍNDICE DE PLASTICIDAD (%)
CLASIFICACIÓN U.S.C.S. GENERAL

CLASIFICACIÓN U.S.C.S PASA T-40 ÍNDICE DE LIQUIDEZ ÍNDICE DE CONSISTENCIA ÍNDICE DE FLUIDEZ

Peso de la muestra inicial (g)	-
Peso retenido en el tamiz # 40 (g)	-
Porcentaje retenido en el tamiz # 40	-

 P_1 = Masa del recipiente mas muestra húmeda P_2 = Masa del recipiente mas muestra seca ω = Contenido de humedad de la muestra

P₃ = Masa del recipiente

REVISÓ Y APROBÓ

ING. JOHN O. ORDUZ GÓMEZ
SUB DIRECTOR TÉCNICO

LOS RESULTADOS PRESENTADOS CORRESPONDEN ÚNICAMENTE A LA MUESTRA SOMETIDA A ENSAYO. EL LABORATORIO NO ES RESPONSABLE DEL PROCESO DE MUESTREO. ESTE INFORME NO PUEDE SER REPRODUCIDO EN SU TOTALIDAD NI PARCIALMENTE, SIN LA AUTORIZACIÓN ESCRITA DEL LABORATORIO QUE LO EMITE. ESTE INFORME NO ES VÁLIDO SIN LA FIRMA ORIGINAL DE QUIEN REVISÓ Y APROBÓ, Y EL SELLO.

DΖ

DETERMINACIÓN DEL LÍMITE LÍQUIDO, DEL LÍMITE PLÁSTICO Y DEL ÍNDICE DE PLASTICIDAD DE LOS SUELOS COHESIVOS - METODO A NTC - 4630-99

ACREDITADO ISO/IEC 17025:200 10-LAB-040

Referencia SYP-PT-DT-I005-6/15

PROYECTO:	SENA (COMPLEJO PALOQUEMAO) - AV. CARRERA 30 # 15-53	FECHA DE ENSAYO:	2016-02-11
CLIENTE:	TECNICAS COLOMBIANAS DE INGENIERIA S.A.S	ORDEN DE TRABAJO No.	7461
DIR CLIENTE:	CALLE 53 A No 28-67 OFC 101	INFORME DE ENSAYO No.	7461-332
10 00 \$85 V. W. CONSAC			

1145 CÓDIGO: EQUIPOS: Balanza No: 17 Horno No: HN-02 Cazuela No: 15,30 - 16,10 PROFUNDIDAD(m): MUESTRA: 13 SONDEO: Arena fina limosa, color marrón amarillento claro, estructura homogénea, sin plasticidad. DESCRIPCIÓN: OBSERVACIONES: Ensayo realizado a humedad natural. CONTENIDO DE LÍMITE PLÁSTICO LÍMITE LÍQUIDO HUMEDAD Golpes 246 Recipiente No. 228,91 181,32 11,40 28,0 (%) CLASIFICACIÓN U.S.C.S PASA T-40 LIMITE LIQUIDO (%)NL LIMITE PLÁSTICO (%) NP **INDICE DE LIQUIDEZ** ÍNDICE DE CONSISTENCIA ÍNDICE DE PLASTICIDAD (%) CLASIFICACIÓN U.S.C.S. GENERAL **INDICE DE FLUIDEZ** CONTENIDO DE HÚMEDAD VS NÚMERO DE GOLPES 37,0 Peso de la muestra inicial (g) Peso retenido en el tamiz # 40 (g) 36,5 Porcentaje retenido en el tamiz # 40 CONTENIDO DE HUMEDAD (%) 36.0 35.5 35,0 34,5 34,0

P, = Masa del recipiente mas muestra húmeda

10

P2 = Masa del recipiente mas muestra seca ω = Contenido de humedad de la muestra

25 NÚMERO DE GOLPES

P3 = Masa del recipiente

DZ

REVISÓ Y APROBÓ

100

ING. JOHN O. ORDUZ GOMEZ SUB DIRECTOR TÉCNICO

DETERMINACIÓN DEL LÍMITE LÍQUIDO, DEL LÍMITE PLÁSTICO Y DEL ÍNDICE DE PLASTICIDAD DE LOS SUELOS COHESIVOS - METODO A

NTC - 4630-99 Referencia SYP-PT-DT-I005-6/15

PROYECTO:	SENA (COMPLEJO PALOQUEMAO) - AV. CARRERA 30 # 15-53	FECHA DE ENSAYO:	2016-02-11
CLIENTE:	TECNICAS COLOMBIANAS DE INGENIERIA S.A.S	ORDEN DE TRABAJO No.	7461
DIR CLIENTE:	CALLE 53 A No 28-67 OFC 101	INFORME DE ENSAYO No.	7461-333
CÓDIGO:	1145		

EQUIPOS:	Cazuela No:	100	Balanza No: 17	Horno N	o: HN-02
SONDEO:	6	MUESTRA:	16	PROFUNDIDAD(m):	20,05 - 20,50
DESCRIPCIÓN:	Arena de grano fino,	color gris, con alg	go de arcilla, estruc	tura homogénea, sin pl	asticidad.
OBSERVACIONE	S: Ensayo realizado a	humedad natura	d.		
		LIMITE LIQUID	Φ.	LÍMITE DI ÁCTICO	CONTENIDO DE

	L	ÍMITE LÍQUID	0	LÍMITE PLÁSTICO			CONTENIDO DE HUMEDAD	
Golpes			-	-	-	-	1-00	
Recipiente No.	120	\$ 5 ,1	100	-	-	-	231	
P _{1 (g)}		-	-	-	-	-	219,22	
P _{2 (g)}	+	-	:5	-	-	-	181,24	
P _{3 (g)}	(4)	128			- 2	0	14,50	
ω (%)	-	-	35 = 3	(; -	-	-	22,8	

LIMITE LIQUIDO	(%)	NL	CLASIFICACIÓN U.S.C.S PASA T-40	
LIMITE PLÁSTICO	(%)	NP	ÍNDICE DE LIQUIDEZ	2
ÍNDICE DE PLASTICIDAD	(%)		ÍNDICE DE CONSISTENCIA	-
CLASIFICACIÓN U.S.C.S. GEN	NERAL		ÍNDICE DE FLUIDEZ	

Peso de la muestra inicial (g)	=
Peso retenido en el tamiz # 40 (g)	-
Porcentaje retenido en el tamiz # 40	

P₁ = Masa del recipiente mas muestra húmeda

P₂ = Masa del recipiente mas muestra seca ω = Contenido de humedad de la muestra

P₃ = Masa del regipiente

DZ

REVISÓ Y APROBÓ

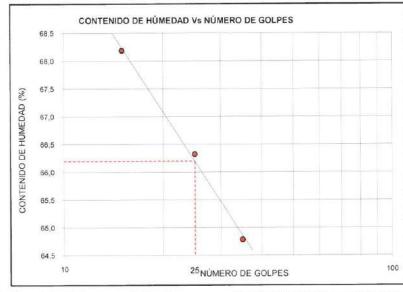
ING. JOHN O. ORDUZ GÓMEZ SUB DIRECTOR TÉCNICO

Cazuela No: 01

EQUIPOS:

INFORME DE ENSAYO

DETERMINACIÓN DEL LÍMITE DE ENSAYO DETERMINACIÓN DEL LÍMITE LÍQUIDO, DEL LÍMITE PLÁSTICO Y DEL ÍNDICE DE PLASTICIDAD DE LOS SUELOS COHESIVOS - METODO A NTC - 4630-99 Referencia SYP-PT-DT-1005-6/15


PROYECTO:	SENA (COMPLEJO PALOQUEMAO) - AV. CARRERA 30 # 15-53	FECHA DE ENSAYO:	2016-02-11
CLIENTE:	TECNICAS COLOMBIANAS DE INGENIERIA S.A.S	ORDEN DE TRABAJO No.	7461
DIR CLIENTE:	CALLE 53 A No 28-67 OFC 101	INFORME DE ENSAYO No.	7461-334
CÓDIGO:	1145		

Balanza No: 17

SONDEO:	7		MUESTRA:	1		PROFUNDIDA	D(m) :	0,50 - 0,95
DESCRIPCIÓN:	Arcilla, color	gris oscuro, e	estructura hon	nogénea, p	olasticida	d alta, con algo	de arena	
OBSERVACIONE	S: Ensayo reali	zado a hum	edad natural					
		LÍMITE LÍQUIDO				LÍMITE PLÁSTICO)	CONTENIDO DE HUMEDAD
		35	25	15	-			

	LÍMITE LÍQUIDO			LÍN	HUMEDAD		
Golpes	35	25	15	-	72	-	-
Recipiente No.	67	79	39	49	24	50	225
P _{1 (g)}	33,41	29,88	35,21	12,43	11,24	12,85	165,80
P ₂ (g)	22,54	20,33	23,53	11,12	10,12	11,33	125,97
P ₃ (g)	5,76	5,93	6,40	6,20	5,92	5,73	13,50
ω (%)	64,8	66,3	68,2	26,6	26,7	27,1	35,4

LIMITE LIQUIDO	(%)	66	CLASIFICACIÓN U.S.C.S PASA T-40	CH
LIMITE PLÁSTICO	(%)	27	ÍNDICE DE LIQUIDEZ	0,216
ÍNDICE DE PLASTICIDAD	(%)	39	ÍNDICE DE CONSISTENCIA	0,789
CLASIFICACIÓN U.S.C.S. GEN	NERAL	CH	ÍNDICE DE FLUIDEZ	9,253

Peso de la muestra inicial (g)	7 8 3
Peso retenido en el tamiz # 40 (g)	-
Porcentaje retenido en el tamiz # 40	•

Horno No: HN-02

P₂ = Masa del recipiente mas muestra seca P1 = Masa del recipiente mas muestra húmeda ω = Contenido de humedad de la muestra

P3 = Masa del recipiente

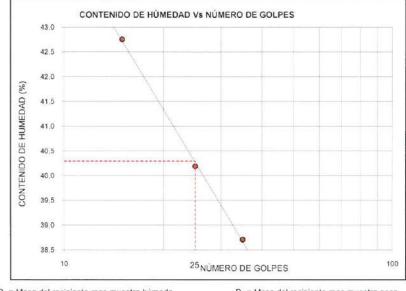
REVISÓ Y APROBÓ

ING. JOHN O. ORDUZ GÓMEZ SUB DIRECTOR TÉCNICO

LOS RESULTADOS PRESENTADOS CORRESPONDEN ÚNICAMENTE A LA MUESTRA SOMETIDA A ENSAYO. EL LABORATORIO NO ES RESPONSABLE DEL PRÓCESO DE MUESTREO. ESTE INFORME NO PUEDE SER REPRODUCIDO EN SU TOTALIDAD NI PARCIALMENTE, SIN LA AUTORIZACIÓN ESCRITA DEL LABORATORIO QUE LO EMITE. ESTE INFORME NO ES VÁLIDO SIN LA FIRMA ORIGINAL DE QUIEN REVISÓ Y APROBÓ, Y EL SELLO.

DETERMINACIÓN DEL LÍMITE LÍQUIDO, DEL LÍMITE PLÁSTICO Y DEL ÍNDICE DE PLASTICIDAD DE LOS SUELOS COHESIVOS - METODO A NTC - 4630-99 Referencia SYP-PT-DT-I005-8/15

ACREDITADO ISO/IEC 17025:2005 10-LAB-040


PROYECTO:	SENA (COMPLEJO PALOQUEMAO) - AV. CARRERA 30 # 15-53	FECHA DE ENSAYO:	2016-02-11
CLIENTE:	TECNICAS COLOMBIANAS DE INGENIERIA S.A.S	ORDEN DE TRABAJO No.	7461
DIR CLIENTE:	CALLE 53 A No 28-67 OFC 101	INFORME DE ENSAYO No.	7461-335
CÓDIGO:	1145		

EQUIPOS:	Cazuela No: 01		Balanza No: 17	Horno No:	HN-02
SONDEO:	7	MUESTRA:	4	PROFUNDIDAD(m):	4,35 - 4,80
DESCRIPCIÓN:	Arcilla, color gris clare	o, con oxidación,	estructura homogéi	nea, plasticidad baja.	

OBSERVACIONES: Ensayo realizado a humedad natural.

	L	ÍMITE LÍQUIC	00	LÍI	MITE PLÁSTI	co	CONTENIDO DE HUMEDAD
Golpes	35	25	15		-	-	-
Recipiente No.	88	95	81	107	66	91	143
P _{1 (g)}	34,75	35,72	34,54	14,77	14,54	14,27	140,21
P _{2 (g)}	26,68	27,24	26,08	13,28	13,12	12,91	106,40
P _{3 (9)}	5,83	6,14	6,29	5,81	6,08	6,07	17,60
ω (%)	38,7	40,2	42,7	19,9	20,2	19,9	38,1

LIMITE LIQUIDO	(%)	40	CLASIFICACIÓN U.S.C.S PASA T-40	CL
LIMITE PLÁSTICO	(%)	20	ÍNDICE DE LIQUIDEZ	0,904
ÍNDICE DE PLASTICIDAD	(%)	20	ÍNDICE DE CONSISTENCIA	0,111
CLASIFICACIÓN U.S.C.S. GEN	NERAL	CL	ÍNDICE DE FLUIDEZ	10,989

Peso de la muestra inicial (g)	-
Peso retenido en el tamiz # 40 (g)	-
Porcentaje retenido en el tamiz # 40	345 / A 44

P1 = Masa del recipiente mas muestra húmeda P2 = Masa del recipiente mas muestra seca ω = Contenido de humedad de la muestra

P₃ = Masa de recipiente

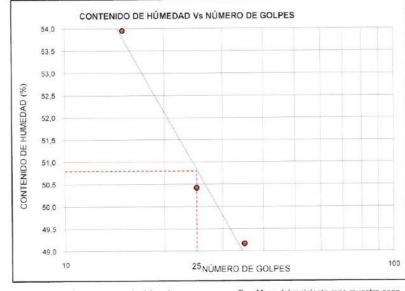
REVISÓ Y APROBÓ

ING. JOHN O. ORDUZ GÓMEZ SUB DIRECTOR TÉCNICO

LOS RESULTADOS PRESENTADOS CORRESPONDEN ÚNICAMENTE A LA MUESTRA SOMETIDA A ENSAYO. EL LABORATORIO NO ES RESPONSABLE DEL PROCESO DE MUESTREO. ESTÉ INFORME NO PUEDE SER REPRODUCIDO EN SU TOTALIDAD NI PARCIALMENTE, SIN LA AUTORIZACIÓN ESCRITA DEL LABORATORIO QUE LO EMITE. ESTE INFORME NO ES VÁLIDO SIN LA FIRMA ORIGINAL DE QUIEN REVISÓ Y APROBÓ, Y EL SELLO

DETERMINACIÓN DEL LÍMITE LÍQUIDO, DEL LÍMITE PLÁSTICO Y DEL ÍNDICE DE PLASTICIDAD DE LOS SUELOS COHESIVOS - METODO A NTC - 4630-99

Referencia SYP-PT-DT-1005-6/15


ACREDITADO ISO/IEC 17025:2005 10-LAB-040

PROYECTO:	SENA (COMPLEJO PALOQUEMAO) - AV. CARRERA 30 # 15-53	FECHA DE ENSAYO:	2016-02-11
CLIENTE:	TECNICAS COLOMBIANAS DE INGENIERIA S.A.S	ORDEN DE TRABAJO No.	7461
DIR CLIENTE:	CALLE 53 A No 28-67 OFC 101	INFORME DE ENSAYO No.	7461-336
CÓDIGO:	1145		

EQUIPOS:	Cazuela No: 01		Balanza No: 17	Horno No:	HN-02
SONDEO:	7	MUESTRA:	6	PROFUNDIDAD(m):	6,85 - 7,30
DESCRIPCIÓN:	Arena limo gravosa, c	olor marrón ama	rillento claro.		
OBSERVACIONE	S: Ensayo realizado a h	umedad natura	ıl.		

	Li	MITE LÍQUID	00	Lír	MITE PLÁSTIC	co	CONTENIDO DE HUMEDAD
Golpes	35	25	15	-	12	2	4
Recipiente No.	48	53	122	31	23	44	165
P _{1 (g)}	34,70	34,94	34,91	14,89	14,35	14,66	241,31
P ₂ (g)	25,25	25,26	24,80	13,61	13,16	13,40	208,34
P _{3 (9)}	6,03	6,06	6,06	6,20	6,36	6,11	17,60
ω (%)	49,2	50,4	53,9	17,3	17,5	17,3	17,3

LIMITE LIQUIDO	(%)	51	CLASIFICACIÓN U.S.C.S PASA T-40	СН
LIMITE PLÁSTICO	(%)	17	ÍNDICE DE LIQUIDEZ	0,008
ÍNDICE DE PLASTICIDAD	(%)	34	ÍNDICE DE CONSISTENCIA	0,986
CLASIFICACIÓN U.S.C.S. GEN	NERAL	CL	ÍNDICE DE FLUIDEZ	12,993

Peso de la muestra inicial (g)	
Peso retenido en el tamiz # 40 (g)	-
Porcentaie retenido en el tamiz # 40	

P. = Masa del recipiente mas muestra húmeda P2 = Masa del recipiente mas muestra seca (i) = Contenido de humedad de la muestra

P₃ = Masa del/recipiente

ING. JOHN O. ORDUZ GÓMEZ SUB DIRECTOR TECNICO

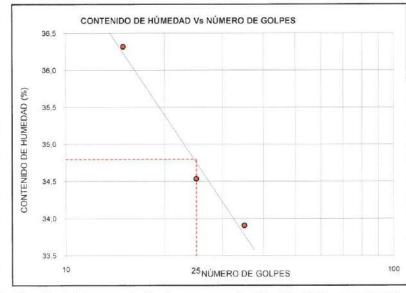
LOS RESULTADOS PRESENTADOS CORRESPONDEN ÚNICAMENTE A LA MUESTRA SOMETIDA A ENSAYO. EL LABORATORIO NO ES RESPONSABLE DEL PROCESO DE MUESTREO. ESTÉ INFORME NO PUEDE SER REPRODUCIDO EN SU TOTALIDAD NI PARDIALMENTE. SIN LA AUTORIZACIÓN ESCRITA DEL LABORATORIO QUE LO EMITE. ESTE INFORME NO ES VÁLIDO SIN LA FIRMA ORIGINAL DE QUIEN REVISO Y APROBÓ, Y EL SELLO.

REVISÓ Y APROBÓ

INFORME DE ENSAYO DETERMINACIÓN DEL LÍMITE LÍQUIDO, DEL LÍMITE PLÁSTICO Y DEL ÍNDICE DE PLASTICIDAD DE LOS SUELOS COHESIVOS - METODO A

NTC - 4630-99 Referencia SYP-PT-DT-I005-6/15

RED TADO (SO/IEC 17025-2005


PROYECTO:	SENA (COMPLEJO PALOQUEMAO) - AV. CARRERA 30 # 15-53	FECHA DE ENSAYO:	2016-02-11
CLIENTE:	TECNICAS COLOMBIANAS DE INGENIERIA S.A.S	ORDEN DE TRABAJO No.	7461
DIR CLIENTE:	CALLE 53 A No 28-67 OFC 101	INFORME DE ENSAYO No.	7461-337
CÓDIGO:	1145		

EQUIPOS:	Cazuela No: 01		Balanza No: 17	Horno No: HN-02		
SONDEO:	7	MUESTRA:	9	PROFUNDIDAD(m):	10,55 - 11,00	
DESCRIPCIÓN:	Arcilla arenosa, color	gris claro, estruc	tura homogénea.			

OBSERVACIONES: Ensayo realizado a humedad natural.

	LÍMITE LÍQUIDO			Lír	CONTENIDO DE HUMEDAD		
Golpes	35	25	15	978		-	-
Recipiente No.	124	99	10	8	111	129	33
P _{1 (g)}	36,62	34,11	38,18	16,01	17,13	18,00	141,99
P _{2 (g)}	28,93	26,92	29,66	14,33	15,34	16,11	117,82
P _{3 (9)}	6,25	6,10	6,20	5,64	6,17	6,46	18,40
ω (%)	33,9	34,5	36,3	19,3	19,5	19,6	24,3

LIMITE LIQUIDO	(%)	35	CLASIFICACIÓN U.S.C.S PASA T-40	CL
LIMITE PLÁSTICO	(%)	19	ÍNDICE DE LIQUIDEZ	0,332
ÍNDICE DE PLASTICIDAD	(%)	16	INDICE DE CONSISTENCIA	0,656
CLASIFICACIÓN U.S.C.S. GEN	IERAL	CL	INDICE DE FLUIDEZ	6,551

Peso de la muestra inicial (g)	
Peso retenido en el tamiz # 40 (g)	-
Porcentale retenido en el tamiz # 40	

P₁ = Masa del recipiente mas muestra húmeda

P₂ = Masa del recipiente mas muestra seca ω = Contenido de humedad de la muestra P₃ = Masa del ecipiente

DZ

REVISÓ Y APROBÓ

ING. JOHN O. ORDUZ GÓMEZ SUB DIRECTOR TÉCNICO

DETERMINACIÓN DEL LÍMITE LÍQUIDO, DEL LÍMITE PLÁSTICO Y DEL ÍNDICE DE PLASTICIDAD DE LOS SUELOS COHESIVOS - METODO A NTC - 4630-99 Referencia SYP-PT-DT-1005-6/15

PROYECTO:	SENA (COMPLEJO PALOQUEMAO) - AV. CARRERA 30 # 15-53	FECHA DE ENSAYO:	2016-02-11
CLIENTE:	TECNICAS COLOMBIANAS DE INGENIERIA S.A.S	ORDEN DE TRABAJO No.	7461
DIR CLIENTE:	CALLE 53 A No 28-67 OFC 101	INFORME DE ENSAYO No.	7461-338
CÓDIGO:	1145		

DIR CL CÓDIG	LIENTE: 30:	CALLE 53 A No 2 1145	28-67 OFC 10)1			INFORME DI	E ENSAYO	No.	7461-338
EQUIPOS: Cazuela No:			ť	Balanza No: 17			Horno No: HN-02			
SOND	EO:	7		MUESTRA: 12			PROFUNDID	AD(m): 1	4,90 - 15,35	
	RIPCIÓN:	Arena limosa,				nea, sin p	olasticidad.			
OBSEF	RVACIONE	ES: Ensayo realiz	ado a hum	edad natura	ıl.					
			L	ÍMITE LÍQUID	О		LÍMITE PLÁSTIC	co	CONTENIDO DE HUMEDAD	
		Golpes	*	-	(4)	2	-	-		
		Recipiente No.	-			-	-		12	
		P ₁ (g)	S#6	220	141	=	-	-	211,78	
		P ₂ (g)		*	-	į.	8	ā	182,21	
		P _{3 (g)}	727	958	12	0	2	2.0	19,19	
		ω (%)	*		0#6	*	-	-	18,1	
		STICIDAD N U.S.C.S. GENERA					E CONSISTEN	CIA		
	37.0	CONTENIDO DE HÚME	DAD Vs NÚMER	RO DE GOLPES			Peso de la mues	stra inicial (n)		-
							Peso retenido er	- 120	(g)	181
	36.5						Porcentaje reten		3.75()	
DAD (%)	36,0									
HUME	35,5									
DO DE	35,0									
CONTENIDO DE HUMEDAD (%)	34.5									

P1 = Masa del recipiente mas muestra húmeda

34,0

10

P₂ = Masa del recipiente mas muestra seca ω = Contenido de humedad de la muestra

25 NÚMERO DE GOLPES

DZ

REVISÓ Y APROBÓ

100

ING. JOHN O. ORDUZ GÓMEZ

SUB DIRECTOR TECNICO

DETERMINACIÓN DEL LÍMITE LÍQUIDO, DEL LÍMITE PLÁSTICO Y DEL ÍNDICE DE PLASTICIDAD DE LOS SUELOS COHESIVOS - METODO A NTC - 4630-99

Referencia SYP-PT-DT-1005-6/15

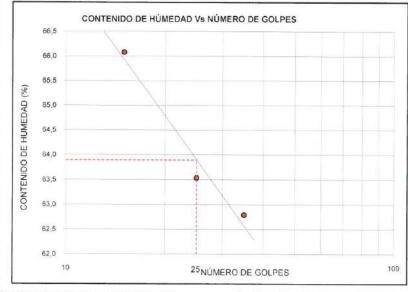
SENA (COMPLEJO PALOQUEMAO) - AV. CARRERA 30 # 15-53 FECHA DE ENSAYO: 2016-02-11 TECNICAS COLOMBIANAS DE INGENIERIA S.A.S ORDEN DE TRABAJO No. 7461 CALLE 53 A No 28-67 OFC 101 INFORME DE ENSAYO No. 7461-339

CÓDIGO: 1145

PROYECTO:

DIR CLIENTE:

CLIENTE:


EQUIPOS:	Cazuela No: 01	Balanza No: 17		Horno No:	: HN-02	111.00-1011-1
SONDEO:	8	MUESTRA:	2	PROFUNDIDAD(m):	1,55 - 2,00	

DESCRIPCIÓN: Arcilla, color gris, con oxidación, estructura homogénea, plasticidad alta.

OBSERVACIONES: Ensayo realizado a humedad natural.

	LÍMITE LÍQUIDO			Lír	LÍMITE PLÁSTICO			
Golpes	35	25	15	-		-	-	
Recipiente No.	37	127	116	52	90	41	148	
P _{1 (g)}	24,87	33,49	25,82	15,98	14,20	14,54	149,64	
P ₂ (9)	17,58	22,81	17,95	13,78	12,41	12,71	120,55	
P _{3 (9)}	5,97	6,00	6,04	6,26	6,18	6,45	17,36	
ω (%)	62,8	63,5	66,1	29,3	28.7	29,2	28,2	

LIMITE LIQUIDO 64 (%) CLASIFICACIÓN U.S.C.S PASA T-40 CH LIMITE PLÁSTICO (%) 29 ÍNDICE DE LIQUIDEZ -0,023ÍNDICE DE PLASTICIDAD 35 ÍNDICE DE CONSISTENCIA 1,020 CLASIFICACIÓN U.S.C.S. GENERAL CH **INDICE DE FLUIDEZ** 8,936

Peso de la muestra inicial (g)	-
Peso retenido en el tamiz # 40 (g)	-
Porcentaje retenido en el tamiz # 40	

P₁ = Masa del recipiente mas muestra húmeda

P₂ = Masa del recipiente mas muestra seca ω = Contenido de humedad de la muestra P₃ = Masa del pecipiente

DZ

REVISÓ Y APROBÓ

ING. JOHN O. ORDUZ GÓMEZ SUB DIRECTOR TÉCNICO

LOS RESULTADOS PRESENTADOS CORRESPONDEN ÚNICAMENTE A LA MUESTRA SOMETIDA A ENSAYO. EL LABORATORIO NO ES RESPONSABLE DEL PROCESO DE MUESTREO. ESTE INFORME NO PUEDE SER REPRODUCIDO EN SU TOTALIDAD NI PARCIALMENTE, SIN LA ALITORIZACIÓN ESCRITA DEL LABORATORIO QUE LO EMITE. ESTE INFORME NO ES VÁLIDO SIN LA FIRMA ORIGINAL DE QUIEN REVISÓ Y APROBÓ, Y EL SELLO.

OFICINAS Y LABORATORIO: Calle 79A No. 62 – 37 Tels. 225 47 60 630 04 73 Telefax 543 85 20 Bogotá, D.C. – Colombia

E - mail; laboratoriosuelosypavimentos@gmail.com./yahoo.com

DETERMINACIÓN DEL LÍMITE LÍQUIDO, DEL LÍMITE PLÁSTICO Y DEL INDICE DE PLASTICIDAD DE LOS SUELOS COHESIVOS - METODO A

NTC - 4630-99 Referencia SYP-PT-DT-I005-6/15

PROYECTO:SENA (COMPLEJO PALOQUEMAO) - AV. CARRERA 30 # 15-53FECHA DE ENSAYO:2016-02-11CLIENTE:TECNICAS COLOMBIANAS DE INGENIERIA S.A.SORDEN DE TRABAJO No.7461DIR CLIENTE:CALLE 53 A No 28-67 OFC 101INFORME DE ENSAYO No.7461-340CÓDIGO:1145


EQUIPOS:	Cazuela No: 01		Balanza No: 17	Horno No: HN-02	
SONDEO:	8	MUESTRA:	4	PROFUNDIDAD(m):	3,55 - 4,00
				and the second s	recovery to the second

DESCRIPCIÓN: Arcilla, color girs claro, con algo de oxidación, estructura homogénea, plasticidad baja, con algo de arena.

OBSERVACIONES: Ensayo realizado a humedad natural.

	LÍMITE LÍQUIDO			LÍN	CONTENIDO DE HUMEDAD		
Golpes	35	25	15	+	-	2	-
Recipiente No.	26	114	80	85	105	29	158
P _{1 (g)}	33,18	31,01	36,87	15,98	14,99	15,61	138,81
P _{2 (g)}	26,14	24,31	28,01	14,52	13,62	14,12	114,51
P _{3 (g)}	6,16	6,15	6,12	6,53	6,08	6,01	17,80
ω (%)	35.2	36,9	40,5	18,3	18,2	18,4	25,1

LIMITE LIQUIDO	(%)	37	CLASIFICACIÓN U.S.C.S PASA T-40	CL
LIMITE PLÁSTICO	(%)	18	ÍNDICE DE LIQUIDEZ	0,375
ÍNDICE DE PLASTICIDAD	(%)	19	ÍNDICE DE CONSISTENCIA	0,635
CLASIFICACIÓN U.S.C.S. GEN	NERAL	CL	ÍNDICE DE FLUIDEZ	14,240

Peso de la muestra inicial (g)	
Peso retenido en el tamiz # 40 (g)	-
Porcentaje retenido en el tamiz # 40	-

P₁ = Masa del recipiente mas muestra húmeda

P₂ = Masa del recipiente mas muestra seca ω = Contenido de humedad de la muestra P₃ = Masa del recipiente

DZ

REVISÓ Y APROBÓ

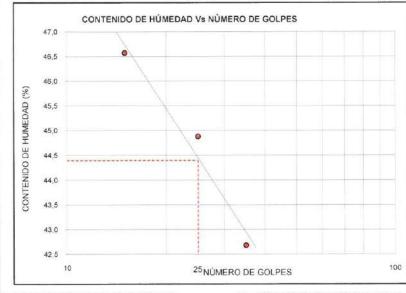
ING. JOHN O. ORDUZ GÓMEZ SUB DIRECTOR TECNICO

INFORME DE ENSAYO DETERMINACIÓN DEL LÍMITE LÍQUIDO, DEL LÍMITE PLÁSTICO Y DEL ÍNDICE DE PLASTICIDAD DE LOS SUELOS COHESIVOS - METODO A NTC - 4630-99

Referencia SYP-PT-DT-1005-6/15

6,55 - 7,00

PROYECTO:SENA (COMPLEJO PALOQUEMAO) - AV. CARRERA 30 # 15-53FECHA DE ENSAYO:2016-02-11CLIENTE:TECNICAS COLOMBIANAS DE INGENIERIA S.A.SORDEN DE TRABAJO No.7461DIR CLIENTE:CALLE 53 A No 28-67 OFC 101INFORME DE ENSAYO No.7461-341CÓDIGO:1145


EQUIPOS:	Cazuela No: 01	Balanza No: 17	Horno No: HN-02	
		THE RESIDENCE OF THE PROPERTY		

SONDEO: 8 MUESTRA: 7 PROFUNDIDAD(m): DESCRIPCIÓN: Arcilla arenosa, color girs, estructura homogénea, plasticidad baja, sin olor.

OBSERVACIONES: Ensayo realizado a humedad natural.

	LÍMITE LÍQUIDO			LÍMITE PLÁSTICO			CONTENIDO DE HUMEDAD
Golpes	35	25	15		-	2	-
Recipiente No.	83	187	64	86	3	18	20
P _{1 (g)}	32,52	35,38	33,61	14,78	15,29	16,61	162,29
P _{2 (q)}	24,56	26,32	24,86	13,26	13,77	14,89	132,66
P _{3 (g)}	5,91	6,13	6,07	5,55	6,15	6,19	17,82
ω (%)	42,7	44,9	46,6	19,7	19,9	19,8	25,8

CL 44 CLASIFICACIÓN U.S.C.S PASA T-40 LIMITE LIQUIDO (%) 0.242 20 **INDICE DE LIQUIDEZ** LIMITE PLÁSTICO (%) ÍNDICE DE CONSISTENCIA 0,775 **INDICE DE PLASTICIDAD** 24 (%) 10,561 CL **INDICE DE FLUIDEZ** CLASIFICACIÓN U.S.C.S. GENERAL

Peso de la muestra inicial (g)	-
Peso retenido en el tamiz # 40 (g)	
Porcentaje retenido en el tamiz # 40	Time (20)

P₁ = Masa del recipiente mas muestra húmeda

 P_2 = Masa del recipiente mas muestra seca ω = Contenido de humedad de la muestra

P₃ = Masa del recipiente

DZ

REVISÓ Y APROBÓ

ING. JOHN O. ORDUZ GÓMEZ

SUB DIRECTOR TÉCNICO

.OS RESULTADOS PRESENTADOS CORRESPONDEN ÚNICAMENTE A LA MUESTRA SOMETIDA A ENSAYO. EL LABORATORIO NO ES RESPONSABLE DEL PROCESO DE MUESTREO. ESTE INFORME NO PUEDE SER REPRODUCIDO EN SU TOTALIDAD NI PARCIALMENTE, SIN LA AUTORIZACIÓN ESCRITA DEL LABORATORIO QUE LO EMITE. ESTE INFORME NO ES VÁLIDO SIN LA FIRMA ORIGINAL DE QUIEN REVISÓ Y APROBÓ, Y EL SELLO.

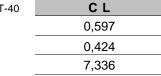
OFICINAS Y LABORATORIO: Calle 79A No. 62 – 37 Tels. 225 47 60 630 04 73 Telefax 543 85 20 Bogotá, D.C. – Colombia

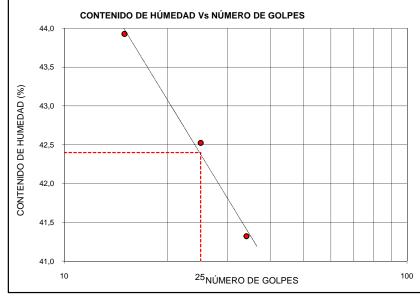
DETERMINACIÓN DEL LÍMITE LÍQUIDO, DEL LÍMITE PLÁSTICO Y DEL ÍNDICE DE PLASTICIDAD DE LOS SUELOS COHESIVOS - METODO A

NTC - 4630-99 Referencia SYP-PT-DT-I005-6/15

PROYECTO:SENA (COMPLEJO PALOQUEMAO) - AV. CARRERA 30 # 15-53FECHA DE ENSAYO:2016-02-11CLIENTE:TECNICAS COLOMBIANAS DE INGENIERIA S.A.SORDEN DE TRABAJO No.7461DIR CLIENTE:CALLE 53 A No 28-67 OFC 101INFORME DE ENSAYO No.7461-369CÓDIGO:1145

SONDEO: 9 MUESTRA: 1 PROFUNDIDAD(m): 1,00 - 1,45


DESCRIPCIÓN: Arcilla, color girs, con oxidación, estructura homogénea, húmeda.


OBSERVACIONES: Ensayo realizado a humedad natural.

	LÍMITE LÍQUIDO LÍMITE PLÁSTICO			CONTENIDO DE HUMEDAD			
Golpes	34	25	15	-	-	-	-
Recipiente No.	530	241	401	282	349	324	223
P _{1 (g)}	36,63	35,23	36,93	23,19	22,73	22,63	148,80
P _{2 (g)}	29,13	27,72	28,97	20,94	20,59	20,45	113,74
P _{3 (g)}	10,98	10,06	10,85	11,02	11,19	10,91	11,68
ω (%)	41,3	42,5	43,9	22,7	22,8	22,9	34,4

LIMITE LIQUIDO (%)
LIMITE PLÁSTICO (%)
ÍNDICE DE PLASTICIDAD (%)
CLASIFICACIÓN U.S.C.S. GENERAL

CLASIFICACIÓN U.S.C.S PASA T-40 ÍNDICE DE LIQUIDEZ ÍNDICE DE CONSISTENCIA ÍNDICE DE FLUIDEZ

Peso de la muestra inicial (g)	-
Peso retenido en el tamiz # 40 (g)	-
Porcentaje retenido en el tamiz # 40	-

P₁ = Masa del recipiente mas muestra húmeda

 P_2 = Masa del recipiente mas muestra seca ω = Contenido de humedad de la muestra

P₃ = Masa del recipiente

DZ REVISÓ Y APROBÓ

ING. JOHN O. ORDUZ GÓMEZ

SUB DIRECTOR TÉCNICO

DETERMINACIÓN DEL LÍMITE LÍQUIDO, DEL LÍMITE PLÁSTICO Y DEL ÍNDICE DE PLASTICIDAD DE LOS SUELOS COHESIVOS - METODO A

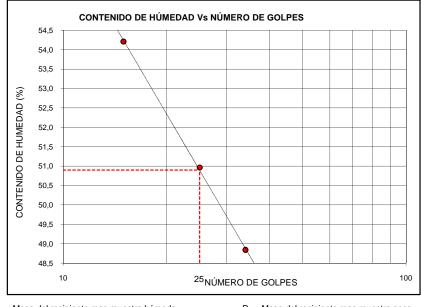
NTC - 4630-99 Referencia SYP-PT-DT-I005-6/15

PROYECTO:SENA (COMPLEJO PALOQUEMAO) - AV. CARRERA 30 # 15-53FECHA DE ENSAYO:2016-02-11CLIENTE:TECNICAS COLOMBIANAS DE INGENIERIA S.A.SORDEN DE TRABAJO No.7461DIR CLIENTE:CALLE 53 A No 28-67 OFC 101INFORME DE ENSAYO No.7461-370CÓDIGO:1145

EQUIPOS:	Cazuela No: 02	Balanza No: 03	Horno No:	

SONDEO: 9 MUESTRA: 3 PROFUNDIDAD(m): 3,50 -3,95

DESCRIPCIÓN: Arcilla, color gris, con oxidación, estructura homogénea, húmeda, plasticidad alta.


OBSERVACIONES: Ensayo realizado a humedad natural.

	LÍMITE LÍQUIDO LÍMITE PLÁSTICO			CONTENIDO DE HUMEDAD			
Golpes	34	25	15	-	-	-	-
Recipiente No.	536	501	628	467	588	569	249
P _{1 (g)}	34,80	36,46	36,60	23,57	22,49	22,26	177,27
P _{2 (g)}	27,00	28,03	27,66	21,30	20,31	20,13	144,67
P _{3 (g)}	11,03	11,49	11,17	11,73	11,22	11,21	13,53
ω (%)	48,8	51,0	54,2	23,7	24,0	23,9	24,9

LIMITE LIQUIDO (%)
LIMITE PLÁSTICO (%)
ÍNDICE DE PLASTICIDAD (%)
CLASIFICACIÓN U.S.C.S. GENERAL

CLASIFICACIÓN U.S.C.S PASA T-40 ÍNDICE DE LIQUIDEZ ÍNDICE DE CONSISTENCIA ÍNDICE DE FLUIDEZ

0,032 0,964 15,119

Peso de la muestra inicial (g)	-
Peso retenido en el tamiz # 40 (g)	-
Porcentaje retenido en el tamiz # 40	-

P₁ = Masa del recipiente mas muestra húmeda

 P_2 = Masa del recipiente mas muestra seca ω = Contenido de humedad de la muestra

P₃ = Masa del recipiente

DZ REVISÓ Y APROBÓ

ING. JOHN O. ORDUZ GÓMEZ

SUB DIRECTOR TÉCNICO

DETERMINACIÓN DEL LÍMITE LÍQUIDO, DEL LÍMITE PLÁSTICO Y DEL ÍNDICE DE PLASTICIDAD DE LOS SUELOS COHESIVOS - METODO A

NTC - 4630-99 Referencia SYP-PT-DT-I005-6/15

PROYECTO:	SENA (COMPLEJO PALOQUEMAO) - AV. CARRERA 30 # 15-53	FECHA DE ENSAYO:	2016-02-11
CLIENTE:	TECNICAS COLOMBIANAS DE INGENIERIA S.A.S	ORDEN DE TRABAJO No.	7461
DIR CLIENTE:	CALLE 53 A No 28-67 OFC 101	INFORME DE ENSAYO No.	7461-371
CÓDIGO:	1145		

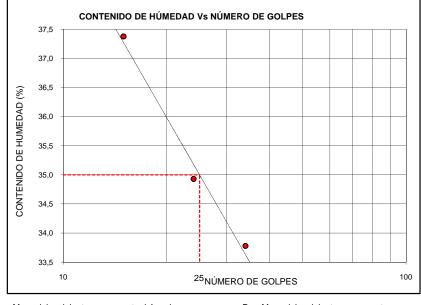
EQUIPOS:	Cazuela No: 02	Balanza No: 03	Horno No:	

SONDEO: MUESTRA: 5 PROFUNDIDAD(m): 6,00 - 6,45

DESCRIPCIÓN: Arcilla arenosa, color gris, con algo de grava, con oxidación, estructura lenticular.

OBSERVACIONES: Ensayo realizado a humedad natural.

	L	LÍMITE LÍQUIDO LÍMITE PLÁSTICO		CONTENIDO DE HUMEDAD			
Golpes	34	24	15	-	-	-	-
Recipiente No.	381	319	313	330	407	529	B151
P _{1 (g)}	34,22	33,47	35,52	22,73	22,28	22,97	489,36
P _{2 (g)}	28,43	27,78	28,90	20,76	20,34	20,98	414,86
P ₃ (g)	11,29	11,49	11,19	11,49	11,26	11,63	34,93
ω (%)	33,8	34,9	37,4	21,3	21,4	21,3	19,6


LIMITE LIQUIDO (%) LIMITE PLÁSTICO (%)ÍNDICE DE PLASTICIDAD (%) CLASIFICACIÓN U.S.C.S. GENERAL

35
21
14
CL

CLASIFICACIÓN U.S.C.S PASA T-40 ÍNDICE DE LIC ÍNDICE DE CO ÍNDICE DE FL

QUIDEZ	-0,099
ONSISTENCIA	1,099
LUIDEZ	10,128

CL

Peso de la muestra inicial (g)	-
Peso retenido en el tamiz # 40 (g)	-
Porcentaje retenido en el tamiz # 40	-

P₁ = Masa del recipiente mas muestra húmeda

P₂ = Masa del recipiente mas muestra seca ω = Contenido de humedad de la muestra

P₃ = Masa del recipiente

REVISÓ Y APROBÓ DΖ

ING. JOHN O. ORDUZ GÓMEZ

SUB DIRECTOR TÉCNICO

DETERMINACIÓN DEL LÍMITE LÍQUIDO, DEL LÍMITE PLÁSTICO Y DEL ÍNDICE DE PLASTICIDAD DE LOS SUELOS COHESIVOS - METODO A

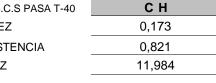
NTC - 4630-99 Referencia SYP-PT-DT-I005-6/15

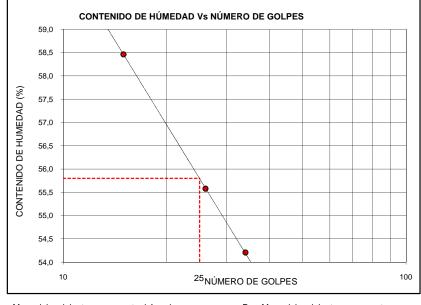
PROYECTO:SENA (COMPLEJO PALOQUEMAO) - AV. CARRERA 30 # 15-53FECHA DE ENSAYO:2016-02-11CLIENTE:TECNICAS COLOMBIANAS DE INGENIERIA S.A.SORDEN DE TRABAJO No.7461DIR CLIENTE:CALLE 53 A No 28-67 OFC 101INFORME DE ENSAYO No.7461-372CÓDIGO:1145

FOUIPOS:	Cazuela No: 02	Balanza No: 03	Horno No:	

SONDEO: 9 MUESTRA: 7 PROFUNDIDAD(m): 7,70 - 8,15

DESCRIPCIÓN: Arcilla, color gris, con presencia orgánica y algo de arena, color negro, estructura homogénea, húmeda.


OBSERVACIONES: Ensayo realizado a humedad natural.


	LÍMITE LÍQUIDO LÍMITE PLÁSTICO			CONTENIDO DE HUMEDAD			
Golpes	34	26	15	-	-	·	-
Recipiente No.	359	617	632	606	561	563	94
P _{1 (g)}	35,63	35,31	36,44	21,66	21,51	21,21	143,19
P _{2 (g)}	26,93	26,94	27,15	19,35	19,30	19,05	112,53
P _{3 (g)}	10,88	11,88	11,26	10,92	11,19	11,05	16,73
ω (%)	54,2	55,6	58,5	27,4	27,3	27,0	32,0

LIMITE LIQUIDO (%)
LIMITE PLÁSTICO (%)
ÍNDICE DE PLASTICIDAD (%)
CLASIFICACIÓN U.S.C.S. GENERAL

56
27
29
CH

CLASIFICACIÓN U.S.C.S PASA T-40 ÍNDICE DE LIQUIDEZ ÍNDICE DE CONSISTENCIA ÍNDICE DE FLUIDEZ

Peso de la muestra inicial (g)	-
Peso retenido en el tamiz # 40 (g)	-
Porcentaje retenido en el tamiz # 40	-

P₁ = Masa del recipiente mas muestra húmeda

 P_2 = Masa del recipiente mas muestra seca ω = Contenido de humedad de la muestra

P₃ = Masa del recipiente

DZ REVISÓ Y APROBÓ

ING. JOHN O. ORDUZ GÓMEZ

SUB DIRECTOR TÉCNICO

DETERMINACIÓN DEL LÍMITE LÍQUIDO, DEL LÍMITE PLÁSTICO Y DEL ÍNDICE DE PLASTICIDAD DE LOS SUELOS COHESIVOS - METODO A

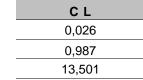
NTC - 4630-99 Referencia SYP-PT-DT-I005-6/15

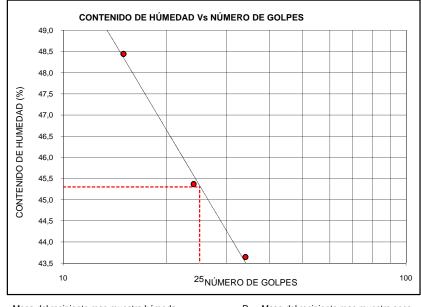
PROYECTO:	SENA (COMPLEJO PALOQUEMAO) - AV. CARRERA 30 # 15-53	FECHA DE ENSAYO:	2016-02-11
CLIENTE:	TECNICAS COLOMBIANAS DE INGENIERIA S.A.S	ORDEN DE TRABAJO No.	7461
DIR CLIENTE:	CALLE 53 A No 28-67 OFC 101	INFORME DE ENSAYO No.	7461-373
CÓDIGO:	1145		

EQUIPOS:	Cazuela No: 02	Balanza No: 03	Horno No:	

1,60 - 2,05 SONDEO: MUESTRA: PROFUNDIDAD(m):

DESCRIPCIÓN: Arcilla arenosa, color gris, con oxidación, estructura lenticular, húmeda.


OBSERVACIONES: Ensayo realizado a humedad natural.


	L	ÍMITE LÍQUIC	00	LÍMITE PLÁSTICO		CONTENIDO DE HUMEDAD	
Golpes	34	24	15	-	-	-	-
Recipiente No.	362	369	289	342	275	389	210
P _{1 (g)}	37,37	37,27	37,73	22,86	22,35	22,85	232,81
P _{2 (g)}	29,61	29,19	29,02	20,77	20,34	20,79	192,04
P _{3 (g)}	11,83	11,38	11,04	11,12	11,06	11,29	11,69
ω (%)	43,6	45,4	48,4	21,7	21,7	21,7	22,6

LIMITE LIQUIDO (%) LIMITE PLÁSTICO (%)ÍNDICE DE PLASTICIDAD (%) CLASIFICACIÓN U.S.C.S. GENERAL

45
22
23
CL

CLASIFICACIÓN U.S.C.S PASA T-40 ÍNDICE DE LIQUIDEZ ÍNDICE DE CONSISTENCIA ÍNDICE DE FLUIDEZ

Peso de la muestra inicial (g)	-
Peso retenido en el tamiz # 40 (g)	-
Porcentaje retenido en el tamiz # 40	-

P₁ = Masa del recipiente mas muestra húmeda

P₂ = Masa del recipiente mas muestra seca ω = Contenido de humedad de la muestra

P₃ = Masa del recipiente

REVISÓ Y APROBÓ DΖ

ING. JOHN O. ORDUZ GÓMEZ

SUB DIRECTOR TÉCNICO

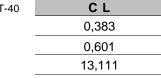
DETERMINACIÓN DEL LÍMITE LÍQUIDO, DEL LÍMITE PLÁSTICO Y DEL ÍNDICE DE PLASTICIDAD DE LOS SUELOS COHESIVOS - METODO A

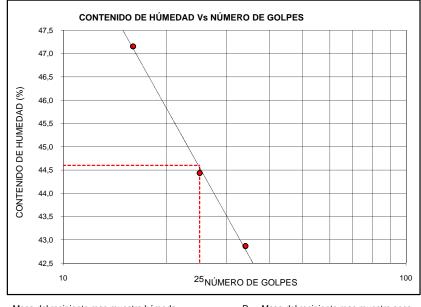
NTC - 4630-99 Referencia SYP-PT-DT-I005-6/15

PROYECTO:SENA (COMPLEJO PALOQUEMAO) - AV. CARRERA 30 # 15-53FECHA DE ENSAYO:2016-02-11CLIENTE:TECNICAS COLOMBIANAS DE INGENIERIA S.A.SORDEN DE TRABAJO No.7461DIR CLIENTE:CALLE 53 A No 28-67 OFC 101INFORME DE ENSAYO No.7461-374CÓDIGO:1145

EOLIDOS:	Cazuela No: 02	Balanza No: 03	Horno No:	
	Cazuela INO. UZ	Dalaliza INU. US	I IOITIO INO.	

SONDEO: 10 MUESTRA: 4 PROFUNDIDAD(m): 4,05 - 4,50


DESCRIPCIÓN: Arcilla, color gris claro, con oxidación, estructura homogénea, húmeda.


OBSERVACIONES: Ensayo realizado a humedad natural.

	LÍMITE LÍQUIDO LÍMITE PLÁSTICO			CONTENIDO DE HUMEDAD			
Golpes	34	25	16	-	-		-
Recipiente No.	432	373	502	504	393	508	198
P _{1 (g)}	33,77	35,44	35,37	22,70	22,95	22,44	165,40
P _{2 (g)}	27,07	28,05	27,57	20,83	20,93	20,41	131,09
P _{3 (g)}	11,44	11,42	11,03	11,64	11,14	10,61	17,43
ω (%)	42,9	44,4	47,2	20,3	20,6	20,7	30,2

LIMITE LIQUIDO (%)
LIMITE PLÁSTICO (%)
ÍNDICE DE PLASTICIDAD (%)
CLASIFICACIÓN U.S.C.S. GENERAL

CLASIFICACIÓN U.S.C.S PASA T-40 ÍNDICE DE LIQUIDEZ ÍNDICE DE CONSISTENCIA ÍNDICE DE FLUIDEZ

Peso de la muestra inicial (g)	-
Peso retenido en el tamiz # 40 (g)	-
Porcentaje retenido en el tamiz # 40	-

P₁ = Masa del recipiente mas muestra húmeda

P₂ = Masa del recipiente mas muestra seca ω = Contenido de humedad de la muestra P₃ = Masa del recipiente

DZ REVISÓ Y APROBÓ

ING. JOHN O. ORDUZ GÓMEZ

SUB DIRECTOR TÉCNICO

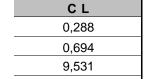
DETERMINACIÓN DEL LÍMITE LÍQUIDO, DEL LÍMITE PLÁSTICO Y DEL ÍNDICE DE PLASTICIDAD DE LOS SUELOS COHESIVOS - METODO A

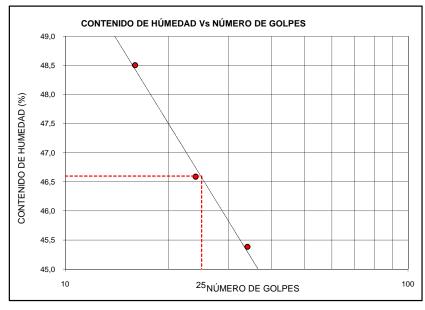
NTC - 4630-99 Referencia SYP-PT-DT-I005-6/15

PROYECTO:SENA (COMPLEJO PALOQUEMAO) - AV. CARRERA 30 # 15-53FECHA DE ENSAYO:2016-02-11CLIENTE:TECNICAS COLOMBIANAS DE INGENIERIA S.A.SORDEN DE TRABAJO No.7461DIR CLIENTE:CALLE 53 A No 28-67 OFC 101INFORME DE ENSAYO No.7461-375CÓDIGO:1145

FOUIPOS:	Cazuela No: 02	Balanza No: 03	Horno No:	

SONDEO: 10 MUESTRA: 7 PROFUNDIDAD(m): 7,85 - 8,20


DESCRIPCIÓN: Arcilla, color gris, estructura homogénea, húmeda, plasticidad baja, consistencia firme.


OBSERVACIONES: Ensayo realizado a humedad natural.

	LÍMITE LÍQUIDO LÍMITE PLÁSTICO			CONTENIDO DE HUMEDAD			
Golpes	34	24	16	-	-	-	-
Recipiente No.	468	474	448	548	434	587	115
P _{1 (g)}	34,80	34,89	36,27	23,37	22,69	22,64	161,51
P ₂ (g)	27,57	27,38	27,99	21,02	20,53	20,43	127,56
P ₃ (g)	11,64	11,26	10,92	11,33	11,65	11,43	16,74
ω (%)	45,4	46,6	48,5	24,3	24,3	24,6	30,6

LIMITE LIQUIDO (%)
LIMITE PLÁSTICO (%)
ÍNDICE DE PLASTICIDAD (%)
CLASIFICACIÓN U.S.C.S. GENERAL

CLASIFICACIÓN U.S.C.S PASA T-40 ÍNDICE DE LIQUIDEZ ÍNDICE DE CONSISTENCIA ÍNDICE DE FLUIDEZ

Peso de la muestra inicial (g)	-
Peso retenido en el tamiz # 40 (g)	-
Porcentaje retenido en el tamiz # 40	-

P₁ = Masa del recipiente mas muestra húmeda

 P_2 = Masa del recipiente mas muestra seca ω = Contenido de humedad de la muestra

P₃ = Masa del recipiente

DZ REVISÓ Y APROBÓ

ING. JOHN O. ORDUZ GÓMEZ

SUB DIRECTOR TÉCNICO

DETERMINACIÓN DEL LÍMITE LÍQUIDO, DEL LÍMITE PLÁSTICO Y DEL ÍNDICE DE PLASTICIDAD DE LOS SUELOS COHESIVOS - METODO A

NTC - 4630-99 Referencia SYP-PT-DT-I005-6/15

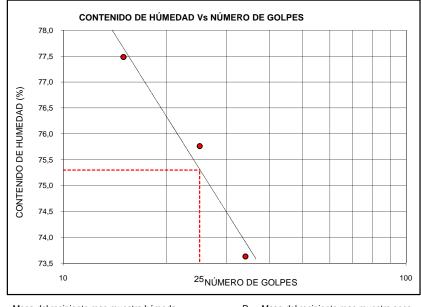
PROYECTO:SENA (COMPLEJO PALOQUEMAO) - AV. CARRERA 30 # 15-53FECHA DE ENSAYO:2016-02-11CLIENTE:TECNICAS COLOMBIANAS DE INGENIERIA S.A.SORDEN DE TRABAJO No.7461DIR CLIENTE:CALLE 53 A No 28-67 OFC 101INFORME DE ENSAYO No.7461-376

CÓDIGO: 1145

EQUIPOS: Cazuela No: 02 Balanza No: 03 Horno No:

SONDEO: 10 MUESTRA: 9 PROFUNDIDAD(m): 10,35 - 11,15

DESCRIPCIÓN: Limo, color gris claro, con algunos puntos orgánicos, color negro, estructura homogénea, húmeda.


OBSERVACIONES: Ensayo realizado a humedad natural.

	LÍMITE LÍQUIDO LÍMITE PLÁSTICO			CONTENIDO DE HUMEDAD			
Golpes	34	25	15	-	-		-
Recipiente No.	279	262	559	572	487	236	232
P _{1 (g)}	34,95	34,00	34,23	21,57	22,53	22,20	170,52
P _{2 (g)}	24,87	24,34	24,18	18,75	19,34	19,10	132,85
P _{3 (g)}	11,18	11,59	11,21	11,24	10,92	10,89	13,90
ω (%)	73,6	75,8	77,5	37,5	37,9	37,8	31,7

LIMITE LIQUIDO (%)
LIMITE PLÁSTICO (%)
ÍNDICE DE PLASTICIDAD (%)
CLASIFICACIÓN U.S.C.S. GENERAL

75
38
37
MH

CLASIFICACIÓN U.S.C.S PASA T-40 ÍNDICE DE LIQUIDEZ ÍNDICE DE CONSISTENCIA ÍNDICE DE FLUIDEZ M H
-0,171
1,179
10,850

Peso de la muestra inicial (g)	-
Peso retenido en el tamiz # 40 (g)	-
Porcentaje retenido en el tamiz # 40	-

P₁ = Masa del recipiente mas muestra húmeda

 P_2 = Masa del recipiente mas muestra seca ω = Contenido de humedad de la muestra

P₃ = Masa del recipiente

DZ REVISÓ Y APROBÓ

ING. JOHN O. ORDUZ GÓMEZ

SUB DIRECTOR TÉCNICO

DETERMINACIÓN DEL LÍMITE LÍQUIDO, DEL LÍMITE PLÁSTICO Y DEL ÍNDICE DE PLASTICIDAD DE LOS SUELOS COHESIVOS - METODO A

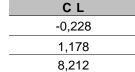
NTC - 4630-99 Referencia SYP-PT-DT-I005-6/15

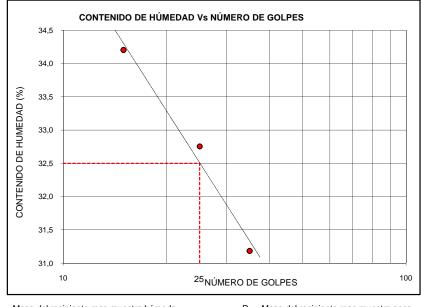
PROYECTO:SENA (COMPLEJO PALOQUEMAO) - AV. CARRERA 30 # 15-53FECHA DE ENSAYO:2016-02-11CLIENTE:TECNICAS COLOMBIANAS DE INGENIERIA S.A.SORDEN DE TRABAJO No.7461DIR CLIENTE:CALLE 53 A No 28-67 OFC 101INFORME DE ENSAYO No.7461-377

CÓDIGO: 1145

EQUIPOS: Cazuela No: 02 Balanza No: 03 Horno No:

SONDEO: 10 MUESTRA: 11 PROFUNDIDAD(m): 13,55 - 14,00


DESCRIPCIÓN: Limo arenoso, color gris, estructura homogénea, húmeda, plasticidad baja.


OBSERVACIONES: Ensayo realizado a humedad natural.

	LÍMITE LÍQUIDO LÍMITE PLÁ			MITE PLÁSTIC	co	CONTENIDO DE HUMEDAD	
Golpes	35	25	15	-	-	-	-
Recipiente No.	391	293	325	614	510	568	95
P _{1 (g)}	35,37	35,93	35,31	22,93	23,84	23,18	155,46
P _{2 (g)}	29,57	29,68	29,16	20,75	21,41	20,93	131,73
P _{3 (g)}	10,97	10,60	11,18	11,48	11,05	11,35	17,22
ω (%)	31,2	32,8	34,2	23,5	23,5	23,5	20,7

LIMITE LIQUIDO (%)
LIMITE PLÁSTICO (%)
ÍNDICE DE PLASTICIDAD (%)
CLASIFICACIÓN U.S.C.S. GENERAL

CLASIFICACIÓN U.S.C.S PASA T-40 ÍNDICE DE LIQUIDEZ ÍNDICE DE CONSISTENCIA ÍNDICE DE FLUIDEZ

Peso de la muestra inicial (g)	-
Peso retenido en el tamiz # 40 (g)	-
Porcentaje retenido en el tamiz # 40	-

P₁ = Masa del recipiente mas muestra húmeda

 P_2 = Masa del recipiente mas muestra seca ω = Contenido de humedad de la muestra

P₃ = Masa del recipiente

DZ

REVISÓ Y APROBÓ

ING. JOHN O. ORDUZ GÓMEZ

SUB DIRECTOR TÉCNICO

DETERMINACIÓN DEL LÍMITE LÍQUIDO, DEL LÍMITE PLÁSTICO Y DEL ÍNDICE DE PLASTICIDAD DE LOS SUELOS COHESIVOS - METODO A

NTC - 4630-99 Referencia SYP-PT-DT-I005-6/15

ACREDITADO ISO/IEC 17025:2005 10-LAB-040

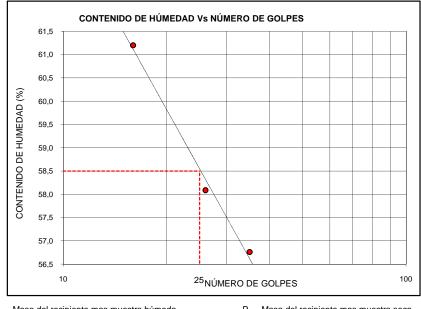
PROYECTO:	SENA (COMPLEJO PALOQUEMAO) - AV. CARRERA 30 # 15-53	FECHA DE ENSAYO:	2016-02-12
CLIENTE:	TECNICAS COLOMBIANAS DE INGENIERIA S.A.S	ORDEN DE TRABAJO No.	7461
DIR CLIENTE:	CALLE 53 A No 28-67 OFC 101	INFORME DE ENSAYO No.	7461-378
CÓDIGO:	1145		

EQUIPOS:	Cazuela No: 02	Balanza No: 03	Horno No:	

SONDEO: MUESTRA: PROFUNDIDAD(m): 0,40 - 0,85

Arcilla, color gris claro, con oxidación, estructura homogénea, húmeda. DESCRIPCIÓN:

OBSERVACIONES: Ensayo realizado a humedad natural.


	L	ÍMITE LÍQUIC	00	LÍI	MITE PLÁSTIC	00	CONTENIDO DE HUMEDAD
Golpes	35	26	16	-	-	ı	-
Recipiente No.	583	449	290	457	524	442	197
P _{1 (g)}	35,05	35,35	36,00	23,05	22,77	22,83	145,18
P _{2 (g)}	26,53	26,30	26,44	20,51	20,40	20,38	115,76
P _{3 (g)}	11,52	10,72	10,82	11,12	11,64	11,27	18,18
ω (%)	56,8	58,1	61,2	27,1	27,1	26,9	30,1

LIMITE LIQUIDO (%) LIMITE PLÁSTICO (%)ÍNDICE DE PLASTICIDAD (%)CLASIFICACIÓN U.S.C.S. GENERAL

59
27
32
СН

CLASIFICACIÓN U.S.C.S PASA T-40 ÍNDICE DE LIQUIDEZ ÍNDICE DE CONSISTENCIA ÍNDICE DE FLUIDEZ

C H
0,098
0,886
13,065

Peso de la muestra inicial (g)	-
Peso retenido en el tamiz # 40 (g)	-
Porcentaje retenido en el tamiz # 40	-

P₁ = Masa del recipiente mas muestra húmeda

DΖ

P₂ = Masa del recipiente mas muestra seca ω = Contenido de humedad de la muestra

P₃ = Masa del recipiente

REVISÓ Y APROBÓ

ING. JOHN O. ORDUZ GÓMEZ SUB DIRECTOR TÉCNICO

DETERMINACIÓN DEL LÍMITE LÍQUIDO, DEL LÍMITE PLÁSTICO Y DEL ÍNDICE DE PLASTICIDAD DE LOS SUELOS COHESIVOS - METODO A

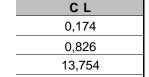
NTC - 4630-99 Referencia SYP-PT-DT-I005-6/15

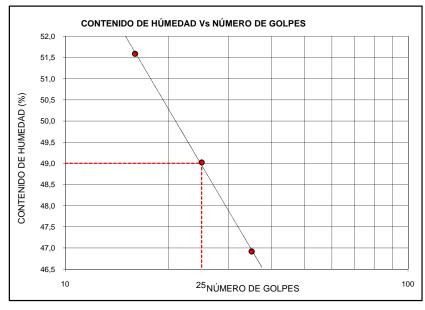
PROYECTO:SENA (COMPLEJO PALOQUEMAO) - AV. CARRERA 30 # 15-53FECHA DE ENSAYO:2016-02-12CLIENTE:TECNICAS COLOMBIANAS DE INGENIERIA S.A.SORDEN DE TRABAJO No.7461DIR CLIENTE:CALLE 53 A No 28-67 OFC 101INFORME DE ENSAYO No.7461-379CÓDIGO:1145

EQUIPOS:	Cazuela No: 02	Balanza No: 03	Horno No:	

SONDEO: 11 MUESTRA: 3 PROFUNDIDAD(m): 2,85 - 3,25

DESCRIPCIÓN: Arcilla arenosa, color gris, con oxidación, estructura homogénea.


OBSERVACIONES: Ensayo realizado a humedad natural.


	LÍMITE LÍQUIDO LÍMITE PLÁSTICO		CONTENIDO DE HUMEDAD				
Golpes	35	25	16	-	-	-	-
Recipiente No.	315	433	331	543	382	566	58
P _{1 (g)}	34,63	35,97	35,27	22,57	23,02	22,61	187,81
P _{2 (g)}	27,25	27,93	27,17	20,43	20,56	20,30	151,28
P _{3 (g)}	11,52	11,53	11,47	11,86	10,74	11,11	26,08
ω (%)	46,9	49,0	51,6	25,0	25,1	25,1	29,2

LIMITE LIQUIDO (%)
LIMITE PLÁSTICO (%)
ÍNDICE DE PLASTICIDAD (%)
CLASIFICACIÓN U.S.C.S. GENERAL

49
25
24
CL

CLASIFICACIÓN U.S.C.S PASA T-40 ÍNDICE DE LIQUIDEZ ÍNDICE DE CONSISTENCIA ÍNDICE DE FLUIDEZ

Peso de la muestra inicial (g)	-
Peso retenido en el tamiz # 40 (g)	-
Porcentaje retenido en el tamiz # 40	-

P₁ = Masa del recipiente mas muestra húmeda

 P_2 = Masa del recipiente mas muestra seca ω = Contenido de humedad de la muestra

P₃ = Masa del recipiente

DZ REVISÓ Y APROBÓ

ING. JOHN O. ORDUZ GÓMEZ

SUB DIRECTOR TÉCNICO

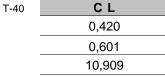
DETERMINACIÓN DEL LÍMITE LÍQUIDO, DEL LÍMITE PLÁSTICO Y DEL ÍNDICE DE PLASTICIDAD DE LOS SUELOS COHESIVOS - METODO A

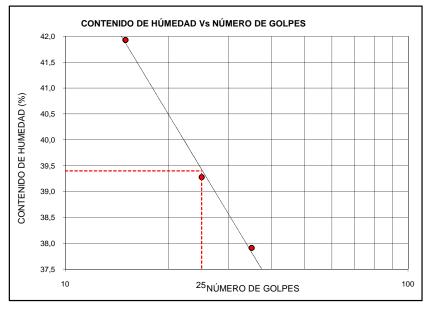
NTC - 4630-99 Referencia SYP-PT-DT-I005-6/15

PROYECTO:SENA (COMPLEJO PALOQUEMAO) - AV. CARRERA 30 # 15-53FECHA DE ENSAYO:2016-02-12CLIENTE:TECNICAS COLOMBIANAS DE INGENIERIA S.A.SORDEN DE TRABAJO No.7461DIR CLIENTE:CALLE 53 A No 28-67 OFC 101INFORME DE ENSAYO No.7461-380CÓDIGO:1145

EOLIBOS:	Cazuela No. 02	Balanza No: 03	Horno No:	
IEGUIPUS.	Cazuela IVO. UZ	Dalaliza NU. US	HOIHO NO.	

SONDEO: 11 MUESTRA: 6 PROFUNDIDAD(m): 6,90 - 7,35


DESCRIPCIÓN: Arcilla, color gris, con presencia orgánica, estructura homogénea, húmeda, plasticidad baja.


OBSERVACIONES: Ensayo realizado a humedad natural.

	LÍMITE LÍQUIDO			LÍMITE PLÁSTICO			CONTENIDO DE HUMEDAD
Golpes	35	25	15	-	-		-
Recipiente No.	599	346	310	295	485	354	25
P _{1 (g)}	36,24	37,32	36,61	23,00	23,75	23,27	145,85
P _{2 (g)}	29,37	29,92	29,13	21,10	21,67	21,28	117,58
P _{3 (g)}	11,25	11,08	11,29	11,28	11,01	11,17	16,57
ω (%)	37,9	39,3	41,9	19,3	19,5	19,7	28,0

LIMITE LIQUIDO (%)
LIMITE PLÁSTICO (%)
ÍNDICE DE PLASTICIDAD (%)
CLASIFICACIÓN U.S.C.S. GENERAL

CLASIFICACIÓN U.S.C.S PASA T-40 ÍNDICE DE LIQUIDEZ ÍNDICE DE CONSISTENCIA ÍNDICE DE FLUIDEZ

Peso de la muestra inicial (g)	-
Peso retenido en el tamiz # 40 (g)	-
Porcentaje retenido en el tamiz # 40	-

P₁ = Masa del recipiente mas muestra húmeda

DΖ

 P_2 = Masa del recipiente mas muestra seca ω = Contenido de humedad de la muestra

P₃ = Masa del recipiente

REVISÓ Y APROBÓ

ING. JOHN O. ORDUZ GÓMEZ
SUB DIRECTOR TÉCNICO

....

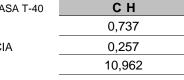
DETERMINACIÓN DEL LÍMITE LÍQUIDO, DEL LÍMITE PLÁSTICO Y DEL ÍNDICE DE PLASTICIDAD DE LOS SUELOS COHESIVOS - METODO A

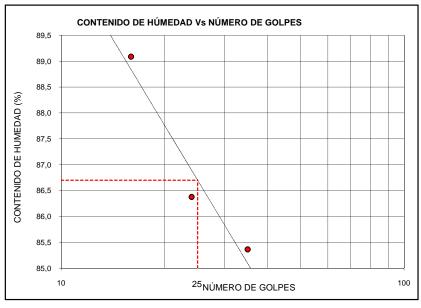
NTC - 4630-99 Referencia SYP-PT-DT-I005-6/15

PROYECTO:SENA (COMPLEJO PALOQUEMAO) - AV. CARRERA 30 # 15-53FECHA DE ENSAYO:2016-02-12CLIENTE:TECNICAS COLOMBIANAS DE INGENIERIA S.A.SORDEN DE TRABAJO No.7461DIR CLIENTE:CALLE 53 A No 28-67 OFC 101INFORME DE ENSAYO No.7461-403CÓDIGO:1145

EQUIPOS:	Cazuela No: 02	Balanza No: 03	Horno No:	

SONDEO: 11 MUESTRA: 8 PROFUNDIDAD(m): 9,55 - 10,05


DESCRIPCIÓN: Arcilla limosa, color gris, con presencia orgánica, color negro, estructura homogénea, húmeda.


OBSERVACIONES: Ensayo realizado a humedad natural.

	LÍMITE LÍQUIDO			LÍMITE PLÁSTICO			CONTENIDO DE HUMEDAD
Golpes	35	24	16	-	-	-	-
Recipiente No.	247	488	366	444	562	233	38
P _{1 (g)}	32,68	33,20	34,77	21,26	19,91	22,34	153,96
P _{2 (g)}	23,00	23,12	23,83	18,53	17,55	19,23	96,46
P _{3 (g)}	11,66	11,45	11,55	11,37	11,37	11,05	18,89
ω (%)	85,4	86,4	89,1	38,1	38,2	38,0	74,1

LIMITE LIQUIDO (%)
LIMITE PLÁSTICO (%)
ÍNDICE DE PLASTICIDAD (%)
CLASIFICACIÓN U.S.C.S. GENERAL

CLASIFICACIÓN U.S.C.S PASA T-40 ÍNDICE DE LIQUIDEZ ÍNDICE DE CONSISTENCIA ÍNDICE DE FLUIDEZ

Peso de la muestra inicial (g)	-
Peso retenido en el tamiz # 40 (g)	-
Porcentaje retenido en el tamiz # 40	-

P₁ = Masa del recipiente mas muestra húmeda

DΖ

P₂ = Masa del recipiente mas muestra seca ω = Contenido de humedad de la muestra P₃ = Masa del recipiente

REVISÓ Y APROBÓ

ING. JOHN O. ORDUZ GÓMEZ

DETERMINACIÓN DEL LÍMITE LÍQUIDO, DEL LÍMITE PLÁSTICO Y DEL ÍNDICE DE PLASTICIDAD DE LOS SUELOS COHESIVOS - METODO A

NTC - 4630-99 Referencia SYP-PT-DT-I005-6/15

12,25 - 12,70

PROYECTO:	SENA (COMPLEJO PALOQUEMAO) - AV. CARRERA 30 # 15-53	FECHA DE ENSAYO:	2016-02-12
CLIENTE:	TECNICAS COLOMBIANAS DE INGENIERIA S.A.S	ORDEN DE TRABAJO No.	7461
DIR CLIENTE:	CALLE 53 A No 28-67 OFC 101	INFORME DE ENSAYO No.	7461-404
CÓDIGO:	1145		

EQUIPOS:	Cazuela No: 02	Balanza No: 03	Horno No:	

SONDEO: MUESTRA: 10 PROFUNDIDAD(m): Arena fina, color gris, estructura lenticular, húmeda, no plástico. DESCRIPCIÓN:

OBSERVACIONES: -

	LÍMITE LÍQUIDO			LÍMITE PLÁSTICO			CONTENIDO DE HUMEDAD
Golpes	-	-	-	-	-	-	-
Recipiente No.	-	-	-	-	-	-	B131
P _{1 (g)}	-	-	-	-	-	-	329,36
P _{2 (g)}	-	-	-	-	-	-	276,93
P _{3 (g)}	-	-	-	-	-	-	38,25
ω (%)	-	-	-	-	-	-	22,0

LIMITE LIQUIDO (%)	NL	CLASIFICACIÓN U.S.C.S PASA T-40	-
LIMITE PLÁSTICO (%)	NP	ÍNDICE DE LIQUIDEZ	-
ÍNDICE DE PLASTICIDAD (%)	-	ÍNDICE DE CONSISTENCIA	-
CLASIFICACIÓN U.S.C.S. GENERAL	-	ÍNDICE DE FLUIDEZ	-

Peso de la muestra inicial (g)	-
Peso retenido en el tamiz # 40 (g)	-
Porcentaje retenido en el tamiz # 40	-

P₁ = Masa del recipiente mas muestra húmeda

P₂ = Masa del recipiente mas muestra seca ω = Contenido de humedad de la muestra

P₃ = Masa del recipiente

REVISÓ Y APROBÓ DΖ

ING. JOHN O. ORDUZ GÓMEZ

SUB DIRECTOR TÉCNICO

DETERMINACIÓN DEL LÍMITE LÍQUIDO, DEL LÍMITE PLÁSTICO Y DEL ÍNDICE DE PLASTICIDAD DE LOS SUELOS COHESIVOS - METODO A

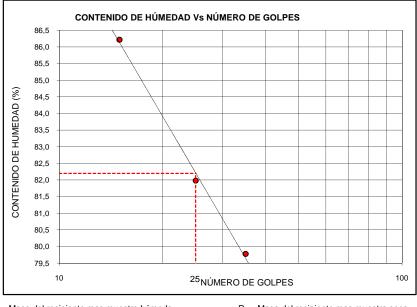
NTC - 4630-99 Referencia SYP-PT-DT-I005-6/15

PROYECTO:SENA (COMPLEJO PALOQUEMAO) - AV. CARRERA 30 # 15-53FECHA DE ENSAYO:2016-02-12CLIENTE:TECNICAS COLOMBIANAS DE INGENIERIA S.A.SORDEN DE TRABAJO No.7461DIR CLIENTE:CALLE 53 A No 28-67 OFC 101INFORME DE ENSAYO No.7461-405CÓDIGO:1145

FOUIPOS:	Cazuela No: 02	Balanza No: 03	Horno No:	

SONDEO: 11 MUESTRA: 13 PROFUNDIDAD(m): 16,60 - 17,20

DESCRIPCIÓN: Arcilla, color marrón, estructura homogénea, plasticidad alta, consistencia firme.


OBSERVACIONES: Ensayo realizado a humedad natural.

	LÍMITE LÍQUIDO			LÍMITE PLÁSTICO			CONTENIDO DE HUMEDAD
Golpes	35	25	15	-	-	-	-
Recipiente No.	250	568	614	567	458	453	239
P _{1 (g)}	35,95	37,21	36,08	23,73	23,47	23,45	166,37
P _{2 (g)}	24,23	25,56	24,69	20,85	20,64	20,54	113,80
P _{3 (g)}	9,54	11,35	11,48	11,19	11,21	10,96	12,65
ω (%)	79,8	82,0	86,2	29,8	30,0	30,4	52,0

LIMITE LIQUIDO (%)
LIMITE PLÁSTICO (%)
ÍNDICE DE PLASTICIDAD (%)
CLASIFICACIÓN U.S.C.S. GENERAL

CLASIFICACIÓN U.S.C.S PASA T-40 ÍNDICE DE LIQUIDEZ ÍNDICE DE CONSISTENCIA ÍNDICE DE FLUIDEZ

Peso de la muestra inicial (g)	-
Peso retenido en el tamiz # 40 (g)	-
Porcentaje retenido en el tamiz # 40	-

P₁ = Masa del recipiente mas muestra húmeda

 P_2 = Masa del recipiente mas muestra seca ω = Contenido de humedad de la muestra

P₃ = Masa del recipiente

DZ REVISÓ Y APROBÓ

ING. JOHN O. ORDUZ GÓMEZ

SUB DIRECTOR TÉCNICO

DETERMINACIÓN DEL LÍMITE LÍQUIDO, DEL LÍMITE PLÁSTICO Y DEL ÍNDICE DE PLASTICIDAD DE LOS SUELOS COHESIVOS - METODO A

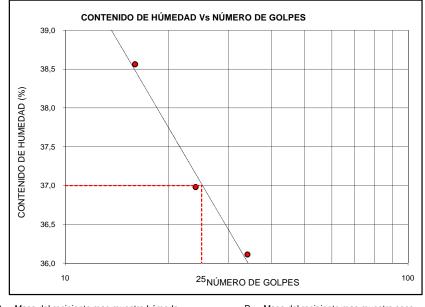
NTC - 4630-99 Referencia SYP-PT-DT-I005-6/15

PROYECTO:SENA (COMPLEJO PALOQUEMAO) - AV. CARRERA 30 # 15-53FECHA DE ENSAYO:2016-02-12CLIENTE:TECNICAS COLOMBIANAS DE INGENIERIA S.A.SORDEN DE TRABAJO No.7461DIR CLIENTE:CALLE 53 A No 28-67 OFC 101INFORME DE ENSAYO No.7461-406CÓDIGO:1145

EQUIPOS	Cazuela No: 02	Balanza No: 03	Horno No:	

SONDEO: 11 MUESTRA: 15 PROFUNDIDAD(m): 19,80 - 20,40

DESCRIPCIÓN: Arcilla arenosa, color gris, algunos puntos orgánicos, estructura homogénea.


OBSERVACIONES: Ensayo realizado a humedad natural.

	LÍMITE LÍQUIDO			LÍMITE PLÁSTICO			CONTENIDO DE HUMEDAD
Golpes	34	24	16	-	-	-	-
Recipiente No.	552	345	609	499	276	606	179
P _{1 (g)}	36,50	37,37	37,03	23,34	24,69	24,10	251,53
P _{2 (g)}	29,70	30,44	30,00	21,19	22,41	21,93	197,28
P _{3 (g)}	10,87	11,70	11,77	10,92	11,51	11,52	16,84
ω (%)	36,1	37,0	38,6	20,9	20,9	20,8	30,1

LIMITE LIQUIDO (%)
LIMITE PLÁSTICO (%)
ÍNDICE DE PLASTICIDAD (%)
CLASIFICACIÓN U.S.C.S. GENERAL

CLASIFICACIÓN U.S.C.S PASA T-40 ÍNDICE DE LIQUIDEZ ÍNDICE DE CONSISTENCIA ÍNDICE DE FLUIDEZ

0,567 0,433 7,485

Peso de la muestra inicial (g)	-
Peso retenido en el tamiz # 40 (g)	-
Porcentaje retenido en el tamiz # 40	-

P₁ = Masa del recipiente mas muestra húmeda P₂ = Masa del recipien

 P_2 = Masa del recipiente mas muestra seca ω = Contenido de humedad de la muestra

P₃ = Masa del recipiente

REVISÓ Y APROBÓ

ING. JOHN O. ORDUZ GÓMEZ

SUB DIRECTOR TÉCNICO

LOS RESULTADOS PRESENTADOS CORRESPONDEN ÚNICAMENTE A LA MUESTRA SOMETIDA A ENSAYO. EL LABORATORIO NO ES RESPONSABLE DEL PROCESO DE MUESTREO. ESTE INFORME NO PUEDE SER REPRODUCIDO EN SU TOTALIDAD NI PARCIALMENTE, SIN LA AUTORIZACIÓN ESCRITA DEL LABORATORIO QUE LO EMITE. ESTE INFORME NO ES VÁLIDO SIN LA FIRMA ORIGINAL DE QUIEN REVISÓ Y APROBÓ, Y EL SELLO.

DΖ

MATERIA ORGÁNICA POR CALCINACIÓN

I.N.V. E - 121-13 Referencia SYP-PT-DT-I 056-3/15

Página 1 de 1

PROYECTO:	SENA (COMPLEJO PALOQUEMAO) AV CRA 30 N° 15 - 53	FECHA DE ENSAYO:	2016-01-22
CLIENTE:	TECNICAS COLOMBIANAS DE INGENIERIA S.A.S	ORDEN DE TRABAJO No.	7461
DIR CLIENTE:	CALLE 53 A No 28-67 OFC 101	INFORME DE ENSAYO No.	7461-122
CÓDIGO:	1145		

SONDEO:	1	MUESTRA:	1	PROFUNDIDAD:	0,90 - 1,35 m.
DESCRIPCION:	Arcilla limosa de color gris,	con oxidaciones.	Estructura homoge	énea, de plasticidad alta y	consistencia firme, húmeda.
OBSERVACIONES:	-				

MATERIA ORGÁNICA				
Recipiente No.	4			
A (g)	41,21			
B (g)	40,60			
C (g)	20,15			
% m.orgánica	2,9			

SONDEO: MUESTRA: 2 PROFUNDIDAD: 1,80 - 2,25 m. DESCRIPCION: Arcilla de color gris. Estructura homogénea, de plasticidad baja, consistencia media, húmeda. OBSERVACIONES: -

MATERIA ORGÁNICA				
Recipiente No.	2			
A (g)	41,06			
B (g)	40,77			
C (g)	20,83			
% m.orgánica	1 4			

SONDEO: MUESTRA: PROFUNDIDAD: - m. DESCRIPCION:

OBSERVACIONES: -

MATERIA ORGÁNICA				
Recipiente No.	-			
A (g)	-			
B (g)	-			
C (g)	-			
% m.orgánica	-			

A= Masa del recipiente más muestra seca inicial

B = Masa del recipiente más muestra seca Calcinada

C = Masa del recipiente limpio y seco

HGCS

REVISÓ Y APROBÓ

ING. JOHN O. ORDUZ GÓMEZ

SUB DIRECTOR TÉCNICO

SENA (COMPLEJO PALOQUEMAO) - AV. CARRERA 30 # 15-53

PROYECTO:

MATERIA ORGÁNICA POR CALCINACIÓN

I.N.V. E - 121-13 Referencia SYP-PT-DT-I 056-3/15

FECHA DE ENSAYO:

Página 1 de 1

2016-02-11

7461

CLIENTE:	TECNICAS COLOMBIA	NAS DE INGENIERIA S	ORDEN DE TRABAJO No.		7461	
DIR CLIENTE:	: CALLE 53 A No 28-67 OFC 101			INFORME DE ENSAYO No.		7461-359
CÓDIGO:	1145					
					0.55 4.00	
SONDEO:	8	MUESTRA:	1	PROFUNDIDAD:	0,55 - 1,00 m.	
DESCRIPCION:	Arcilla algo limosa, o	olor gris, estructura	nomogenea,	piasticidad alta.		
DBSERVACIONE	:S:-					
		MATERIA OF	RGÁNICA			
		Recipiente No.	6			
		A (g)	46,17			
		B (g)	46,04			
		C (g)	16,35			
		% m.orgánica	0,4			
		% m.organica	0,4			
ONDEO:		MUESTRA:	200	PROFUNDIDAD:	- m.	
ESCRIPCION:	NEXT CONTRACTOR					
DBSERVACION	ES: -					
		MATERIA OF	RGÁNICA			
		Recipiente No.				
		A (g)	1981			
		B (g)	*			
		C (g)	-			
		% m.orgánica				
				_		
SONDEO:	•	MUESTRA:	•	PROFUNDIDAD:	- m.	
DESCRIPCION:	r a ri					
DBSERVACION	ES: -					
		MATERIA O	DC ÁNICA			
		Recipiente No.	-			
		A (g)	-	-		
		B (g)				
		C (g)	-			
		% m.orgánica				
		Mary Augustus and Santa and Sa			O - Mare Mal	unia u an
A= Masa del recipier	nte más muestra seca inicial	B = Masa del recipien	te más muestra se	eca Calcinada	C = Masa del recipiente lin	ipio y seco
					1.1	

SUB DIRECTOR TECNICO LOS RESULTADOS PRESENTADOS CORRESPONDEN ÚNICAMENTE A LA MUESTRA SOMETIDA A ENSAYO. ESTE INFORME NO PUEDE SER REPRODUCIDO EN SU TOTALIDAD NI PARCIALMENTE, SIN LA AUTORIZACIÓN ESCRITA DEL LABORATORIO QUE LO EMITE ESTE INFORME NO ES VÁLIDO SIN LA FIRMA ORIGINAL DE QUIEN REVISÓ Y APROBO, Y EL SELLO.

REVISÓ Y APROBÓ

ING. JOHN O. ORDUZ GÓMEZ

MATERIA ORGÁNICA POR CALCINACIÓN

I.N.V. E - 121-13 Referencia SYP-PT-DT-I 056-3/15

Página 1 de 1

PROYECTO:	SENA (COMPLEJO PALOQUEMAO) - AV. CARRERA 30 # 15-53	FECHA DE ENSAYO:	2016-02-12
CLIENTE:	TECNICAS COLOMBIANAS DE INGENIERIA S.A.S	ORDEN DE TRABAJO No.	7461
DIR CLIENTE:	CALLE 53 A No 28-67 OFC 101	INFORME DE ENSAYO No.	7461-399
CÓDIGO:	1145		

SONDEO:	11	MUESTRA:	1	PROFUNDIDAD:	0,40 - 0,85 m.
DESCRIPCION:	Arcilla, color gris claro,		estructura homo		
OBSERVACIONES	:-				
				1	
		MATERIA (
		Recipiente No.	2		
		A (g)	42,37		
		B (g)	42,07		
		C (g)	20,84		
		% m.orgánica	1,4		
SONDEO:	-	MUESTRA:		PROFUNDIDAD:	- m.
DESCRIPCION:	-	WOLOTTOA.		TROFORDIDAD.	
OBSERVACIONES	: -				
		MATERIA (ORGÁNICA		
		Recipiente No.	-		
		A (g)	-		
		B (g)	-		
		C (g)	-		
		% m.orgánica	-		
				•	
SONDEO:	-	MUESTRA:		PROFUNDIDAD:	- m.
DESCRIPCION:	-			11(0) 0(12)2/12.	
OBSERVACIONES	: -				
				1	
		MATERIA (ORGÁNICA		
		Recipiente No.	-		
		A (g)	-		
		B (g)	-		
		C (g)	-		
		% m.orgánica	-		
A= Masa del recipiente i	más muestra seca inicial	B = Masa del recipie	nte más muestra sec	a Calcinada C	= Masa del recipiente limpio y seco

DΖ

REVISÓ Y APROBÓ

ING. JOHN O. ORDUZ GÓMEZ

SUB DIRECTOR TÉCNICO

PESO UNITARIO EN MUESTRAS IRREGULARES (MÉTODO PARAFINADO) METODO ISRM-07

Referencia SYP-PT-DT-I089-5/14

PROYECTO:	SENA (COMPLEJO PALOQUEMAO) AV CRA 30 N° 15 - 53	FECHA DE ENSAYO:	2016-01-21
CLIENTE:	TECNICAS COLOMBIANAS DE INGENIERIA S.A.S	ORDEN DE TRABAJO No.	7461
DIR CLIENTE:	CALLE 53 A No 28-67 OFC 101	INFORME DE ENSAYO No.	7461-109
CÓDIGO:	1145		

CÓDIGO:	1145					
EQUIPOS:	Calibrador No: 17		Balanza No: 19	Horno No: HN-01		
SONDEO:	1	MUESTRA:	2	PRO	FUNDIDAD(m) :	1,80 - 2,25
DESCRIPCIÓN:	Arcilla de color gris. Estruc	tura homogénea	a, de plasticidad baja, c	onsistencia me	dia,húmeda.	
OBSERVACIONES	S:-					
		ω n		PESO (JNITARIO	
	Recipiente	102		W1	231,91	
	P ₁ (g)	147,35		W2	246,13	
	P ₂ (g)	121,93		W3	111,4	
	P ₃ (g)	18,97		γ t (g/cm³)	1,950	
	Humedad	24,7%		γ d (g/cm³)	1,564	
P ₁ = Peso del recipient	e mas muestra húmeda	P ₂ = Peso del re	cipiente mas muestra seca		P ₃ = Peso del recip	piente
W1= Masa de la muest			nuestra parafinada		W3= Masa parafin	
SONDEO:	-	MUESTRA:	-	PRO	FUNDIDAD(m) :	
DESCRIPCIÓN:	-					
OBSERVACIONES	S:-					
		ω n		PESO U	JNITARIO	
	Recipiente	-		W1	-	
	P ₁ (g)	-		W2	-	
	P ₂ (g)	-	_	W3	-	
	P ₃ (g)	-		γ t (g/cm³)	-	
	Humedad	-		γ d (g/cm³)	-	
P ₄ = Peso del recipient	e mas muestra húmeda	P ₂ = Peso del re	cipiente mas muestra seca	<u> </u>	P ₃ = Peso del recip	piente
W1= Masa de la muest		_	nuestra parafinada	•		
SONDEO:	-			PRO	PROFUNDIDAD(m) : -	
DESCRIPCIÓN:	-				- ()	
OBSERVACIONES	S: -					
	ωn			PESO UNITARIO		
	Recipiente	-		W1	-	
	P ₁ (g)	-		W2	-	
	P ₂ (g)	-		W3	-	
	P ₃ (g)	-		γ t (g/cm³)	-	
	Humedad	-		γ d (g/cm³)	-	
P1 = Masa del recipien	te mas muestra húmeda	P2 = Masa del red	□ cipiente mas muestra seca	<u> </u>	P3 = Masa del reci	ipiente
·			nuestra parafinada		W3= Masa parafin	

HGCS

REVISÓ Y APROBÓ

ING. JOHN O. ORDUZ GÓMEZ

SUB DIRECTOR TÉCNICO

LOS RESULTADOS PRESENTADOS CORRESPONDEN ÚNICAMENTE A LA MUESTRA SOMETIDA A ENSAYO. ESTE INFORME NO PUEDE SER REPRODUCIDO EN SU TOTALIDAD NI PARCIALMENTE, SIN LA AUTORIZACIÓN ESCRITA PER A BROBA A RESULTADOS A PROBÓ, Y EL SELLO.

PESO UNITARIO EN MUESTRAS IRREGULARES (MÉTODO PARAFINADO) METODO ISRM-07

Referencia SYP-PT-DT-I089-5/14

PROYECTO:	SENA (COMPLEJO PALOQUEMAO) AV CRA 30 N° 15 - 53	FECHA DE ENSAYO:	2016-01-21
CLIENTE:	TECNICAS COLOMBIANAS DE INGENIERIA S.A.S	ORDEN DE TRABAJO No.	7461
DIR CLIENTE:	CALLE 53 A No 28-67 OFC 101	INFORME DE ENSAYO No.	7461-110
CÓDIGO:	1145		

DIR CLIENTE:	CALLE 53 A NO 28-67 OFC	101		INFURIME DE	ENSATU NO.	7401-110
CÓDIGO:	1145					
EQUIPOS:	Calibrador No: 17		Balanza No: 19		Horno No: HN-01	
			24.424.1.00			
SONDEO:	2	MUESTRA:	3	PRO	FUNDIDAD(m): 4, 4	40 - 5,00
DESCRIPCIÓN:	Arcilla de color gris. Estru	ctura homogénea	ı, de plasticidad baja, c	onsistencia blaı	nda, húmeda.	
OBSERVACIONES	S:-					
		ωn		PESO U	INITARIO	
	Recipiente	93		W1	193,51	
	P ₁ (g)	154,44		W2	218,29	
	P ₂ (g)			W3	92,8	
	P ₃ (g)			γ t (g/cm³)	1,975	
	Humedad	24,3%		γ d (g/cm³)	1,590	
P. – Paso dal reginiont	e mas muestra húmeda		□ cipiente mas muestra seca	, (3 /	P ₃ = Peso del recipient	to.
W1= Masa de la muest			nuestra parafinada		W3= Masa parafinada	
SONDEO:	•	MUESTRA:	- nuestra parannaua	PRO	FUNDIDAD(m) : -	Sumergida
DESCRIPCIÓN:	-	WOLOTTOA.		1 101	ONDIDAD(III) .	
OBSERVACIONES	3					
OBOLITYTOIONLE	<u>. </u>					
		ω n	7	PESOI	INITARIO	
	Recipiente		_	W1	-	
	P ₁ (g)	_	_	W2	_	
			_	W3	_	
				γ t (g/cm³)	_	
		-			-	
	Humedad			γ d (g/cm³)		
	e mas muestra húmeda		cipiente mas muestra seca		P ₃ = Peso del recipient	
W1= Masa de la muestra humeda		W2= Masa de la r	nuestra parafinada	DDO	W3= Masa parafinada	sumergida
SONDEO: DESCRIPCIÓN:	-	MUESTRA:	-	PRUI	FUNDIDAD(m) : -	
	<u>-</u>					
OBSERVACIONES	o. -					
		ωn		DESO I	INITARIO	
	Recipiente			W1	-	
			-	W2	_	
	P ₁ (g)		-		-	
	P ₂ (g)		-	W3	-	
	P ₃ (g)	-	_	γ t (g/cm³)	-	
	Humedad	-		γ d (g/cm³)	-	
P1 = Masa del recipien	P1 = Masa del recipiente mas muestra húmeda		cipiente mas muestra seca		P3 = Masa del recipien	nte

HGCS

W1= Masa de la muestra humeda

REVISÓ Y APROBÓ

ING. JOHN O. ORDUZ GÓMEZ

W3= Masa parafinada sumergida

SUB DIRECTOR TÉCNICO

W2= Masa de la muestra parafinada

PESO UNITARIO EN MUESTRAS IRREGULARES (MÉTODO PARAFINADO) METODO ISRM-07 Referencia SYP-PT-DT-I089-5/14

PROYECTO:	SENA (COMPLEJO PALOQUEMAO) AV CRA 30 N° 15 - 53	FECHA DE ENSAYO:	2016-01-21
CLIENTE:	TECNICAS COLOMBIANAS DE INGENIERIA S.A.S	ORDEN DE TRABAJO No.	7461
DIR CLIENTE:	CALLE 53 A No 28-67 OFC 101	INFORME DE ENSAYO No.	7461-111
CÓDIGO:	1145		

DIR CLIENTE:	CALLE 53 A NO 28-67 OFC	101		INFORME DE I	LINGATO NO.	7401-11
CÓDIGO:	1145					
EQUIPOS:	Calibrador No: 17		Balanza No: 19		Horno No: HN-01	
SONDEO:	3 MUEST		6	PROFUNDIDAD(m) : 7,30 - 7 ,		· 7,90
DESCRIPCIÓN:	Arcilla arenosa de color	gris. Estructura hor	mogénea, de plasticida		, , ,	•
DBSERVACIONES		9		, , , , , , , , , , , , , , , , , , , ,		
						
		ω n	7	PESO II	NITARIO	
	Recipiente	17		W1	142,41	
	P ₁ (g	. 400.44		W2	151,96	
	P ₂ (g	00.00		W3	61,6	
		g) 17,83		γ t (g/cm³)	1,786	
	Humedad	28,2%		γ d (g/cm³)	1,393	
2 ₄ = Peso del recinient	e mas muestra húmeda		cipiente mas muestra seca	,,	P ₃ = Peso del recipiente	
V1= Masa de la mues		_	nuestra parafinada			ernida
SONDEO:	-	MUESTRA:	-	W3= Masa parafinada sumergida PROFUNDIDAD(m): -		Cigida
DESCRIPCIÓN:	-	MOZOTTO II		11101	ONDID NO (III)	
OBSERVACIONES						
OBOLIT VACIONES	J					
			٦			
		ω n		PESO U	NITARIO	
	Recipiente	-		W1	-	
		9) -		W2	-	
	P ₂ (9	9) -		W3	-	
	P ₃ (9	g) -		γ t (g/cm³)	-	
	Humedad	-		γ d (g/cm³)	-	
1 = Peso del recipient	e mas muestra húmeda	P ₂ = Peso del red	cipiente mas muestra seca		P ₃ = Peso del recipiente	
V1= Masa de la mues	tra humeda	W2= Masa de la n	nuestra parafinada		W3= Masa parafinada sum	ergida
SONDEO: - MUESTRA		MUESTRA:	-	PROF	FUNDIDAD(m) : -	
DESCRIPCIÓN:	-					
DBSERVACIONES	S:-					
			_			
		ω n		PESO U	NITARIO	
	Recipiente	-		W1	-	
	P ₁ (9	g) –		W2	-	
	P ₂ (9	g) -		W3	-	
	P ₃ (9			γ t (g/cm³)	-	
	Humedad	-		γ d (g/cm³)	-	
² 1 = Masa del recipien	te mas muestra húmeda	P2 = Masa del rec	cipiente mas muestra seca		P3 = Masa del recipiente	
W1= Masa de la muestra humeda W2= Masa d		W2= Masa de la n	nuestra parafinada	W3= Masa parafinada sumergida		

HGCS

REVISÓ Y APROBÓ

ING. JOHN O. ORDUZ GÓMEZ

SUB DIRECTOR TÉCNICO

PESO UNITARIO EN MUESTRAS IRREGULARES (MÉTODO PARAFINADO) METODO ISRM-07

Referencia SYP-PT-DT-I089-5/14

PROYECTO:	SENA (COMPLEJO PALOQUEMAO) AV CRA 30 N° 15 - 53	FECHA DE ENSAYO:	2016-01-21
CLIENTE:	TECNICAS COLOMBIANAS DE INGENIERIA S.A.S	ORDEN DE TRABAJO No.	7461
DIR CLIENTE:	CALLE 53 A No 28-67 OFC 101	INFORME DE ENSAYO No.	7461-136
CÓDIGO:	1145		

OODIOO.	1170			
EQUIPOS:	Calibrador No: 17	Balanza No: 19	Horno No: HN-01	

SONDEO: 4 MUESTRA: 4 PROFUNDIDAD(m): **3,40 - 3,85**DESCRIPCIÓN: Arcilla limosa de color gris. Estructura homogénea, de plasticidad alta, consistencia media, húmeda.

OBSERVACIONES: -

	ωn			
Recipier	nte	81		
P ₁	(g)	144,66		
P ₂	(g)	115,81		
P_3	(g)	18,71		
Humeda	nd	29,7%		

PESO UNITARIO			
w1 237,11			
W2	249,76		
W3	101,8		
γ t (g/cm³)	1,771		
γ d (g/cm³)	1,365		

PROFUNDIDAD(m): 7,07 - 7,52

 P_1 = Peso del recipiente mas muestra húmeda P_2 = Peso del recipiente mas muestra seca P_3 = Peso del recipiente P_3 = Peso del reci

DESCRIPCIÓN: Arcilla arenosa de color gris. Estructura estratificada, de plasticidad baja, consistencia media.

MUESTRA:

OBSERVACIONES: -

SONDEO:

ω n				
Recipiente		180		
P ₁	(g)	176,9		
P ₂	(g)	136,8		
P_3	(g)	16,67		
Humedad		33,4%		

PESO UNITARIO			
w1 180,59			
W2	197,34		
W3	78,2		
γ t (g/cm³)	1,796		
γ d (g/cm³) 1,347			

P₁ = Peso del recipiente mas muestra húmeda P₂ = Peso del recipiente mas muestra seca P₃ = Peso del recipiente
W1= Masa de la muestra humeda W2= Masa de la muestra parafinada W3= Masa parafinada sumergida
SONDEO: 4 MUESTRA: 17 PROFUNDIDAD(m): 14,65 - 15,10

DESCRIPCIÓN: Arcilla algo limosa de color gris. Estructura homogénea, de plasticidad alta, consistencia media, húmeda.

OBSERVACIONES: -

	ω n				
Recipie	nte	92			
P ₁	(g)	130,9			
P ₂	(g)	99,0			
P ₃	(g)	16,9			
Humeda	ad	38,9%			

PESO UNITARIO			
W1	136,94		
W2	151,22		
W3	64,3		
γ t (g/cm³)	1,927		
γ d (g/cm³)	1,387		

P1 = Masa del recipiente mas muestra húmeda P2 = Masa del recipiente mas muestra seca P3 = Masa del recipiente
W1= Masa de la muestra humeda W2= Masa de la muestra parafinada W3= Masa parafinada sumergida

HGCS

REVISÓ Y APROBÓ

ING. JOHN O. ORDUZ GÓMEZ

SUB DIRECTOR TÉCNICO

Referencia SYP-PT-DT-I027-5/14

						20 10 10 10
PROYECTO:	SENA (COMPLEJO PAL	OQUEMAO) - AV.	. CARRERA 30 # 15-5	FECHA DE EN	SAYO:	2016-02-07
CLIENTE:	TECNICAS COLOMBIAN	AS DE INGENIER	RIA S.A.S	ORDEN DE TR	RABAJO No.	7461
DIR CLIENTE:	CALLE 53 A No 28-67 OF	FC 101		INFORME DE	ENSAYO No.	7461 - 303
CÓDIGO:	1145					
EQUIPOS:	Calibrador No: 06		Balanza No: 2		Horno No: HN-0	01
SONDEO:	5	MUESTRA:	3	PROF	FUNDIDAD(m) :	1,70 - 2,19
DESCRIPCIÓN:	Arcilla limosa, color g	ris claro, con ox	ridación.		, ,	
OBSERVACIONES		· · · · · · · · · · · · · · · · · · ·				
		Øn]	PESO U	NITARIO	
	Recipiente	116	-	φ (cm)	6,11	
	P ₁ (g)		-	h (cm)	14,94	
	P_2 (g)		_	Wt (g)	842,10	
	P_3 (g)		_	Vol (cm ³)	437,3	
		27,6%	Ī	. ,	1,926	
	Humedad	21,070		γ t (g/cm³)		
				γ d (g/cm³)	1,509	
P1 = Masa del recipiento	e mas muestra húmeda	P2 = Masa del rec	ipiente mas muestra seca		P3 = Masa del reci	piente
SONDEO:	-	MUESTRA:	-	PROF	FUNDIDAD(m):	-
DESCRIPCIÓN:	-					
OBSERVACIONES	: -					
		Wn		PESO U	NITARIO	
	Recipiente	-	-	φ (cm)	-	
	P ₁ (g)	-	-	h (cm)	-	
	P ₂ (g)	-	=	Wt (g)	-	
	P ₃ (g)	-	-	Vol (cm ³)	-	
	Humedad	-		γ t (g/cm³)	-	
			_	γ d (g/cm³)	-	
P1 = Masa del recipiente	e mas muestra húmeda	P2 = Masa del rec	ipiente mas muestra seca		P3 = Masa del reci	piente

SONDEO: DESCRIPCIÓN:

OBSERVACIONES: -

	(O n
Recipier	nte	-
P ₁	(g)	-
P ₂	(g)	-
P ₃	(g)	-
Humeda	ıd	-

MUESTRA: -

PESO UNITARIO			
φ (cm)	-		
h (cm)	-		
Wt (g)	-		
Vol (cm ³)	-		
γ t (g/cm³)	-		
γ d (g/cm³)	-		

PROFUNDIDAD(m): -

P1 = Masa del recipiente mas muestra húmeda

P2 = Masa del recipiente mas muestra seca

P3 = Masa del recipiente

DZ

REVISÓ Y APROBÓ

ING. JOHN O. ORDUZ GÓMEZ

SUB DIRECTOR TÉCNICO

PESO UNITARIO EN MUESTRAS IRREGULARES (MÉTODO PARAFINADO) **METODO ISRM-07**

Referencia SYP-PT-DT-I089-5/14

					10-LAB-040	
PROYECTO:	SENA (COMPLEJO PA	SENA (COMPLEJO PALOQUEMAO) - AV. CARRERA 30 # 15-5; FECHA DE ENSAYO:				
CLIENTE:	TECNICAS COLOMBIA	ANAS DE INGENIE	ERIA S.A.S	ORDEN DE TRABAJO No.	7461	
DIR CLIENTE:	CALLE 53 A No 28-67	OFC 101		INFORME DE ENSAYO No.	7461 - 304	
CÓDIGO:	1145					
EQUIPOS:	Calibrador No: 06		Balanza No: 2	Horno No: HN-01		
SONDEO:	5	MUESTRA:	12	PROFUNDIDAD(m): 12,25	- 12,70	

	ω	n
Recipie	nte	139
P ₁	(g)	123,00
P ₂	(g)	104,40
P_3	(g)	18,26
Humeda	ad	21,6%

Limo arenoso, color gris, estructura homogénea, húmeda.

PESO UNITARIO 262,7 W1 276,0 W2 122,1 W3 γ t (g/cm³) 1,889 1,553 γ d (g/cm³)

	DIDAD(m) : -		
W 1= Masa de la muestra numeda W2= Masa de la muestra paralinada W3=	- Masa paramiada sumergida		
W1= Masa de la muestra humeda W2= Masa de la muestra parafinada W3=	W3= Masa parafinada sumergida		
P_1 = Peso del recipiente mas muestra húmeda P_2 = Peso del recipiente mas muestra seca P_3 = P	P ₃ = Peso del recipiente		

DESCRIPCIÓN: OBSERVACIONES: -

DESCRIPCIÓN:

OBSERVACIONES: -

ωn				
Recipiente		-		
P ₁	(g)	-		
P_2	(g)	-		
P ₃	(g)	-		
Humedad		-		

PESO UNITARIO					
W1	-				
W2	-				
W3	-				
γ t (g/cm³)	-				
γ d (g/cm³)	-				

 P_3 = Peso del recipiente

W1= Masa de la muestra humeda	W2= Masa de la muestra parafinada	W3= Masa parafinada sumergida
SONDEO: -	MUESTRA: -	PROFUNDIDAD(m) · -

P₂ = Peso del recipiente mas muestra seca

DESCRIPCIÓN: OBSERVACIONES: -

P₁ = Peso del recipiente mas muestra húmeda

	ω n					
Recipient	е	-				
P ₁	(g)	-				
P ₂	(g)	-				
P ₃	(g)	-				
Humedad	l	-				

PESO UNITARIO					
W1	-				
W2	-				
W3	-				
γ t (g/cm³)	-				
γ d (g/cm³)	-				

P1 = Masa del recipiente mas muestra húmeda P2 = Masa del recipiente mas muestra seca P3 = Masa del recipiente W1= Masa de la muestra humeda W2= Masa de la muestra parafinada W3= Masa parafinada sumergida

DΖ

REVISÓ Y APROBÓ

ING. JOHN O. ORDUZ GÓMEZ

SUB DIRECTOR TÉCNICO

LOS RESULTADOS PRESENTADOS CORRESPONDEN ÚNICAMENTE A LA MUESTRA SOMETIDA A ENSAYO. ESTE INFORME NO PUEDE SER REPRODUCIDO EN SU TOTALIDAD NI PARCIALMENTE, SIN LA AUTORIZACIÓN ESCRITA POPULA PAROBÓ, Y EL SELLO.

PESO UNITARIO EN MUESTRAS IRREGULARES (MÉTODO PARAFINADO) METODO ISRM-07

Referencia SYP-PT-DT-I089-5/14

PROYECTO:	SENA (COMPLEJO PALOQUEMAO) - AV. CARRERA 30	# 15-5: FECHA DE ENSAYO:	2016-02-07
CLIENTE:	TECNICAS COLOMBIANAS DE INGENIERIA S.A.S	ORDEN DE TRABAJO No.	7461
DIR CLIENTE:	CALLE 53 A No 28-67 OFC 101	INFORME DE ENSAYO No.	7461 - 305
CÓDIGO:	1145		

CÓDIGO:	1145							
EQUIPOS:	Calibrador No: 06			Balanza No: 2		Horno No: HN-01		
SONDEO:	6			MUESTRA:	3	PROF	FUNDIDAD(m) :	2,25 - 2,70
DESCRIPCIÓN:	Arcilla limo	osa, color	gris	s, con oxidacio	ones amarillas, estr	uctura homog	génea, húmec	la.
OBSERVACIONES							-	
			0	D n		PESO U	NITARIO	
		Recipiente		100		W1	217,9	
		P ₁	(g)	120,36		W2	231,2	
		P ₂	(g)	99,35		W3	103,9	
		P ₃	(g)	16,21		γ t (g/cm³)	1,937	
		Humedad		25,3%		γ d (g/cm³)	1,546	
P ₁ = Peso del recipient	e mas muestra h	úmeda		P ₂ = Peso del rec	ipiente mas muestra seca		P ₃ = Peso del reci	piente
W1= Masa de la mues	tra humeda			W2= Masa de la m	nuestra parafinada	W3= Masa parafinada sumergida		ada sumergida
SONDEO:	6	}		MUESTRA:	5	PROF	FUNDIDAD(m) :	4,75 - 5,30
DESCRIPCIÓN:	Arcilla limo	osa, color	gris	s, con oxidacio	nes amarillo claro,	estructura ho	mogénea.	
OBSERVACIONES	3: -							
			0	Ù n		PESO U	NITARIO]
		Recipiente		193		W1	169,3	-
			(g)	123,56		W2	179,7	
		P ₂	(g)	100,99		W3	80,6	
			(g)	18,27		γ t (g/cm³)	1,934	
		Humedad		27,3%		γ d (g/cm³)	1,519	
P ₁ = Peso del recipient	e mas muestra h	úmeda		P ₂ = Peso del rec	ipiente mas muestra seca		P ₃ = Peso del reci	- piente
W1= Masa de la mues	tra humeda			W2= Masa de la m	nuestra parafinada		W3= Masa parafin	ada sumergida
SONDEO:				MUESTRA:	-	PROF	-UNDIDAD(m) :	-
DESCRIPCIÓN:	-							
OBSERVACIONES	S: <i>-</i>							
] [1
		D	0	O n			NITARIO	_
		Recipiente		-		W1	-	_
		P ₁	(g)	-		W2	-	-
i		ID.	()	1 _		14/0	1 _	

P1 = Masa del recipiente mas muestra hú	meda		P2 = Masa del re
 	Humedad		-
F	> 3	(g)	-
F)	(g)	-
F	> 1	(g)	-

P2 = Masa del recipiente mas muestra seca P3 = Masa del recipiente W2= Masa de la muestra parafinada W3= Masa parafinada sumergida

W3 γ t (g/cm³)

DΖ

W1= Masa de la muestra humeda

REVISÓ Y APROBÓ

ING. JOHN O. ORDUZ GÓMEZ

SUB DIRECTOR TÉCNICO

LOS RESULTADOS PRESENTADOS CORRESPONDEN ÚNICAMENTE A LA MUESTRA SOMETIDA A ENSAYO. ESTE INFORME NO PUEDE SER REPRODUCIDO EN SU TOTALIDAD NI PARCIALMENTE, SIN LA AUTORIZACIÓN ESCRITA PER PARA PROBA NA PROBANA NA PROBA NA PROBANA NA PROBA NA PROBANA NA PROBA NA PROBANA NA

Referencia SYP-PT-DT-I027-5/14

PROYECTO:	SENA (COMPLEJO PALOQUEMAO) - AV. CARRERA 30	# 15-5: FECHA DE ENSAYO:	2016-02-07
CLIENTE:	TECNICAS COLOMBIANAS DE INGENIERIA S.A.S	ORDEN DE TRABAJO No.	7461
DIR CLIENTE:	CALLE 53 A No 28-67 OFC 101	INFORME DE ENSAYO No.	7461 - 306
CÓDIGO:	1145		

DIK OLILITIE.	OALLE 33 A 110 20 07 C	71 0 101		IN ORME DE	LINOATO INO.	7-01 000
CÓDIGO:	1145					
EQUIPOS:	Calibrador No: 06		Balanza No: 2		Horno No: HN-0	01
SONDEO:	6	MUESTRA:	11	PROF	FUNDIDAD(m) :	12,60 - 13,05
DESCRIPCIÓN:	Arcilla, color gris par					
OBSERVACIONE		<u> </u>	a nomogonoa, nam	.oaa, p.aoo.a	<u></u>	
		60		DECOL	AUTA DIO	
	Desimiente	<u>ω</u> n 112	_		NITARIO 3,50	
	Recipiente			φ (cm)	· ·	
		g) 110,39	_	h (cm)	10,49	
		g) 74,10	_	Wt (g)	162,23	
		g) 16,98		Vol (cm³)	100,6	
	Humedad	63,5%		γ t (g/cm³)	1,612	
				γ d (g/cm³)	0,986	
P1 = Masa del recipie	nte mas muestra húmeda	P2 = Masa del re	cipiente mas muestra seca		P3 = Masa del recip	piente
SONDEO:	•	MUESTRA:	-	PROF	FUNDIDAD(m):	-
DESCRIPCIÓN:	-					
OBSERVACIONE	:S: -					
		ωn		PESO U	NITARIO	
	Recipiente	-		φ (cm)	-	
	P ₁ (g) -		h (cm)	-	
	P ₂ (g) -		Wt (g)	-	
		g) -		Vol (cm ³)	-	
	Humedad	-		γ t (g/cm³)	-	
		"		γ d (g/cm³)	-	
P1 = Masa del recipie	nte mas muestra húmeda	P2 = Masa del re	cipiente mas muestra seca		P3 = Masa del recip	piente
SONDEO:	-	MUESTRA:	-	PROF	FUNDIDAD(m) :	-
DESCRIPCIÓN:	-					
OBSERVACIONE	S: -					
		ω n		PESO U	NITARIO	
	Recipiente	-		φ (cm)	-	
		g) -		h (cm)	-	
		g) -		Wt (g)	-	
		g) -		Vol (cm ³)	-	
	Humedad	-		γ t (g/cm³)	-	
				γ d (g/cm³)	-	

DΖ

P1 = Masa del recipiente mas muestra húmeda

REVISÓ Y APROBÓ

ING. JOHN O. ORDUZ GÓMEZ

P3 = Masa del recipiente

SUB DIRECTOR TÉCNICO

LOS RESULTADOS PRESENTADOS CORRESPONDEN ÚNICAMENTE A LA MUESTRA SOMETIDA A ENSAYO. ESTE INFORME NO PUEDE SER REPRODUCIDO EN SU TOTALIDAD NI PARCIALMENTE, SIN LA AUTORIZACIÓN ESCRITA DEL LABORATORIO QUE LO EMITE. ESTE INFORME NO ES VÁLIDO SIN LA FIRMA ORIGINAL DE QUIEN REVISÓ Y APROBÓ, Y EL SELLO.

P2 = Masa del recipiente mas muestra seca

PESO UNITARIO EN MUESTRAS IRREGULARES (MÉTODO PARAFINADO)

METODO ISRM-07

Referencia SYP-PT-DT-I089-5/14

PROYECTO: SENA (COMPLEJO PALOQUEMAO) - AV. CARRERA 30 # 15-5 FECHA DE ENSAYO: 2016-02-10 7461 CLIENTE: TECNICAS COLOMBIANAS DE INGENIERIA S.A.S ORDEN DE TRABAJO No. 7461 - 342 DIR CLIENTE: CALLE 53 A No 28-67 OFC 101 INFORME DE ENSAYO No. CÓDIGO: 1145 EQUIPOS Calibrador No: 06 Balanza No: 16 Horno No: HN-01 PROFUNDIDAD(m): 17,10 - 17,55 SONDEO: 6 MUESTRA: 14 Arena fina limosa, color marrón amarillento claro, estructura homogénea, sin plasticidad. DESCRIPCIÓN: OBSERVACIONES: -PESO UNITARIO ωn Recipiente 211 119.5 131,70 124,2 W2 (g) 109,22 W3 59.1 (g) 13,90 1.996 P_3 y t (g/cm³) (g) 23,6% γ d (g/cm³) 1,615 Humedad P₃ = Peso del recipiente P1 = Peso del recipiente mas muestra húmeda P2 = Peso del recipiente mas muestra seca W1= Masa de la muestra humeda W2= Masa de la muestra parafinada W3= Masa parafinada sumergida SONDEO: MUESTRA: PROFUNDIDAD(m): -DESCRIPCIÓN: OBSERVACIONES: ωn PESO UNITARIO W1 Recipiente W2 1//3 (g) y t (g/cm³) (g) y d (g/cm³) Humedad P1 = Peso del recipiente mas muestra húmeda P2 = Peso del recipiente mas muestra seca P3 = Peso del recipiente W1= Masa de la muestra humeda W2= Masa de la muestra parafinada W3= Masa parafinada sumergida SONDEO: MUESTRA: PROFUNDIDAD(m): -DESCRIPCIÓN: OBSERVACIONES: -**PESO UNITARIO** On W1 Recipiente W2 (g) W3 (g) y t (g/cm³) (g) y d (g/cm³) Humedad P3 = Masa del recipiente P1 = Masa del recipiente mas muestra húmeda P2 = Masa del recipiente mas muestra seca W1= Masa de la muestra humeda W2= Masa de la muestra parafinada W3= Masa parafigada sumergida DZ

REVISÓ Y APROBÓ

ING. JOHN O. ORDUZ GÓMEZ

SUB DIRECTOR TÉCNICO

PESO UNITARIO EN MUESTRAS REGULARES **METODO ISRM-07**

Referencia SYP-PT-DT-I027-5/14

PROYECTO: 2016-02-10 SENA (COMPLEJO PALOQUEMAO) - AV. CARRERA 30 # 15-5 FECHA DE ENSAYO: CLIENTE: TECNICAS COLOMBIANAS DE INGENIERIA S.A.S ORDEN DE TRABAJO No. 7461 DIR CLIENTE: CALLE 53 A No 28-67 OFC 101 INFORME DE ENSAYO No. 7461 - 343 CÓDIGO: 1145

EQUIPOS: Calibrador No: 06 Balanza No: 2 Horno No: HN-01 SONDEO: PROFUNDIDAD(m): 1,75 - 2,30 MUESTRA: 2 DESCRIPCIÓN: Arcilla algo limosa, color gris, con oxidación, estructura homogénea, plasticidad alta. OBSERVACIONES: ωn PESO UNITARIO 132 o (cm) 3,53 Recipiente 7,15 164,94 (g) h (cm) 137,20 146.20 (g) Wt (g) 18,70 Vol (cm3) 69.8 (g) 23,4% 2,094 γt (g/cm³) Humedad 1,697 y d (g/cm³) P1 = Masa del recipiente mas muestra húmeda P3 = Masa del recipiente P2 = Masa del recipiente mas muestra seca PROFUNDIDAD(m): 5,60 - 6,05 SONDEO: MUESTRA: DESCRIPCIÓN: Arcilla, color gris claro, con oxidación, estructura homogénea, plasticidad alta. OBSERVACIONES: -On **PESO UNITARIO** 87 φ (cm) 3.63 Recipiente 123,84 7.21 h (cm) (g) (g) 96.88 Wt (g) 146.54 16.80 Vol (cm3) 74.5 (g) 33,7% 1,967 Humedad y t (g/cm³) 1,471 y d (g/cm3) P1 = Masa del recipiente mas muestra húmeda P2 = Masa del recipiente mas muestra seca P3 = Masa del recipiente SONDEO: MUESTRA: PROFUNDIDAD(m): -DESCRIPCIÓN: OBSERVACIONES: -

	ωn	
Recipie	ente	-
P ₁	(g)	-
P ₂	(g)	-
P ₃	(g)	-
Humed	lad	

PESO UNI	TARIO
¢ (cm)	-
h (cm)	(100)
Wt (g)	-
Vol (cm ³)	-
γ t (g/cm³)	-
γ d (g/cm³)	4 1 4 1

P1 = Masa del recipiente mas muestra húmeda

P2 = Masa del recipiente mas muestra seca

P3 = Masa de recipiente

DZ

REVISÓ Y APROBÓ

ING. JOHN O. ORDUZ GÓMEZ

SUB DIRECTOR TÉCNICO

PROYECTO:

INFORME DE ENSAVO

PESO UNITARIO EN MUESTRAS IRREGULARES (MÉTODO PARAFINADO)

METODO ISRM-07 Referencia SYP-PT-DT-I089-5/14

FECHA DE ENSAYO:

2016-02-10

SENA (COMPLEJO PALOQUEMAO) - AV. CARRERA 30 # 15-53 CLIENTE: TECNICAS COLOMBIANAS DE INGENIERIA S.A.S. ORDEN DE TRABAJO No. 7461 DIR CLIENTE: CALLE 53 A No 28-67 OFC 101 7461 - 344 INFORME DE ENSAYO No. CÓDIGO: 1145 **EQUIPOS** Calibrador No: 06 Balanza No: 16 Horno No: HN-01 SONDEO: MUESTRA: PROFUNDIDAD(m): 9,30 - 9,75 DESCRIPCIÓN: Arcilla algo limosa, color gris claro, con arena, estructura homogénea, plasticidad alta. OBSERVACIONES ωn PESO UNITARIO Recipiente 80 W1 152.5 168.40 158.2 (g) W2 143,31 W3 77.6 (g) 17.20 2,053 (g) y t (g/cm³) 19.9% 1,713 Humedad γ d (g/cm²) P₁ = Peso del recipiente mas muestra húmeda P2 = Peso del recipiente mas muestra seca P₃ = Peso del recipiente W1= Masa de la muestra humeda W2= Masa de la muestra parafinada W3= Masa parafinada sumergida SONDEO: MUESTRA: PROFUNDIDAD(m): -DESCRIPCIÓN: OBSERVACIONES -(i)n PESO UNITARIO Recipiente W1 W2 (g) (g) W3 y t (g/cm3) (g) Humedad y d (g/cm³) P₁ = Peso del recipiente mas muestra húmeda P2 = Peso del recipiente mas muestra seca P3 = Peso del recipiente W1= Masa de la muestra humeda W2= Masa de la muestra parafinada W3= Masa parafinada sumergida SONDEO PROFUNDIDAD(m): -MUESTRA: DESCRIPCIÓN: OBSERVACIONES: ωn **PESO UNITARIO** Recipiente W1 (g) W2 (g) W3 y t (g/cm3) (g) Humedad y d (g/cm3) P1 = Masa del recipiente mas muestra húmeda P2 = Masa del recipiente mas muestra seca P3 = Masa del recipiente W1= Masa de la muestra humeda W2= Masa de la muestra parafinada W3= Maşa parafinada sumergida DZ REVISÓ Y APROBÓ

ING. JOHN O. ORDUZ GÓMEZ SUB DIRECTOR TECNICO

INFORME DE ENSAYO PESO UNITARIO EN MUESTRAS REGULARES METODO ISRM-07

Referencia SYP-PT-DT-I027-5/14

PROYECTO: 2016-02-10 SENA (COMPLEJO PALOQUEMAO) - AV. CARRERA 30 # 15-53 FECHA DE ENSAYO: CLIENTE: TECNICAS COLOMBIANAS DE INGENIERIA S.A.S ORDEN DE TRABAJO No. 7461 DIR CLIENTE: 7461 - 345 CALLE 53 A No 28-67 OFC 101 INFORME DE ENSAYO No. CÓDIGO: 1145

EQUIPOS:	Calibrador No: 0	6	В	alanza No: 2		Horno No: HN-0	1
SONDEO:	7		MUESTRA:	11	PROF	UNDIDAD(m):	13,45 - 13.90
DESCRIPCIÓN:		osa, col		on algo de arena,			.,
DBSERVACIONES			9			3	
			ωn		BESOLI	NITARIO	
	Paci	piente	6		φ (cm)	3,57	
	P ₁	(g)	128,09		h (cm)	8,19	
	P ₂	(g)	108,33		Wt (g)	161,85	
	P ₃	(g)	16,40		Vol (cm ³)	81,7	
		edad	21,5%		γt (g/cm³)	1,981	
	rium	euau	21,070		γ d (g/cm³)	1,630	
1 = Masa del recipien	te mas muestra húmed	a	P2 = Masa del recini	ente mas muestra seca		P3 = Masa del recip	iente
SONDEO:	macona maneo		MUESTRA:				
DESCRIPCIÓN:	-		WIDESTRA.	•	PROF	UNDIDAD(m):	•
DBSERVACIONES							
20021117110101120							
			ωn		PESO U	NITARIO	
	Reci	piente	•		ф (cm)	(#.)	
	P ₁	(g)	-		h (cm)	*	
	P ₂	(g)	-		Wt (g)	-	
	P ₃	(g)	-		Vol (cm ³)	-	
	Hum	edad	•		γt (g/cm³)	•	
					γ d (g/cm³)		
1 = Masa del recipien	te mas muestra húmed	а	P2 = Masa del recipi	ente mas muestra seca		P3 = Masa del recip	iente
SONDEO:	-		MUESTRA: -		PROF	UNDIDAD(m):	
DESCRIPCIÓN:	(2))						
DBSERVACIONES	S: -						
			ωn		PESO U	NITARIO	
	Reci	piente			φ (cm)	-	
	P ₁	(g)	120		h (cm)	-	
	P ₂	(g)	-		Wt (g)	-	
	P ₃	(g)	-		Vol (cm³)	-	
		100040	5749-093				
					γ d (g/cm³)		
1 = Masa del recipien	te mas muestra húmed	а	P2 = Maşa del recipie	ente mas muestra seca		P3 = Masa del recip	iente
11 = Masa del recipien	Hum te mas muestra húmed	edad	- 64	ente mas muestra seca	γ t (g/cm³)	P3 = Masa del recip	iente

ING. JOHN O. ORDUZ GÓMEZ

SUB DIRECTOR TECNICO

PROYECTO:

PESO UNITARIO EN MUESTRAS REGULARES METODO ISRM-07

Referencia SYP-PT-DT-I027-5/14

FECHA DE ENSAYO:

2016-02-10

7461 ORDEN DE TRABAJO No. CLIENTE: TECNICAS COLOMBIANAS DE INGENIERIA S.A.S 7461 - 346 DIR CLIENTE: CALLE 53 A No 28-67 OFC 101 INFORME DE ENSAYO No. 1145 CÓDIGO: Horno No: HN-01 EQUIPOS: Calibrador No: 06 Balanza No: 2 PROFUNDIDAD(m): 2,55 -3,00 SONDEO: MUESTRA: Arcilla, color girs claro, estructura homogénea, plasticidad alta, sin olor. DESCRIPCIÓN: OBSERVACIONES: ωn PESO UNITARIO 201 3.40 Recipiente 115,26 7.02 h (cm) (g) 97.44 127,90 (g) Wt (g) 18,44 Vol (cm3) 63.9 (q) 2,003 22,6% y t (g/cm3) Humedad γ d (g/cm³) 1,634 P3 = Masa del recipiente P1 = Masa del recipiente mas muestra húmeda P2 = Masa del recipiente mas muestra seca MUESTRA: PROFUNDIDAD(m): -SONDEO: DESCRIPCIÓN: OBSERVACIONES: -PESO UNITARIO Recipiente φ (cm) (g) h (cm) Wt (g) (g) Vol (cm3) (g) y t (g/cm3) Humedad y d (g/cm³) P3 = Masa del recipiente P1 = Masa del recipiente mas muestra húmeda P2 = Masa del recipiente mas muestra seca PROFUNDIDAD(m): -SONDEO: MUESTRA:

 wn

 Recipiente

 P₁
 (g)

 P₂
 (g)

 P₃
 (g)

 Humedad

SENA (COMPLEJO PALOQUEMAO) - AV. CARRERA 30 # 15-53

PESO UNITARIO

φ (cm)
h (cm)
Wt (g)
Vol (cm³)
y t (g/cm²)
y d (g/cm²) -

P1 = Masa del recipiente mas muestra húmeda

P2 = Masa del recipiente mas muestra seca

P3 = Masa del recipiente

DZ

DESCRIPCIÓN: OBSERVACIONES: -

REVISÓ Y APROBÓ

ING. JOHN O. ORDUZ GÓMEZ

SUB DIRECTOR TÉCNICO

LDS RESULTADOS PRESENTADOS CORRESPONDEN ÚNICAMENTE A LA MUESTRA SOMETIDA A ENSAYO. ESTE INFORME NO PUEDE SER REPRODUCIDO EN SU TOTAL DAD NI PARCIALMENTE. SIN LA AUTORIZACIÓN ESCRITA DEL LABORATORIO QUE LO EMITE. ESTE INFORME NO ES VÁLIDO SIN LA FIRMA ORIGINAL DE QUIEN REVISÓ Y APROBÓ, Y EL SELLO.

OFICINAS Y LABORATORIO: Calle 79A No. 62 - 37 Tels. 225 47 60 630 04 73 Telefax 543 85 20

PESO UNITARIO EN MUESTRAS IRREGULARES (MÉTODO PARAFINADO)

METODO ISRM-07

Referencia SYP-PT-DT-1089-5/14

PROYECTO: SENA (COMPLEJO PALOQUEMAO) - AV. CARRERA 30 # 15-53 **FECHA DE ENSAYO:** 2016-02-10 7461 TECNICAS COLOMBIANAS DE INGENIERIA S.A.S. ORDEN DE TRABAJO No. CLIENTE: 7461 - 347 DIR CLIENTE: CALLE 53 A No 28-67 OFC 101 INFORME DE ENSAYO No. CÓDIGO: 1145 EQUIPOS: Calibrador No: 06 Balanza No: 16 Horno No: HN-01 PROFUNDIDAD(m): 5,55 - 6,00 SONDEO: 8 MUESTRA: 6 DESCRIPCIÓN: Arcilla, color girs, estructura homogénea, plasticidad alta, sin olor. OBSERVACIONES: -PESO UNITARIO 8 112,6 Recipiente W1 127,60 116,5 (g) W2 104.98 W3 54.4 (g) $\gamma t (g/cm^3)$ 17.20 1,949 (g) 1,550 25,8% y d (g/cm³) Humedad P₃ = Peso del recipiente P2 = Peso del recipiente mas muestra seca P1 = Peso del recipiente mas muestra húmeda W3= Masa parafinada sumergida W1= Masa de la muestra humeda W2= Masa de la muestra parafinada SONDEO: MUESTRA: PROFUNDIDAD(m): -DESCRIPCIÓN: OBSERVACIONES: ωn **PESO UNITARIO** Recipiente W1 WZ (g) W3 (g) y t (g/cm³) (g) Humedad γ d (g/cm³) P₃ = Peso del recipiente P2 = Peso del recipiente mas muestra seca P₁ = Peso del recipiente mas muestra húmeda W1= Masa de la muestra humeda W2= Masa de la muestra parafinada W3= Masa parafinada sumergida SONDEO: PROFUNDIDAD(m): -MUESTRA: DESCRIPCIÓN: OBSERVACIONES: -**PESO UNITARIO** On Recipiente W2 (q) (g) W3 y t (g/cm³) (g) y d (g/cm³) P1 = Masa del recipiente mas muestra húmeda P2 = Masa del recipiente mas muestra seca P3 = Masa del recipiente W1= Masa de la muestra humeda W2= Masa de la muestra parafinada W3= Masa parafinada sumergida DZ

SUB DIRECTOR TECNICO

LOS RESULTADOS PRESENTADOS CORRESPONDEN ÚNICAMENTE A LA MUESTRA SOMETIDA A ENSAYO. ESTE INFORME NO PUEDE SER REPRODUCIDO EN SU TOTALIDAD NI PARCIALMENTE, SIN LA AUTORIZACIÓN
ESCRITA DEL LABORATORIO QUE LO EMITE. ESTE INFORME NO ES VÁLIDO SIN LA FIRMA ORIGINAL DE QUIEN REVISÓ Y APROBÓ, Y EL SELLO.

REVISÓ Y APROBÓ

ING. JOHN O. ORDUZ GÓMEZ

Referencia SYP-PT-DT-I027-5/14

 PROYECTO:
 SENA (COMPLEJO PALOQUEMAO) - AV. CARRERA 30 # 15-53
 FECHA DE ENSAYO:
 2016-02-10

 CLIENTE:
 TECNICAS COLOMBIANAS DE INGENIERIA S.A.S
 ORDEN DE TRABAJO No.
 7461

 DIR CLIENTE:
 CALLE 53 A No 28-67 OFC 101
 INFORME DE ENSAYO No.
 7461 - 383

 CÓDIGO:
 1145

FQUIPOS:	Calibrador No: 06	Balanza No: 2	Horno No: HN-01
EQUIT OU.	Canbrador 110. 00	Balariza 110. E	1101110 110: 1111 01

SONDEO: 9 MUESTRA: 2 PROFUNDIDAD(m) : 2,25 - 2,70

DESCRIPCIÓN: Arcilla limosa, color gris, con oxidaciones marrones, estructura homogénea, húmeda, plasticidad media.

OBSERVACIONES: -

ω n			
Recipiente	21		
P ₁ (g)	137,63		
P ₂ (g)	112,65		
P ₃ (g)	19,07		
Humedad	26,7%		

PESO UNITARIO			
φ (cm)	3,29		
h (cm)	10,11		
Wt (g)	162,62		
Vol (cm ³)	85,8		
γ t (g/cm³)	1,895		
γ d (g/cm³)	1,496		

P1 = Masa del recipiente mas muestra húmeda P2 = Masa del recipiente mas muestra seca P3 = Masa del recipiente

SONDEO: 9 MUESTRA: 6 PROFUNDIDAD(m): 7,25 - 7,70

DESCRIPCIÓN: Arcilla limosa, color gris claro, con tonos marrones, con oxidación, estructura homogénea, húmeda.

OBSERVACIONES: -

ω n			
Recipiente		37	
P ₁	(g)	147,23	
P_2	(g)	110,60	
P_3	(g)	18,91	
Humedad		39,9%	

PESO UNITARIO			
φ (cm)	3,54		
h (cm)	8,25		
Wt (g)	141,80		
Vol (cm ³)	81,2		
γ t (g/cm³)	1,746		
γ d (g/cm³)	1,247		

P1 = Masa del recipiente mas muestra húmeda P2 = Masa del recipiente mas muestra seca P3 = Masa del recipiente

SONDEO: - MUESTRA: - PROFUNDIDAD(m): -

DESCRIPCIÓN: -

OBSERVACIONES: -

DΖ

ω n				
Recipier	nte	-		
P ₁	(g)	-		
P_2	(g)	-		
P_3	(g)	-		
Humedad		-		

PESO UNITARIO			
φ (cm)	1		
h (cm)	-		
Wt (g)	-		
Vol (cm ³)	-		
γ t (g/cm³)	-		
γ d (g/cm ³)	-		

P1 = Masa del recipiente mas muestra húmeda P2 = Masa del recipiente mas muestra seca P3 = Masa del recipiente

REVISÓ Y APROBÓ

ING. JOHN O. ORDUZ GÓMEZ

SUB DIRECTOR TÉCNICO

Referencia SYP-PT-DT-I027-5/14

 PROYECTO:
 SENA (COMPLEJO PALOQUEMAO) - AV. CARRERA 30 # 15-53
 FECHA DE ENSAYO:
 2016-02-10

 CLIENTE:
 TECNICAS COLOMBIANAS DE INGENIERIA S.A.S
 ORDEN DE TRABAJO No.
 7461

 DIR CLIENTE:
 CALLE 53 A No 28-67 OFC 101
 INFORME DE ENSAYO No.
 7461 - 384

 CÓDIGO:
 1145

П	FOLUDOC.	Calibradas Na. 00	Delemen No. 0	Harra Na. LIN 04
- 1	EQUIPOS:	Calibrador No: 06	Balanza No: 2	Horno No: HN-01

SONDEO: 10 MUESTRA: 3 PROFUNDIDAD(m) : 2,85 - 3,25

DESCRIPCIÓN: Arcilla limosa, color gris claro, con oxidación, estructura homogénea, húmeda.

OBSERVACIONES: -

ω n			
Recipier	ite	69	
P ₁	(g)	173,59	
P ₂	(g)	145,47	
P_3	(g)	18,08	
Humeda	d	22,1%	

PESO UNITARIO					
φ (cm) 3,52					
h (cm)	16,36				
Wt (g)	320,38				
Vol (cm³)	158,9				
γ t (g/cm³)	2,016				
γ d (g/cm ³)	1,651				

P1 = Masa del recipiente mas muestra húmeda P2 = Masa del recipiente mas muestra seca P3 = Masa del recipiente

SONDEO: 10 MUESTRA: 5 PROFUNDIDAD(m): 5,30 - 5,75

DESCRIPCIÓN: Arcilla limosa, color gris claro, con oxidación, estructura homogénea, húmeda.

OBSERVACIONES: -

ω n					
Recipiente		112			
P ₁	(g)	151,27			
P ₂	(g)	123,79			
P ₃	(g)	16,95			
Humedad		25,7%			

PESO UNITARIO				
φ (cm)	3,63			
h (cm)	13,51			
Wt (g)	273,01			
Vol (cm ³)	139,4			
γ t (g/cm³)	1,958			
γ d (g/cm³)	1,557			

P1 = Masa del recipiente mas muestra húmeda

P2 = Masa del recipiente mas muestra seca

P3 = Masa del recipiente

SONDEO:	10	MUESTRA:	10	PROFUNDIDAD(m): 11,95 - 12,75
DESCRIPCIÓN:	Arcilla limosa,	color marrón grisáceo,	con presencia	orgánica, estructura homogénea, húmeda.
OBSERVACIONES	: -			

ω n					
Recipiente	Э	148			
P ₁	(g)	181,2			
P ₂	(g)	98,5			
P ₃	(g)	18,37			
Humedad		103,2%			

PESO UNITARIO				
φ (cm)	3,60			
h (cm)	7,96			
Wt (g)	113,06			
Vol (cm ³)	80,8			
γ t (g/cm³)	1,399			
γ d (g/cm ³)	0,688			

P1 = Masa del recipiente mas muestra húmeda

P2 = Masa del recipiente mas muestra seca

P3 = Masa del recipiente

DΖ

REVISÓ Y APROBÓ

ING. JOHN O. ORDUZ GÓMEZ

SUB DIRECTOR TÉCNICO

Referencia SYP-PT-DT-I027-5/14

PROYECTO:	SENA (COMPLEJO PALOQUEMAO) - AV. CARRERA 30 # 15-53	FECHA DE ENSAYO:	2016-02-10
CLIENTE:	TECNICAS COLOMBIANAS DE INGENIERIA S.A.S	ORDEN DE TRABAJO No.	7461
DIR CLIENTE:	CALLE 53 A No 28-67 OFC 101	INFORME DE ENSAYO No.	7461 - 385
CÓDIGO:	1145		
•	<u> </u>		•

DIIL OLILIATE.	OALLE 33 A 140 20 07 C	0 101		IN ORME DE	LINDATO INC.	7 +01 000
CÓDIGO:	1145					
EQUIPOS:	Calibrador No: 06		Balanza No: 2		Horno No: HN-0	 01
SONDEO:	11	MUESTRA:	2		FUNDIDAD(m) :	1,65 - 2,05
DESCRIPCIÓN:	Arcilla limosa, color	gris claro, con o	xidación, estructura	homogénea,	húmeda.	
OBSERVACIONES	: -					
		ω n		PESO U	INITARIO	
	Recipiente	151		φ (cm)	3,55	
	P ₁ (g) 128,42		h (cm)	10,89	
	P ₂ (g) 109,15		Wt (g)	217,92	
	P ₃ (g) 20,27		Vol (cm ³)	107,6	
	Humedad	21,7%		γ t (g/cm³)	2,026	
			_	γ d (g/cm³)	1,665	
P1 = Masa del recipiente	mas muestra húmeda	P2 = Masa del red	cipiente mas muestra seca		P3 = Masa del reci	piente
SONDEO:	-	MUESTRA:	-	PROF	FUNDIDAD(m) :	-
DESCRIPCIÓN:	-					
OBSERVACIONES	: -					
			7			
	Wn		_		INITARIO	
	Recipiente	-	_	φ (cm)	-	
		g) -	_	h (cm)	-	
		g) -	_	Wt (g)	-	
		g) -		Vol (cm ³)	-	
	Humedad	-		γ t (g/cm³)	-	
				γ d (g/cm³)	-	ı
P1 = Masa del recipiente	mas muestra húmeda	P2 = Masa del rec	cipiente mas muestra seca		P3 = Masa del reci	piente
SONDEO:	-	MUESTRA:	-	PROF	-UNDIDAD(m) :	-
DESCRIPCIÓN:	-					
OBSERVACIONES	-					
		ωn		PESO U	INITARIO	
	Recipiente	-		φ (cm)	_	
	-	g) -		h (cm)	-	
		g) -		Wt (g)	-	
		g) -		Vol (cm ³)	-	
	Humedad	-		γ t (g/cm³)	-	
				γ d (g/cm³)	-	
1				, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		

DΖ

P1 = Masa del recipiente mas muestra húmeda

REVISÓ Y APROBÓ

ING. JOHN O. ORDUZ GÓMEZ

P3 = Masa del recipiente

SUB DIRECTOR TÉCNICO

LOS RESULTADOS PRESENTADOS CORRESPONDEN ÚNICAMENTE A LA MUESTRA SOMETIDA A ENSAYO. ESTE INFORME NO PUEDE SER REPRODUCIDO EN SU TOTALIDAD NI PARCIALMENTE, SIN LA AUTORIZACIÓN ESCRITA DEL LABORATORIO QUE LO EMITE. ESTE INFORME NO ES VÁLIDO SIN LA FIRMA ORIGINAL DE QUIEN REVISÓ Y APROBÓ, Y EL SELLO.

P2 = Masa del recipiente mas muestra seca

PESO UNITARIO EN MUESTRAS IRREGULARES (MÉTODO PARAFINADO) METODO ISRM-07

Referencia SYP-PT-DT-I089-5/14

PROYECTO:	SENA (COM	IPLEJO PA	LOQ	UEMAO) - AV. C	ARRERA 30 # 15-53	FECHA DE EN	SAYO:	2016-02-10
CLIENTE:	TECNICAS	COLOMBIA	ANAS	S DE INGENIER	RIA S.A.S	ORDEN DE TR	ABAJO No.	7461
DIR CLIENTE:	CALLE 53 A	No 28-67	OFC	101		INFORME DE	ENSAYO No.	7461 - 410
CÓDIGO:	1145							
50111500	0 111 1 1				D. I. 100 10			•
EQUIPOS:	Calibrador N	10: 06			Balanza No: 03 - 16		Horno No: HN-0	J1
SONDEO:	11			MUESTRA:	11	PROF	FUNDIDAD(m) :	13,70 - 14,15
DESCRIPCIÓN:	Arena fina	limosa, c	color	gris, estructu	ra homogénea, húi	meda, no plás	stico.	-
OBSERVACIONES								
			0	ั บ ท		PESO U	NITARIO	
		Recipiente		-		W1	-	
			(g)	-		W2	-	
			(g)	-		W3	-	
			(g)	_		γ t (g/cm³)	_	
		Humedad	(9)	-		γ d (g/cm ³)	_	
P ₁ = Peso del recipiente	mae muoetra hi			P - Poso dol roo	ipiente mas muestra seca	7 - (3)	P ₃ = Peso del recip	pionto
r₁ = reso del recipiente W1= Masa de la muestr		umeua		W2= Masa de la m			W3= Masa parafina	
SONDEO:	-			MUESTRA:	-	PROF	FUNDIDAD(m):	
DESCRIPCIÓN:	_					11.01	(III) .	
OBSERVACIONES								
0_0	<u>* </u>							
			0	O n		PESO II	NITARIO	
		Recipiente		-		W1	-	
			(a)	_		W2	_	
			(g)	_			_	
			(g)	-		W3 γ t (g/cm³)	-	
			(g)	-			-	
		Humedad		· · ·		γ d (g/cm³)	<u>-</u>	
P ₁ = Peso del recipiente		úmeda			sipiente mas muestra seca		P ₃ = Peso del recip	
W1= Masa de la muestr	ra humeda			W2= Masa de la m	nuestra parafinada	DDOI	W3= Masa parafina	
SONDEO:	-			MUESTRA:	-	PRUF	FUNDIDAD(m) :	
DESCRIPCIÓN:	-							
OBSERVACIONES), =							
			0	O n		PESO II	NITARIO	
		Recipiente		-		W1	-	
			(g)	_		W2	_	
				_		W3	-	
			(g)					
			(g)	-		γ t (g/cm³)	-	
		Humedad		-	1	γ d (g/cm³)	-	Ì

DΖ

P1 = Masa del recipiente mas muestra húmeda

W1= Masa de la muestra humeda

REVISÓ Y APROBÓ

ING. JOHN O. ORDUZ GÓMEZ

P3 = Masa del recipiente

W3= Masa parafinada sumergida

SUB DIRECTOR TÉCNICO

P2 = Masa del recipiente mas muestra seca

W2= Masa de la muestra parafinada

DETERMINACIÓN DE LA RESISTENCIA A LA COMPRESIÓN **INCONFINADA DE SUELOS COHESIVOS** NTC 1527-00 Referencia: SYP-PT-DT-I012-8/15

ACREDITADO ISO/IEC 17025:2005

			10-LAB-040
PROYECTO:	SENA (COMPLEJO PALOQUEMAO) AV CRA 30 N° 15 - 53	FECHA DE ENSAYO:	2016-01-28
CLIENTE:	TECNICAS COLOMBIANAS DE INGENIERIA S.A.S	ORDEN DE TRABAJO No.	7461
DIR CLIENTE:	CALLE 53 A No 28-67 OFC 101	INFORME DE ENSAYO No.	7461-135
CÓDIGO:	1145		

SONDEO:	4	MUESTRA:	1	PROFUNDIDAD(m) 0,60 - 1,20			
DESCRIPCIÓN:	Arcilla algo arenosa de color gris, con oxidaciones. Estructura homogénea, de plasticidad baja, húmeda.						
OBSERVACIONES:	-						

Balanza No: 03 - 16

Velocidad de falla

(%)

ω MUESTRA COMPLETA ω CORTES DE MUESTRA

Compactada -

EQUIPOS:		Calibrador N	No: 06
Tipo	o de muestra:	Inalterada	X
	Diámetro de la muestra	6,48	cm
	Altura de la muestra	13,44	cm
	Área inicial	33,01	cm ²
	Relación Altura diámetro	2,07	-
	Volumen de la muestra	443,59	cm ³
	Masa de la muestra	695,75	g
	Masa unitaria húmeda	1,568	g/cm ³
	Masa unitaria seca	1,212	g/cm ³

Resistencia a la compresión inconfinada 2,18 kgf/cm² qu= 218,1 kPa qu=

Resistencia al Corte (qu/2) 1,09 kgf/cm²

Cu=

109,0 kPa

P₁ = Masa recipiente mas muestra húmeda

P₂ = Masa recipiente mas muestra seca

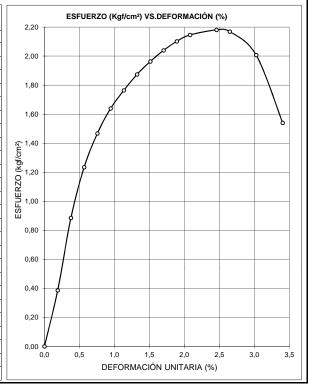
P₃ = Masa recipiente

(mm/min)

	CONTENI		
	DE HU	IMEDAD	ANTES D
Recip	oiente	34	SI X
P_1	(g)	151,87	
P_2	(g)	121,51	
P3	(a)	18 42	

29,4%

IDO DE HUMEDAD DE COMPRESIÓN CONFINADA NO


Remoldeada

1,29

Horno No: HN-01

			ω = Contenio	do de humeda	ad de la muest
Tiempo	CARGA	LECTURA	DEFORMACIÓN	ÁREA	ESFUERZO
min-s		DEFORMACIÓN	UNITARIA	CORREGIDA	NORMAL
	kgf	1*10E-3 plg.	(%)	cm²	kgf / cm²
00'00"	0,00	0	0,00	33,01	0,00
00'10"	12,76	10	0,19	33,08	0,39
00'22"	29,33	20	0,38	33,14	0,89
00'33"	40,98	30	0,57	33,20	1,23
00'44"	48,80	40	0,76	33,26	1,47
00'56"	54,63	50	0,95	33,33	1,64
01'07"	58,90	60	1,13	33,39	1,76
01'19"	62,70	70	1,32	33,46	1,87
01'30"	65,80	80	1,51	33,52	1,96
01'42"	68,49	90	1,70	33,58	2,04
01'54"	70,72	100	1,89	33,65	2,10
02'05"	72,34	110	2,08	33,71	2,15
02'30"	73,80	130	2,46	33,84	2,18
02'45"	73,54	140	2,65	33,91	2,17
03'08"	68,34	160	3,02	34,04	2,01
03'33"	52,63	180	3,40	34,18	1,54

REVISÓ Y APROBÓ HGCS

ING. JOHN O. ORDUZ GÓMEZ

SUB DIRECTOR TÉCNICO

INFORME DE ENSAYO DETERMINACIÓN DE LA RESISTENCIA A LA COMPRESIÓN **INCONFINADA DE SUELOS COHESIVOS** NTC 1527-00 Referencia: SYP-PT-DT-I012-8/15

ACREDITADO ISO/IEC 17025:2005 10-LAB-040

			10 LAD 040
PROYECTO:	SENA (COMPLEJO PALOQUEMAO) - AV. CARRERA 30 # 15-53	FECHA DE ENSAYO:	2016-02-07
CLIENTE:	TECNICAS COLOMBIANAS DE INGENIERIA S.A.S	ORDEN DE TRABAJO No.	7461
DIR CLIENTE:	CALLE 53 A No 28-67 OFC 101	INFORME DE ENSAYO No.	7461-298
CÓDIGO:	1145		

SONDEO:	5	MUESTRA: 1	PROFUNDIDAD(m) 0,60 - 1,20
DESCRIPCIÓN:	Arcilla, color	r gris violáceo, estructura homogénea, húmeda.	
OBSERVACIONES:	-		

Balanza No:

Compactada -

EQUIPOS:		Calibrador N	No: 06
Tipo	de muestra:	Inalterada	X
	Diámetro de la muestra	7,23	cm
	Altura de la muestra	14,73	cm
	Área inicial	41,02	cm ²
	Relación Altura diámetro	2,04	-
	Volumen de la muestra	604,18	cm ³
	Masa de la muestra	1195,6	g
	Masa unitaria húmeda	1,979	g/cm ³
	Masa unitaria seca	1,561	g/cm ³
			•

Resistencia a la compresión inconfinada 0,89 kgf/cm² qu= 89,3 kPa qu=

Resistencia al Corte (qu/2) 0,45 kgf/cm² 44,7 Cu=

P₁ = Masa recipiente mas muestra húmeda

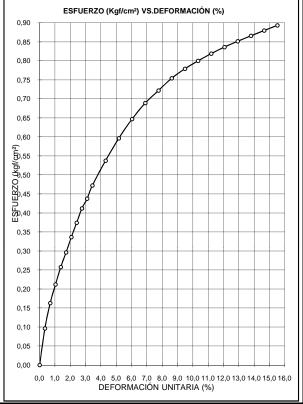
P₂ = Masa recipiente mas muestra seca

P₃ = Masa recipiente

 ω = Contenido de humedad de la muestra

Deformación a la falla	(%)	15,52
Velocidad de falla	(mm/min)	1,77

	CONTENIDO				
	DE HU	MEDAD			
Recip	oiente	190	s		
P ₁	(g)	187,19			
P_2	(g)	151,53			
P_3	(g)	18,19			
ω (%) 26,7%					
ωмι	ω MUESTRA COMPLETA				
ω co	ω CORTES DE MUESTRA				



Horno No: HN-01

Remoldeada

INCONFINADA X NO

Tiempo	CARGA	LECTURA	DEFORMACIÓN	ÁREA	ESFUERZO
min-s		DEFORMACIÓN	UNITARIA	CORREGIDA	NORMAL
	kgf	1*10E-3 plg.	(%)	cm ²	kgf / cm²
00'00"	0,00	0	0,00	41,02	0,00
00'16"	3,96	20	0,34	41,16	0,10
00'36"	6,74	40	0,69	41,30	0,16
00'50"	8,79	60	1,03	41,45	0,21
01'08"	10,72	80	1,38	41,59	0,26
01'28"	12,37	100	1,72	41,74	0,30
01'43"	14,10	120	2,07	41,88	0,34
02'00"	15,73	140	2,41	42,03	0,37
02'19"	17,37	160	2,76	42,18	0,41
02'34"	18,52	180	3,10	42,33	0,44
02'52"	20,07	200	3,45	42,48	0,47
03'33"	23,04	250	4,31	42,87	0,54
04'16"	25,80	300	5,17	43,25	0,60
05'00"	28,24	350	6,04	43,65	0,65
05'43"	30,36	400	6,90	44,06	0,69
06'22"	32,11	450	7,76	44,47	0,72
07'08"	33,85	500	8,62	44,89	0,75
07'51"	35,30	550	9,48	45,31	0,78
08'35"	36,60	600	10,35	45,75	0,80
09'18"	37,83	650	11,21	46,19	0,82
10'00"	39,01	700	12,07	46,65	0,84
10'44"	40,12	750	12,93	47,11	0,85
11'22"	41,20	800	13,79	47,58	0,87
12'11"	42,28	850	14,66	48,06	0,88
12'55"	43,37	900	15,52	48,55	0,89
Ų	1				

DZ REVISÓ Y APROBÓ

ING. JOHN O. ORDUZ GÓMEZ

SUB DIRECTOR TÉCNICO

INFORME DE ENSAYO DETERMINACIÓN DE LA RESISTENCIA A LA COMPRESIÓN **INCONFINADA DE SUELOS COHESIVOS**

NTC 1527-00 Referencia: SYP-PT-DT-I012-8/15

ACREDITADO ISO/IEC 17025:2005 10-LAB-040

			10-LMB-040
PROYECTO:	SENA (COMPLEJO PALOQUEMAO) - AV. CARRERA 30 # 15-53	FECHA DE ENSAYO:	2016-02-07
CLIENTE:	TECNICAS COLOMBIANAS DE INGENIERIA S.A.S	ORDEN DE TRABAJO No.	7461
DIR CLIENTE:	CALLE 53 A No 28-67 OFC 101	INFORME DE ENSAYO No.	7461-299
CÓDIGO:	1145		

SONDEO:	5	MUESTRA:	5	PROFUNDIDAD(m) 3,00 - 3,50
DESCRIPCIÓN:	Arcilla limosa gr	ris claro, con tono negruzco, c	on oxidaciór	n.
OBSERVACIONES:	-			

Balanza No:

Compactada

Tipo de muestra: Inalterada X Diámetro de la muestra 7,31 cm Altura de la muestra 14,75 cm Área inicial 42,01 cm² Relación Altura diámetro 2,02 - Volumen de la muestra 619,46 cm³ Masa de la muestra 1149,6 g Masa unitaria húmeda 1,856 g/cm³ Masa unitaria seca 1,850 g/cm³	EQUIPOS:	Calibrador N	No: 06
Altura de la muestra 14,75 cm Área inicial 42,01 cm² Relación Altura diámetro 2,02 - Volumen de la muestra 619,46 cm³ Masa de la muestra 1149,6 g Masa unitaria húmeda 1,856 g/cm³	Tipo de muestra:	Inalterada	X
Área inicial 42,01 cm² Relación Altura diámetro 2,02 - Volumen de la muestra 619,46 cm³ Masa de la muestra 1149,6 g Masa unitaria húmeda 1,856 g/cm³	Diámetro de la muestra	7,31	cm
Relación Altura diámetro 2,02 -	Altura de la muestra	14,75	cm
Volumen de la muestra 619,46 cm³ Masa de la muestra 1149,6 g Masa unitaria húmeda 1,856 g/cm³	Área inicial	42,01	cm ²
Masa de la muestra 1149,6 g Masa unitaria húmeda 1,856 g/cm³	Relación Altura diámetro	2,02	-
Masa unitaria húmeda 1,856 g/cm ³	Volumen de la muestra	619,46	cm ³
1,000	Masa de la muestra	1149,6	g
Masa unitaria seca 1.360 g/cm ³	Masa unitaria húmeda	1,856	g/cm ³
1,000 9	Masa unitaria seca	1,360	g/cm ³

Resistencia a la compresión inconfinada				
qu=	0,99	kgf/cm ²		
qu=	98,9	kPa		

Resistencia al Corte (qu/2) 0,49 kgf/cm² 49,5 Cu=

DZ

P₁ = Masa recipiente mas muestra húmeda

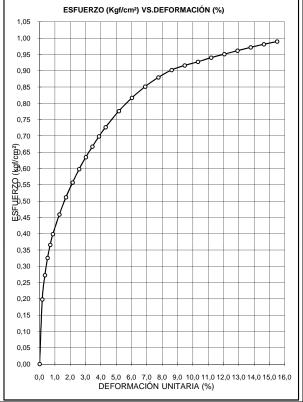
P₂ = Masa recipiente mas muestra seca

P₃ = Masa recipiente

 ω = Contenido de humedad de la muestra

Deformación a la falla	(%)	15,50
Velocidad de falla	(mm/min)	1,77

	CONTENIDO			
	DE HU	MEDAD		
Recip	oiente	241	s	
P ₁	(g)	165,43		
P_2	(g)	124,90		
P_3	(g)	13,77		
ω	ω (%) 36,5%			
ω MUESTRA COMPLETA				
ω co	ω CORTES DE MUESTRA			



Horno No: HN-01

Remoldeada

INCONFINADA X NO

Tiempo	CARGA	LECTURA	DEFORMACIÓN	ÁREA	ESFUERZO
min-s		DEFORMACIÓN	UNITARIA	CORREGIDA	NORMAL
	kgf	1*10E-3 plg.	(%)	cm ²	kgf / cm²
00'00"	0,00	0	0,00	42,01	0,00
00'07"	8,34	10	0,17	42,08	0,20
00'15"	11,49	20	0,34	42,15	0,27
00'23"	13,75	30	0,52	42,23	0,33
00'32"	15,46	40	0,69	42,30	0,37
00'40"	16,88	50	0,86	42,37	0,40
01'01"	19,53	75	1,29	42,56	0,46
01'23"	21,87	100	1,72	42,74	0,51
01'45"	23,92	125	2,15	42,93	0,56
02'06"	25,78	150	2,58	43,12	0,60
02'28"	27,49	175	3,01	43,31	0,63
02'49"	29,03	200	3,44	43,51	0,67
03'09"	30,51	225	3,88	43,70	0,70
03'32"	31,90	250	4,31	43,90	0,73
04'13"	34,38	300	5,17	44,30	0,78
04'56"	36,51	350	6,03	44,70	0,82
05'40"	38,41	400	6,89	45,12	0,85
06'23"	40,04	450	7,75	45,54	0,88
07'07"	41,46	500	8,61	45,97	0,90
07'560"	42,51	550	9,47	46,40	0,92
08'34"	43,44	600	10,33	46,85	0,93
09'19"	44,46	650	11,20	47,30	0,94
10'00"	45,42	700	12,06	47,77	0,95
10'43"	46,37	750	12,92	48,24	0,96
11'27"	47,33	800	13,78	48,72	0,97
12'20"	48,29	850	14,64	49,21	0,98
12'53"	49,19	900	15,50	49,71	0,99

REVISÓ Y APROBÓ

ING. JOHN O. ORDUZ GÓMEZ

SUB DIRECTOR TÉCNICO

EQUIPOS:

INFORME DE ENSAYO DETERMINACIÓN DE LA RESISTENCIA A LA COMPRESIÓN INCONFINADA DE SUELOS COHESIVOS NTC 1527-00 Referencia: SYP-PT-DT-I012-8/15

Horno No: HN-01

Remoldeada

1,78

ACREDITADO ISO/IEC 17025:2005 10-LAB-040

			10 LMD 040
PROYECTO:	SENA (COMPLEJO PALOQUEMAO) - AV. CARRERA 30 # 15-53	FECHA DE ENSAYO:	2016-02-07
CLIENTE:	TECNICAS COLOMBIANAS DE INGENIERIA S.A.S	ORDEN DE TRABAJO No.	7461
DIR CLIENTE:	CALLE 53 A No 28-67 OFC 101	INFORME DE ENSAYO No.	7461-300
CÓDIGO:	1145		

SONDEO:	5	MUESTRA: 7	PROFUNDIDAD(m) 6,00 - 6,60
DESCRIPCIÓN:	Arcilla, color	r gris claro, estructura homogénea, húmeda.	
OBSERVACIONES:	-		

Balanza No:

Compactada

Velocidad de falla

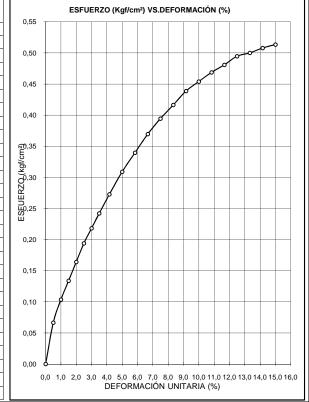
: Calibrador No: 06				
oo de muestra:	Inalterada	X		
Diámetro de la muestra	7,36	cm		
Altura de la muestra	15,24	cm		
Área inicial	42,53	cm ²		
Relación Altura diámetro	2,07	-		
Volumen de la muestra	648,09	cm ³		
Masa de la muestra	1228,4	g		
Masa unitaria húmeda	1,895	g/cm ³		
Masa unitaria seca	1,315	g/cm ³		

Resistencia a la compresión inconfinad		
qu=	0,51	kgf/cm ²
qu=	51,3	kPa

Resistencia al Corte (qu/2) 0,26 kgf/cm² 25,7 Cu=

P₁ = Masa recipiente mas muestra húmeda

P₂ = Masa recipiente mas muestra seca P₃ = Masa recipiente


Deformación a la falla	(%)	15.00

(mm/min)

	CONTENIDO				DE HUMEDAD
	DE HU	MEDAD	AN		COMPRESIÓN NFINADA
Recip	oiente	250	SI	X	NO
P ₁	(g)	201,75			
P ₂	(g)	144,11			
P ₃	(g)	13,54			
ω	(%)	44,1%			
ωм	JESTRA CO	MPLETA]		
ω co	ORTES DE N	(UESTRA	(

			ω = Contenio	do de humeda	ad de la mues
Tiempo	CARGA	LECTURA	DEFORMACIÓN	ÁREA	ESFUERZO
min-s		DEFORMACIÓN	UNITARIA	CORREGIDA	NORMAL
	kgf	1*10E-3 plg.	(%)	cm ²	kgf / cm²
00'00"	0,00	0	0,00	42,53	0,00
00'26"	2,84	30	0,50	42,74	0,07
00'52"	4,45	60	1,00	42,95	0,10
01'16"	5,78	90	1,50	43,17	0,13
01'41"	7,12	120	2,00	43,39	0,16
02'08"	8,46	150	2,50	43,62	0,19
02'32"	9,56	180	3,00	43,84	0,22
02'57"	10,67	210	3,50	44,07	0,24
03'31"	12,10	250	4,17	44,37	0,27
04'15"	13,83	300	5,00	44,76	0,31
04'56"	15,34	350	5,83	45,16	0,34
05'39"	16,84	400	6,67	45,56	0,37
06'22"	18,13	450	7,50	45,97	0,39
07'05"	19,32	500	8,33	46,39	0,42
07'51"	20,54	550	9,17	46,82	0,44
08'32"	21,45	600	10,00	47,25	0,45
09'14"	22,35	650	10,83	47,69	0,47
09'57"	23,15	700	11,67	48,14	0,48
10'40"	24,04	750	12,50	48,60	0,49
11'24"	24,54	800	13,33	49,07	0,50
12'11"	25,16	850	14,17	49,54	0,51
12'49"	25,69	900	15,00	50,03	0,51

DZ REVISÓ Y APROBÓ

ING. JOHN O. ORDUZ GÓMEZ

SUB DIRECTOR TÉCNICO

INFORME DE ENSAYO DETERMINACIÓN DE LA RESISTENCIA A LA COMPRESIÓN INCONFINADA DE SUELOS COHESIVOS

NTC 1527-00 Referencia: SYP-PT-DT-I012-8/15

			10-LAB-040
PROYECTO:	SENA (COMPLEJO PALOQUEMAO) - AV. CARRERA 30 # 15-53	FECHA DE ENSAYO:	2016-02-07
CLIENTE:	TECNICAS COLOMBIANAS DE INGENIERIA S.A.S	ORDEN DE TRABAJO No.	7461
DIR CLIENTE:	CALLE 53 A No 28-67 OFC 101	INFORME DE ENSAYO No.	7461-301
CÓDIGO:	1145		

SONDEO:	5	MUESTRA: 10	PROFUNDIDAD(m) 10,00 - 10,60
DESCRIPCIÓN:	Limo, color gris, es	structura homogénea, húmeda, plasticidad	alta.
OBSERVACIONES:	-		

Balanza No:

Compactada

Resistencia a	la compre	sión inconfinada
qu=	0,09	kgf/cm ²
qu=	9,2	kPa

Resistencia al Corte (qu/2) 0,05 kgf/cm² 4,6

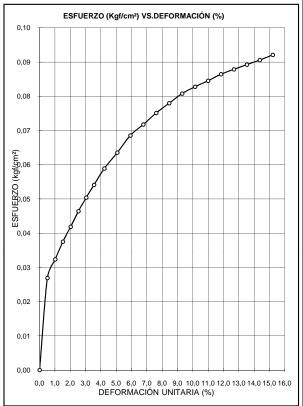
ω CORTES DE MUESTRA P₁ = Masa recipiente mas muestra húmeda

P₂ = Masa recipiente mas muestra seca P₃ = Masa recipiente

 ω = Contenido de humedad de la muestra

Deformación a la falla	(%)	15,23
Velocidad de falla	(mm/min)	1,78

	CONTENIDO			
	DE HU	MEDAD		
Recip	iente	177	S	
P ₁	(g)	195,97		
P_2	(g)	118,42		
P_3	(g)	17,26		
ω (%) 76,7%				
ω MUESTRA COMPLETA				
ωcc	ORTES DE M	IUESTRA	Х	



Horno No: HN-01

Remoldeada

X NO

(ii) = Contenido de númedad de la mi					ad de la mues
Tiempo	mpo CARGA LECTURA		DEFORMACIÓN	ÁREA	ESFUERZO
min-s	<u> </u>	DEFORMACIÓN	UNITARIA	CORREGIDA	NORMAL
	kgf	1*10E-3 plg.	(%)	cm²	kgf / cm²
00'00"	0,00	0	0,00	38,85	0,00
00'24	1,05	30	0,51	39,05	0,03
00'51"	1,27	60	1,02	39,25	0,03
01'16"	1,48	90	1,52	39,45	0,04
01'41"	1,66	120	2,03	39,66	0,04
023'07"	1,85	150	2,54	39,86	0,05
02'33"	2,02	180	3,05	40,07	0,05
02'58"	2,18	210	3,55	40,28	0,05
03'33"	2,39	250	4,23	40,57	0,06
04'14"	2,60	300	5,08	40,93	0,06
04'57"	2,83	350	5,92	41,30	0,07
05'41"	2,99	400	6,77	41,67	0,07
06'23"	3,16	450	7,61	42,05	0,08
07'07"	3,31	500	8,46	42,44	0,08
07'51"	3,46	550	9,31	42,84	0,08
08'36"	3,58	600	10,15	43,24	0,08
09'17"	3,69	650	11,00	43,65	0,08
10'00'	3,81	700	11,84	44,07	0,09
10'43"	3,91	750	12,69	44,50	0,09
11'26"	4,01	800	13,53	44,93	0,09
12'09"	4,11	850	14,38	45,38	0,09
12'50"	4,22	900	15,23	45,83	0,09

DZ REVISÓ Y APROBÓ

ING. JOHN O. ORDUZ GÓMEZ

SUB DIRECTOR TÉCNICO

LOS RESULTADOS PRESENTADOS CORRESPONDEN ÚNICAMENTE A LA MUESTRA SOMETIDA A ENSAYO. ESTE INFORME NO PUEDE SER REPRODUCIDO EN SU TOTALIDAD NI PARCIALMENTE, SIN LA AUTORIZACIÓN ESCRITA DEL LABURA 16/18/18/11/14/15/58/11/15/58/11/58/11

EQUIPOS:

Tip

DETERMINACIÓN DE LA RESISTENCIA A LA COMPRESIÓN INCONFINADA DE SUELOS COHESIVOS NTC 1527-00

Referencia: SYP-PT-DT-I012-8/15

 PROYECTO:
 SENA (COMPLEJO PALOQUEMAO) - AV. CARRERA 30 # 15-53
 FECHA DE ENSAYO:
 2016-02-07

 CLIENTE:
 TECNICAS COLOMBIANAS DE INGENIERIA S.A.S
 ORDEN DE TRABAJO No.
 7461

 DIR CLIENTE:
 CALLE 53 A No 28-67 OFC 101
 INFORME DE ENSAYO No.
 7461-302

 CÓDIGO:
 1145
 INFORME DE ENSAYO NO.
 TAGENTAL

SONDEO:	6	MUESTRA:	8	PROFUNDIDAD(m) 8,60 - 9,30
DESCRIPCIÓN:	Arcilla arenosa, colo	or gris, estructura homogé	nea, húmeda	l.
OBSERVACIONES:	-			

Balanza No:

Compactada

	Calibrador N	No: 06
oo de muestra:	Inalterada	X
Diámetro de la muestra	7,29	cm
Altura de la muestra	15,02	cm
Área inicial	41,72	cm ²
Relación Altura diámetro	2,06	-
Volumen de la muestra	626,64	cm ³
Masa de la muestra	1221,5	g
Masa unitaria húmeda	1,949	g/cm ³
Masa unitaria seca	1,539	g/cm ³

Resistencia al Corte (qu/2)

Cu= 0,49 kgf/cm²

Cu= 48,6 kPa

P₁ = Masa recipiente mas muestra húmeda

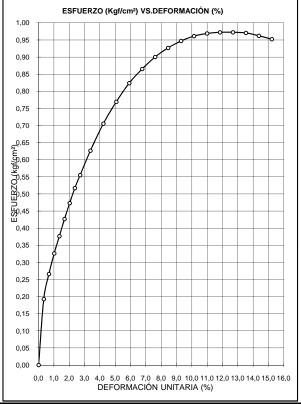
P₂ = Masa recipiente mas muestra seca P₃ = Masa recipiente

ω = Contenido de humedad de la muestra

Deformación a la falla	(%)	12,68
Velocidad de falla	(mm/min)	1,75

Х

CONTENIDO				
DE HUMEDAD				
Recipiente	B24			
P ₁ (g)	354,40			
P ₂ (g)	286,96			
P ₃ (g)	34,11			
ω (%) 26,7%				
ω MUESTRA COMPLETA				


ω CORTES DE MUESTRA

Horno No: HN-01

Remoldeada

			ω = Contenio	uo de numeda	ad de la mues
Tiempo	CARGA	LECTURA	DEFORMACIÓN	ÁREA	ESFUERZO
min-s		DEFORMACIÓN	UNITARIA	CORREGIDA	NORMAL
	kgf	1*10E-3 plg.	(%)	cm²	kgf / cm²
00'00"	0,00	0	0,00	41,72	0,00
00'19"	8,08	20	0,34	41,86	0,19
00'36"	11,17	40	0,68	42,00	0,27
00'53"	13,75	60	1,01	42,15	0,33
01'10"	15,94	80	1,35	42,29	0,38
01'27"	18,11	100	1,69	42,44	0,43
01'44"	20,14	120	2,03	42,58	0,47
02'02"	22,09	140	2,37	42,73	0,52
02'18"	23,80	160	2,71	42,88	0,56
02'53"	27,05	200	3,38	43,18	0,63
03'37"	30,73	250	4,23	43,56	0,71
04'19"	33,81	300	5,07	43,95	0,77
05'03"	36,52	350	5,92	44,34	0,82
05'46"	38,71	400	6,76	44,75	0,87
06'30"	40,65	450	7,61	45,16	0,90
07'14"	42,23	500	8,46	45,57	0,93
07'57"	43,55	550	9,30	46,00	0,95
08'41"	44,63	600	10,15	46,43	0,96
09'25"	45,42	650	10,99	46,87	0,97
10'14"	46,01	700	11,84	47,32	0,97
10'53"	46,46	750	12,68	47,78	0,97
10'36"	46,83	800	13,53	48,25	0,97
12'20"	46,87	850	14,37	48,72	0,96
13'06"	46,86	900	15,22	49,21	0,95

DZ REVISÓ Y APROBÓ

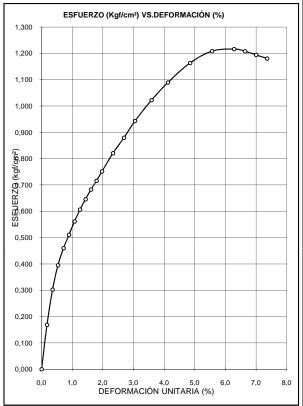
ING. JOHN O. ORDUZ GÓMEZ

SUB DIRECTOR TÉCNICO

LOS RESULTADOS PRESENTADOS CORRESPONDEN ÚNICAMENTE A LA MUESTRA SOMETIDA A ENSAYO. ESTE INFORME NO PUEDE SER REPRODUCIDO EN SU TOTALIDAD NI PARCIALMENTE, SIN LA AUTORIZACIÓN ESCRITA DEL LABURA 46 1/18/2020-11/2-5/11/2-5

INFORME DE ENSAYO DETERMINACIÓN DE LA RESISTENCIA A LA COMPRESIÓN INCONFINADA DE SUELOS COHESIVOS

NTC 1527-00 Referencia: SYP-PT-DT-I012-8/15



			10-LAB-040
PROYECTO:	SENA (COMPLEJO PALOQUEMAO) - AV. CARRERA 30 # 15-53	FECHA DE ENSAYO:	2016-02-11
CLIENTE:	TECNICAS COLOMBIANAS DE INGENIERIA S.A.S	ORDEN DE TRABAJO No.	7461
DIR CLIENTE:	CALLE 53 A No 28-67 OFC 101	INFORME DE ENSAYO No.	7461-381
CÓDIGO:	1145		

SONDEO:	10	M	IUESTRA:	12	PROFUNDIDAD(m) 14,80 - 15,25
DESCRIPCIÓN:	Arcilla limosa,	color marrón, estru	ctura homo	génea,	, húmeda, plasticidad alta, consistencia firme.
OBSERVACIONES:	-				

IPOS:	Calibrador No: 06	Balanza No: 16 - 03	Horno No: HN-01
Tipo de muestra:	Inalterada X	Compactada -	Remoldeada -
Diámetro de la muestra	5,95 cm		
Altura de la muestra	14,15 cm		
Área inicial	27,82 cm ²	Deformación a la falla	(%) 6,28
Relación Altura diámetro	2,38	Velocidad de falla	(mm/min) 1,17
Volumen de la muestra	393,66 cm ³		Esquema / fotografía de falla
Masa de la muestra	668,2 g	CONTENIDO	CONTENIDO DE HUMEDAD
Masa unitaria húmeda	1,697 g/cm ³	DE HUMEDAD	ANTES DE COMPRESIÓN INCONFINADA
Masa unitaria seca	1,132 g/cm ³	Recipiente 153	SI NO Y
		P ₁ (g) 212,14	
		P ₂ (g) 147,50	
Resistencia a la comp	resión inconfinada	P ₃ (g) 18,23	
qu= 1,22	kgf/cm ²	ω (%) 50,0%	
qu= 121,6	6 kPa	ω MUESTRA COMPLETA	
			X
Resistencia al C	orte (qu/2) P ₁ = Masa red	cipiente mas muestra húmeda	
Cu= 0,61	kqf/cm^2 $P_2 = Masa rec$	cipiente mas muestra seca	4.2
Cu= 60,8		cipiente	

			ω = Contenio	ao de numeda	ad de la mues
Tiempo	CARGA	LECTURA	DEFORMACIÓN	ÁREA	ESFUERZO
min-s		DEFORMACIÓN	UNITARIA	CORREGIDA	NORMAL
	kgf	1*10E-3 plg.	(%)	cm²	kgf / cm²
00'00"	0,00	0	0,00	27,82	0,0000
00'12"	4,71	10	0,18	27,87	0,1690
00'25"	8,45	20	0,36	27,92	0,3026
00'38"	11,05	30	0,54	27,97	0,3950
00'50"	12,89	40	0,72	28,02	0,4600
01'02"	14,35	50	0,90	28,07	0,5112
01'15"	15,79	60	1,08	28,12	0,5615
01'29"	17,09	70	1,26	28,17	0,6066
01'42"	18,23	80	1,44	28,23	0,6459
01'54"	19,31	90	1,62	28,28	0,6829
02'07"	20,29	100	1,80	28,33	0,7162
02'20"	21,33	110	1,97	28,38	0,7516
02'47"	23,38	130	2,33	28,49	0,8208
03'12"	25,14	150	2,69	28,59	0,8793
03'40"	27,06	170	3,05	28,70	0,9430
04'18"	29,49	200	3,59	28,86	1,0219
04'56"	31,61	230	4,13	29,02	1,0893
05'49"	34,02	270	4,85	29,24	1,1636
06'41"	35,60	310	5,56	29,46	1,2084
07'32"	36,10	350	6,28	29,69	1,2161
07'59"	35,99	370	6,64	29,80	1,2077
08'26"	35,72	390	7,00	29,91	1,1941
08'52"	35,44	410	7,36	30,03	1,1801

DΖ REVISÓ Y APROBÓ

ING. JOHN O. ORDUZ GÓMEZ

SUB DIRECTOR TÉCNICO

EQUIPOS:

INFORME DE ENSAYO DETERMINACIÓN DE LA RESISTENCIA A LA COMPRESIÓN **INCONFINADA DE SUELOS COHESIVOS**

NTC 1527-00 Referencia: SYP-PT-DT-I012-8/15

Remoldeada

INCONFINADA

NO X

Horno No: HN-01

Esquema / fotografía de falla

PROYECTO:	SENA (COMPLEJO PALOQUEMAO) - AV. CARRERA 30 # 15-53	FECHA DE ENSAYO:	2016-02-11
CLIENTE:	TECNICAS COLOMBIANAS DE INGENIERIA S.A.S	ORDEN DE TRABAJO No.	7461
DIR CLIENTE:	CALLE 53 A No 28-67 OFC 101	INFORME DE ENSAYO No.	7461-382
CÓDIGO:	1145		

SONDEO:	11	MUESTRA:	4	PROFUNDIDAD(m) 4,05 - 4,50	
DESCRIPCIÓN:	Arcilla limosa, color gris verdoso, con algunos puntos orgánicos y tonos amarillos, estructura homogénea, húmeda,				
	plasticidad alta, c	onsistencia blanda.			
OBSERVACIONES:	-				

Compactada

Balanza No:

Tipo de muestra:	Inalterada	X
Diámetro de la muestra	5,39	cm
Altura de la muestra	12,35	cm
Área inicial	22,85	cm ²
Relación Altura diámetro	2,29	-
Volumen de la muestra	282,07	cm ³
Masa de la muestra	487,7	g
Masa unitaria húmeda	1,729	g/cm ³
Masa unitaria seca	1,166	g/cm ³

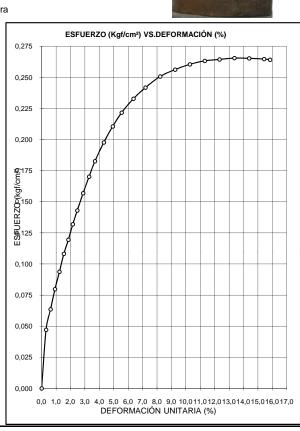
Calibrador No: 06

Resistencia a la compresión inconfinada 0,27 qu= kgf/cm² 26,5 kPa qu=

Resistencia al Corte (qu/2) kgf/cm² 0,13 kPa Cu= 13,3

Deformación a la falla (%) 13,37 1,77 Velocidad de falla (mm/min)

CONTENIDO DE HUMEDAD ANTES DE COMPRESIÓN CONTENIDO DE HUMEDAD Recipiente 56 199,72 (g) 143,31 (g) 26,41 (g) 48,3% (%) ω MUESTRA COMPLETA


 $\boldsymbol{\omega}$ cortes de muestra

16 - 03

P₁ = Masa recipiente mas muestra húmeda P₂ = Masa recipiente mas muestra seca

P₃ = Masa recipiente ω = Contenido de humedad de la muestra

ω = Contenido de humedad de la muestr					
Tiempo	CARGA	LECTURA	DEFORMACIÓN	ÁREA	ESFUERZO
min-s		DEFORMACIÓN	UNITARIA	CORREGIDA	NORMAL
	kgf	1*10E-3 plg.	(%)	cm ²	kgf / cm²
00'00"	0,00	0	0,00	22,85	0,00
00'13"	1,08	15	0,31	22,92	0,05
00'25"	1,46	30	0,62	22,99	0,06
00'00"	1,84	45	0,93	23,06	0,08
00'52"	2,17	60	1,23	23,13	0,09
01'05"	2,51	75	1,54	23,20	0,11
01'17"	2,78	90	1,85	23,28	0,12
01'31"	3,08	105	2,16	23,35	0,13
01'43"	3,35	120	2,47	23,42	0,14
02'00"	3,69	140	2,88	23,52	0,16
02'18"	4,02	160	3,29	23,62	0,17
02'34"	4,33	180	3,70	23,72	0,18
03'01"	4,72	210	4,32	23,88	0,20
03'26"	5,06	240	4,94	24,03	0,21
03'51"	5,36	270	5,55	24,19	0,22
04'26"	5,68	310	6,38	24,40	0,23
05'01"	5,95	350	7,20	24,62	0,24
05'44"	6,24	400	8,23	24,89	0,25
06'27"	6,45	450	9,26	25,18	0,26
07'10"	6,63	500	10,29	25,47	0,26
07'53"	6,78	550	11,31	25,76	0,26
08'38"	6,89	600	12,34	26,06	0,26
09'20"	7,00	650	13,37	26,37	0,27
10'04"	7,08	700	14,40	26,69	0,27
10'47"	7,15	750	15,43	27,01	0,26
11'04"	7,17	770	15,84	27,15	0,26
					-

REVISÓ Y APROBÓ

INF7461-382-A13-S11-M4-CI Pagina 1 de 1

DΖ

ING. JOHN O. ORDUZ GÓMEZ

SUB DIRECTOR TÉCNICO

INFORME DE ENSAYO DETERMINACIÓN DE LA RESISTENCIA A LA COMPRESIÓN **INCONFINADA DE SUELOS COHESIVOS**

NTC 1527-00 Referencia: SYP-PT-DT-I012-8/15

(%)

(mm/min)

Horno No: HN-01

Remoldeada -

SENA (COMPLEJO PALOQUEMAO) - AV. CARRERA 30 # 15-53 PROYECTO: **FECHA DE ENSAYO:** 2016-02-11 CLIENTE: TECNICAS COLOMBIANAS DE INGENIERIA S.A.S 7461 ORDEN DE TRABAJO No. DIR CLIENTE: CALLE 53 A No 28-67 OFC 101 INFORME DE ENSAYO No. 7461-407 1145 CÓDIGO:

SONDEO:	11	MUESTRA:	7	PROFUNDIDAD(m) 8,15 - 8,75
DESCRIPCIÓN:	Arcilla, color gris	s, estructura homogénea, húm	eda,	plasticidad alta, consistencia blanda.
OBSERVACIONES:	-			

Balanza No: 16 - 03

Deformación a la falla

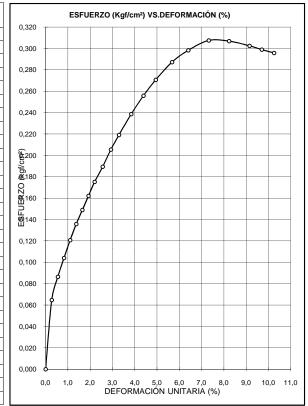
Velocidad de falla

EQUIPOS:	Calibrador N	lo: 06	
Tipo de muestra:		Inalterada	Х
Diámetro de la	muestra	5,84	cm
Altura de la mi	uestra	13,88	cm
Área inicial		26,80	cm ²
Relación Altura	a diámetro	2,38	-
Volumen de la	muestra	371,92	cm ³
Masa de la mu	iestra	613,0	g
Masa unitaria	húmeda	1,648	g/cm ³
Masa unitaria	seca	1,046	g/cm ³
			_
			7

Resistencia a la compresión inconfinada					
qu=	0,31	kgf/cm ²			
qu=	30,7	kPa			
•					

Resistencia al Corte (qu/2) Cu= 0,15 kgf/cm² Recipier

Compactada -


ω MUES ω cort

P₁ = Masa recipiente mas muestra P₂ = Masa recipiente mas muestra P₃ = Masa recipiente

 ω = Contenido de humedad de la

					Esquema / fotografía de fall
	ENIDO IMEDAD	ANTES DE		RESIÓN	
nte	247	sı \square	NO		0550000
(g)	211,88	_		_	A DESCRIPTION OF
(g)	139,56				STATE OF
(g)	13,87				
(%)	57,5%				
STRA CO	MPLETA]			No. of the second
TES DE N	MUESTRA	x			
ra húm ra seca					- 1/-
a muest	tra				

		T	I		
Tiempo	CARGA	LECTURA	DEFORMACIÓN	ÁREA	ESFUERZO
min-s		DEFORMACIÓN	UNITARIA	CORREGIDA	NORMAL
	kgf	1*10E-3 plg.	(%)	cm ²	kgf / cm²
00'00"	0,00	0	0,00	26,80	0,00
00'13"	1,74	15	0,27	26,88	0,06
00'26"	2,33	30	0,55	26,95	0,09
00'38"	2,81	45	0,82	27,02	0,10
00'52"	3,27	60	1,10	27,10	0,12
01'05"	3,69	75	1,37	27,17	0,14
01'17"	4,06	90	1,65	27,25	0,15
01'30"	4,43	105	1,92	27,33	0,16
01'43"	4,80	120	2,20	27,40	0,18
01'59"	5,21	140	2,56	27,51	0,19
02'17"	5,67	160	2,93	27,61	0,21
02'35"	6,07	180	3,29	27,71	0,22
03'01"	6,65	210	3,84	27,87	0,24
03'26"	7,17	240	4,39	28,03	0,26
03'52"	7,63	270	4,94	28,20	0,27
04'27"	8,16	310	5,67	28,41	0,29
05'01"	8,54	350	6,41	28,64	0,30
05'44"	8,89	400	7,32	28,92	0,31
06'28"	8,96	450	8,24	29,21	0,31
07'11'	8,92	500	9,15	29,50	0,30
07'37"	8,87	530	9,70	29,68	0,30
08'03"	8,83	560	10,25	29,86	0,30
-					
		1			

DΖ REVISÓ Y APROBÓ

ING. JOHN O. ORDUZ GÓMEZ

SUB DIRECTOR TÉCNICO

INFORME DE ENSAYO DETERMINACIÓN DE LA RESISTENCIA A LA COMPRESIÓN INCONFINADA DE SUELOS COHESIVOS NTC 1527-00 Referencia: SYP-PT-DT-I012-8/15

			10-LAB-040
PROYECTO:	SENA (COMPLEJO PALOQUEMAO) - AV. CARRERA 30 # 15-53	FECHA DE ENSAYO:	2016-02-11
CLIENTE:	TECNICAS COLOMBIANAS DE INGENIERIA S.A.S	ORDEN DE TRABAJO No.	7461
DIR CLIENTE:	CALLE 53 A No 28-67 OFC 101	INFORME DE ENSAYO No.	7461-408
CÓDIGO:	1145		

SONDEO:	11	MUESTR	RA: 14		PROFUNDIDAD(m) 18,20 - 18,80
DESCRIPCIÓN:	Arcilla limosa,	color marrón, estructura h	homogénea	, húmeda,	plasticidad media y consistencia media firme.
OBSERVACIONES:	-				

Balanza No: 16 - 03

EQUIPOS:	Calibrador N	No: 06
Tipo de muestra:	Inalterada	X
Diámetro de la muestra	6,00	cm
Altura de la muestra	12,30	cm
Área inicial	28,24	cm ²
Relación Altura diámetro	2,05	-
Volumen de la muestra	347,39	cm ³
Masa de la muestra	592,8	g
Masa unitaria húmeda	1,706	g/cm ³
Masa unitaria seca	1,186	g/cm ³
		

Resistencia a la compresión inconfinada					
qu=	0,63	kgf/cm ²			
qu=	63,3	kPa			

Resistencia al Corte (qu/2) Cu= 0,32 kgf/cm²

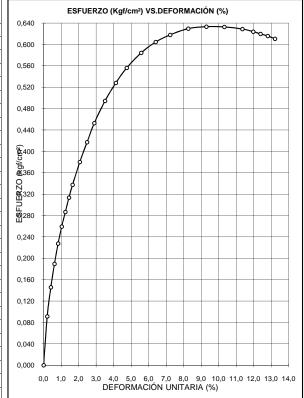
(CONT	ENIDO		
D	E HU	MEDAD		
Recipient	е	46		
P ₁ (g)	212,80		
P ₂ (g)	155,85		
P ₃ (g)	25,96		
ω (%) 43,8%				
ω MUESTRA COMPLETA				
ω CORTE	SDEN	MUESTRA	Х	

Compactada -

ω CORTES DE MUESTRA

P₁ = Masa recipiente mas muestra húmeda P₂ = Masa recipiente mas muestra seca P₃ = Masa recipiente ω = Contenido de humedad de la muestra

Deformación a la falla	(%)	9,29
Velocidad de falla	(mm/min)	1,45


CONTENIDO DE HUMEDAD			ITES DE		
ipiente	46	SI		NO	Y
(g)	212,80				
(g)	155,85				
(g) 25,96					
	40.00/	1			

Horno No: HN-01

Remoldeada -

_	04504	LEOTUBA			
Tiempo	CARGA	LECTURA	DEFORMACIÓN	ÁREA	ESFUERZO
min-s		DEFORMACIÓN	UNITARIA	CORREGIDA	NORMAL
	kgf	1*10E-3 plg.	(%)	cm ²	kgf / cm²
00'00"	0,00	0	0,00	28,24	0,00
00'10"	2,59	10	0,21	28,30	0,09
00'20"	4,14	20	0,41	28,36	0,15
00'30"	5,39	30	0,62	28,42	0,19
00'41"	6,48	40	0,83	28,48	0,23
00'51"	7,40	50	1,03	28,54	0,26
01'00"	8,20	60	1,24	28,60	0,29
01'11'	8,98	70	1,45	28,66	0,31
01'21"	9,69	80	1,65	28,72	0,34
01'41"	10,96	100	2,07	28,84	0,38
02'02"	12,08	120	2,48	28,96	0,42
02'25"	13,17	140	2,89	29,08	0,45
02'56"	14,47	170	3,51	29,27	0,49
03'26"	15,55	200	4,13	29,46	0,53
03'58"	16,49	230	4,75	29,65	0,56
04'41"	17,47	270	5,58	29,91	0,58
05'22'	18,24	310	6,40	30,17	0,60
06'04"	18,81	350	7,23	30,44	0,62
06'57"	19,38	400	8,26	30,79	0,63
07'50"	19,71	450	9,29	31,14	0,63
08'42"	19,92	500	10,33	31,49	0,63
09'35"	20,03	550	11,36	31,86	0,63
10'07"	20,01	580	11,98	32,09	0,62
10'28"	19,97	600	12,39	32,24	0,62
10'49"	19,94	620	12,80	32,39	0,62
11'11"	19,87	640	13,22	32,54	0,61

DΖ REVISÓ Y APROBÓ

ING. JOHN O. ORDUZ GÓMEZ

SUB DIRECTOR TÉCNICO

INFORME DE ENSAYO DETERMINACIÓN DE LA RESISTENCIA A LA COMPRESIÓN INCONFINADA DE SUELOS COHESIVOS

NTC 1527-00 Referencia: SYP-PT-DT-I012-8/15

PROYECTO:	SENA (COMPLEJO PALOQUEMAO) - AV. CARRERA 30 # 15-53	FECHA DE ENSAYO:	2016-02-11
CLIENTE:	TECNICAS COLOMBIANAS DE INGENIERIA S.A.S	ORDEN DE TRABAJO No.	7461
DIR CLIENTE:	CALLE 53 A No 28-67 OFC 101	INFORME DE ENSAYO No.	7461-409
CÓDIGO:	11/15		

SONDEO:	11	MUESTRA:	15	PROFUNDIDAD(m) 19,80 - 20,40
DESCRIPCIÓN:	Arcilla arenosa, c	olor gris, algunos puntos or	gánicos	, estructura homogénea.
OBSERVACIONES:	-			

Balanza No: 16 - 03

EQUIPOS:	Calibrador No: 06
Tipo de muestra:	Inalterada X
Diámetro de la muestra	5,75 cm
Altura de la muestra	12,95 cm
Área inicial	26,00 cm ²
Relación Altura diámet	ro 2,25 -
Volumen de la muestra	336,58 cm ³
Masa de la muestra	646,3 g
Masa unitaria húmeda	1,920 g/cm ³
Masa unitaria seca	1,478 g/cm ³

Resistencia a la compresión inconfinada					
qu=	0,42	kgf/cm ²			
qu=	42,2	kPa			

Resistencia al Corte (qu/2) Cu= 0,21 kgf/cm²

DΖ

Deformación a la falla (%) 1,76 Velocidad de falla (mm/min)

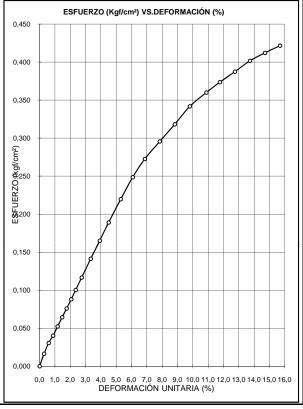
> ANTES DE COMPRESIÓN INCONFINADA NO Y

CONT	ENIDO			
DE HU	MEDAD			
Recipiente	62	S		
P ₁ (g)	210,40			
P ₂ (g)	167,92			
P ₃ (g)	26,11			
ω (%) 30,0%				
ω MUESTRA COMPLETA				
ω CORTES DE M	MUESTRA X	J		

Compactada -

P₁ = Masa recipiente mas muestra húmeda P₂ = Masa recipiente mas muestra seca

P₃ = Masa recipiente


 ω = Contenido de humedad de la muestra

Horno No: HN-01

Remoldeada -

Tiempo	CARGA	LECTURA	DEFORMACIÓN	ÁREA	ESFUERZO
min-s		DEFORMACIÓN	UNITARIA	CORREGIDA	NORMAL
	kgf	1*10E-3 plg.	(%)	cm ²	kgf / cm²
00'00"	0,00	0	0,00	26,00	0,00
00'13'	0,43	15	0,29	26,07	0,02
00'26"	0,80	30	0,59	26,15	0,03
00'38"	1,06	45	0,88	26,23	0,04
00'52"	1,38	60	1,18	26,31	0,05
01'05"	1,70	75	1,47	26,39	0,06
01'17"	2,01	90	1,77	26,46	0,08
01'30"	2,34	105	2,06	26,54	0,09
01'43"	2,67	120	2,35	26,62	0,10
02'00"	3,12	140	2,75	26,73	0,12
02'26"	3,80	170	3,34	26,89	0,14
02'51"	4,47	200	3,92	27,06	0,17
03'17"	5,15	230	4,51	27,23	0,19
03'52"	6,03	270	5,30	27,45	0,22
04'27"	6,88	310	6,08	27,68	0,25
05'01"	7,61	350	6,87	27,91	0,27
05'45"	8,34	400	7,85	28,21	0,30
06'27"	9,07	450	8,83	28,51	0,32
07'10"	9,85	500	9,81	28,82	0,34
07'54"	10,50	555	10,89	29,17	0,36
08'37"	11,01	600	11,77	29,47	0,37
09'20"	11,54	650	12,75	29,80	0,39
10'06"	12,10	700	13,73	30,14	0,40
10'47"	12,56	750	14,71	30,48	0,41
11'33"	13,00	800	15,70	30,84	0,42

REVISÓ Y APROBÓ

ING. JOHN O. ORDUZ GÓMEZ

SUB DIRECTOR TÉCNICO

MÉTODO PARA MEDIR EL POTENCIAL DE ASENTAMIE **UNIDIMENSIONAL DE SUELOS COHES** INV E - 173-07

Referencia SYP-PT-DT-I171-07/15

ENTO O EXPANSION SIVOS	ONAC	
	ACREDITADO ISO/IEC 17025:2005 10-LAB-040	
DE ENSAYO:	2016-02-01	

PROYECTO: SENA (COMPLEJO PALOQUEMA		JEMAO) AV CRA 30 N° 15 - 53 FECHA DE ENSAYO :				2016-02-01				
CLIENTE:	CLIENTE: TECNICAS COLOMBIANAS DE			DE INGENIERIA	A S.A.S	ORDEN DE TRABAJO No. 74			7461	
DIR CLIENTE	E:	CALLE 53 A N	lo 28-67 OFC 1	01			INFORME	DE ENSAYO	No.	7461-145
CÓDIGO:		1145								
EQUIPOS:			Balanza	No: 02		Но	rno No: HN	I-01		
SONDEO:	4		MUESTRA:		1		PROFUND	IDAD (m):	0,60 - 1,20	
DESCRIPCIÓ	ĎΝ:	Arcilla algo ai	renosa de colo	r gris, con oxid	aciones. Estruc	tura homogéne	ea, de plastic	idad baja, hún	neda.	
OBSERVACI	ONES:	Bajo un es	sfuerzo de	1,20 Kg/cm	2 se contro	ló a expans	sión.			
Tipo de Ex	pansión:		Libre	(Método A)	Х	-	Controla	da (Métod	lo C)	
Tipo de mu	estra:	Inalterada	-	-	Compactad	a	Х	_		
Banco N°		4		Masa del anillo +	- muestra inicial	279,5	g	CONT	ENIDO DE HUM	IEDAD
Anillo N°		13P	-	Masa del anillo +	· muestra final	282,1	-		INICIAL	FINAL
Diámetro del ani	illo	5,03	cm	Masa de la celda		208,3		Recipiente No		18
Altura del anillo		2,01		Masa del bloque		294,8		P ₁ (g)	157,59	94,75
Área de la mues	stra	19,83		Masa unitaria tot		1,788		P ₂ (g)	127,74	75,48
Volumen de la m		39,82		Masa unitaria se		1,404		P ₃ (g)	18,80	18,90
Relación de braz		7,893	=	Gravedad espec		2,699		Humedad	27,4%	34,1%
		,	=	Grado de satura		80,2	†		,	- ,
				Grado de satura		99,9	•			
FECHA	TIEMPO	INTERVALO	LECTURA	CARGA EN		FECHA	TIEMPO	INTERVALO	LECTURA	CARGA EN
		DE TIEMPO	DEFORMÍMETRO	BRAZO				DE TIEMPO	DEFORMÍMETRO	BRAZO
aaaa-mm-dd	(Hora- min)	min - s.	*10 ⁻⁴ plg	kg		aaaa-mm-dd	(Hora- min)	min - s.	*10 ⁻⁴ plg	kg
2016-02-01	08:05		1000	0,0			, ,			
2016-02-01	08:10		1003	0,10						
				,						
2016-02-01	08:10	0	1000	0,00		2016-02-05	07:50	0	898	2,00
2010 02 01	00.10	00'06"	997	3,00		20.00200	01.00	4"	823	2,00
		00'12"	990					15"	929	
		00'30"	980					34"	933	
		01'00"	969					1'00"	937	
		02'00"	930					1'34"	940	
		04'00"	912					2'15"	942	
		08'00"	890					3'04"	944	
		15'00"	865					4'00"	946	
		30'00"	830					6'15"	948	
		60'00" 120'00"	816 799					9'00" 12'15"	950 952	
		240'00"	799 795					16'00"	952 954	
		480'00"	793 792					25'00"	954	
2016-02-02	15:45	1440'00"	790					36'00"	961	
2016-02-03	15:45	2880'00"	788					49'00"	961	
2016-02-04	15:45	4320'00"	785	0,00				64'00"	963	
2016-02-04	17:00		868	0,50				81'00"	964	
						2016-02-05	09:30	100'00"	965	2,00
2016-02-05	07:50		898	0,10		2016-02-05	10:10	140'00''	967	2,00
P ₁ = Masa del re	ecipiente mas r	nuestra húmeda		P ₂ = Masa del re	cipiente mas mue	stra seca		P ₃ = Masa del r	ecipiente	

HGCS REVISÓ Y APROBÓ

ING. JOHN O. ORDUZ GÓMEZ

SUB DIRECTOR TÉCNICO

LOS RESIDENCIA COS RESIDENCIA CON RESIDENCIA RESIDE

MÉTODO PARA MEDIR EL POTENCIAL DE ASENTAMIENTO O EXPANSIÓN **UNIDIMENSIONAL DE SUELOS COHESIVOS** INV E - 173-07

ACREDITADO ISO/IEC 17025:2005 10-LAB-040

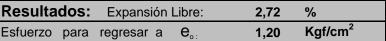
Referencia SYP-PT-DT-I171-07/15

PROYECTO:	SENA (COMPLEJO PALOQUEMAO) AV CRA 30 N° 15 - 53	FECHA ENSAYO:	2016-02-01
CLIENTE:	TECNICAS COLOMBIANAS DE INGENIERIA S.A.S	ORDEN DE TRABAJO No.	7461
DIR CLIENTE:	CALLE 53 A No 28-67 OFC 101	INFORME DE ENSAYO No.	7461-145
CÓDIGO:	1145		

SONDEO:		4	MUESTRA:		1		PROFUND	IDAD (m):	0,60 - 1,20	
DESCRIPCI	ÓN:	Arcilla algo a	renosa de coloi	gris, con oxid	aciones. Estruc	tura homogéne	ea, de plastic	idad baja, húr	meda.	
OBSERVAC	IONES:	Bajo un es	sfuerzo de	1,20 Kg/cm	2 se contro	ló a expans	sión.			
FECHA	TIEMPO	INTERVALO	LECTURA	CARGA EN		FECHA	TIEMPO	INTERVALO	LECTURA	CARGA EN
		DE TIEMPO	DEFORMÍMETRO	BRAZO	_			DE TIEMPO	DEFORMÍMETRO	BRAZO
	(Hora- min)	min - s.	*10^-4 plg	kg	-		(Hora- min)	min - s.	*10^-4 plg	kg
2016-02-05	10:10	0	967	2,75						
		4"	978							
		15"	982							
		34"	985							
		1'00"	988							
		1'34"	990							
		2'15"	992							
		3'04"	993							
		4'00"	994							
		6'15"	996							
		9'00"	998							
		12'15"	1000							
		16'00"	1004							
		25'00"	1006							
		36'00"	1007							
		49'00"	1008							
		64'00"	1009							
		81'00"	1009							
		100'00"	1010							
2016-02-05	15:00	290'00"	1012	2,75						
		LECTURA	CARGA EN	ESFUERZO	ALTURA	RELACIÓN	DH/H			
		DEFORMACIÓN	BRAZO			DE VACÍOS				
		*10 plg	Kg	Kgf/cm ²	cm	е	%			
		1000	0,00	0,015	2,008	0,923	0,00			
		1003	0,10	0,055	2,007	0,922	0,04			
		1000	0,00	0,015	2,008	0,923	0,00			
		785	0,00	0,015	2,063	0,975	-2,72			
		868	0,50	0,214	2,042	0,955	-1,67			
		898	1,00	0,413	2,034	0,947	-1,29			
		967	2,00	0,811	2,016	0,931	-0,42			
		1012	2,75	1,109	2,005	0,920	0,15			

HGCS REVISÓ Y APROBÓ

> ING. JOHN O. ORDUZ GÓMEZ SUB DIRECTOR TÉCNICO


MÉTODO PARA MEDIR EL POTENCIAL DE ASENTAMIENTO O EXPANSIÓN UNIDIMENSIONAL DE SUELOS COHESIVOS

INV E - 173-07

Referencia SYP-PT-DT-I171-07/15

FECHA ENSAYO: 2016-02-01 PROYECTO: SENA (COMPLEJO PALOQUEMAO) AV CRA 30 N° 15 - 53 7461 SONDEO: MUESTRA: ORDEN DE TRABAJO No. OBSERVACIONES: Bajo un esfuerzo de 1,20 Kg/cm2 se controló a expansión. INFORME DE ENSAYO No. 7461-145 GRAFICO ESFUERZO NORMAL VS RELACIÓN DE VACÍOS 0,980 0,975 0,970 0,965 0,960 (e) 0,955 O,955 0,950 占 0,945 RELACIÓN I 0,940 0,935 0,930 0,925 0,920 0,915 0,01 0,10 1,00 10,00 ESFUERZO (Kgf/cm²)

HGCS

REPORTE DE ENSAYO: INF7461-145-A5-S4-M1-EXPL Pagina 3 de 3

REVISÓ Y APROBÓ

ING. JOHN O. ORDUZ GÓMEZ

SUB DIRECTOR TÉCNICO

INFORME DE ENSAYO DETERMINACIÓN DE LAS PROPIEDADES DE CONSOLIDACIÓN UNIDIMENSIONAL DE LOS SUELOS COHESIVOS NTC 1967-00 Referencia SYP-PT-DT-1009-7/15

PROYECTO:		SENA (COMPLEJO PALOQUEMAO) - AV. CARRERA 30 # 15-53					5-53 FECHA DE ENSAYO: 2016-02-08			
CLIENTE:		TECNICAS C	COLOMBIAN	AS DE INGEN	IERIA S.A.S		ORDEN DE TRABAJO No. 7461			
DIR CLIENTE	:	CALLE 53 A	No 28-67 OF	C 101			INFORME DE ENSAYO No. 7461 - 319			
CÓDIGO:		1145								
EQUIPOS:		Balanza	No: 01			Но	rno No: HN	I-01		
SONDEO:		5		MUESTRA:	5		PROFU	NDIDAD(m):	3,00 - 3,50	
DESCRIPCIÓ	N:	Arcilla, gris	claro, con	tono negruzo	co, con oxida	ción.				
OBSERVACIO	ONES:	-								
Consolidación:	Rápida (B)	Х	E	nsayo realizado a:	Humedad natural		Т.	ipo de muestra:	Inalterada	X
	Lenta (A)				Saturado	X	-		Compactada	
Doble	ciclo de carga	-							Remoldeada	-
Banco número		4		Masa de la celda	+ muestra inicial	280,3	g	CON	TENIDO DE HUN	MEDAD
Celda número		13P		Masa de la celda	+ muestra final	272,5	g		INICIAL	FINAL
Diámetro de la m	nuestra	5,03	cm	Masa de la celda	- 1	208,0	g	Recipiente No	B48	75
Altura de la mue	stra	2,00	cm	Masa del bloque	+ piedra porosa	295,4	g	P ₁ (g)	249,40	81,00
Área de la mues	tra	19,83	cm ²	Masa unitaria tot		1,821 g/cm3	17,86 kN/m3		193,13	67,61
Volumen de la m	uestra	39,70	cm ³	Masa unitaria se	co	1,337 g/cm3		1	37,60	16,60
Relación de braz	o máquina	7,893		Gravedad espec	ífica	2,705 g/cm3		10,	36,2%	26,2%
	·			Grado de satura	ción inicial	95,7			,	,
				Grado de satura	ción final	99,9	Ī			
FECHA	TIEMPO	INTERVALO	LECTURA	CARGA EN		FECHA	TIEMPO	INTERVALO	LECTURA	CARGA EN
		DE TIEMPO	DEFORM.	BRAZO				DE TIEMPO	DEFORM.	BRAZO
		min - s	*10^-4 plg	kg				min - s	*10^-4 plg	kg
2016-02-08	12:00	0	0	0,0		2016-02-09	07:35		152	2,0
2016-02-08	14:30	8	0,5	0,5						_,-
				1,0		2016-02-09	07:35	0	152	4,0
								4"	224	
2046 02 08	14.20	0	0	1.0				15"	231	
2016-02-08	14:30	0 4"	8 23	1,0				34" 1'00"	238 245	
		15"	27					1'34"	251	
		34"	29					2'15"	257	
		1'00"	30					3'04"	263	
		1'34"	31					4'00"	268	
		2'15"	32					6'15"	279	
		3'04"	33					9'00"	288	
		4'00"	34					12'15"	295	
		6'15"	3 4 35					16'00"	302	
			35 36							
		9'00"						25'00"	313	
		12'15"	37,5					36'00"	320	
		16'00"	39					49'00"	325	
		25'00"	41					64'00"	329	
		36'00"	43					81'00"	331	
		49'00"	44					100'00"	332	
		64'00"	44,5			2016-02-09	10:35	180'00'	340	4,0
		81'00"	45							
		100'00"	45,5							
2016-02-08	18:30	240'00'	49	1,0						
P ₁ = Masa del re	ciniente más r	nuestra húmeda		Po = Masa del ro	cipiente más mues	stra seca		P ₃ = Masa del r	eciniente	
1 – Iviasa uti 1e	orbierite mas i	nucona numeta		ı 2 – ıvıdəd ütli le	orbierite illas illues	oud secd		ı 3 – ıvıdəd üÜl I	corbiering	

REVISÓ Y APROBÓ

ING. JOHN O. ORDUZ GÓMEZ

SUB DIRECTOR TÉCNICO

LOS RESULTADOS PRESENTADOS CORRESPONDEN ÚNICAMENTE A LA MUESTRA SOMETIDA A ENSAYO. EL LABORATORIO NO ES RESPONSABLE DEL PROCESO DE MUESTREO. ESTE INFORME NO PUEDE SER REPRODUCIDO EN SU TOTALIDAD NI PARCIALMENTE, SIN LA AUTORIZACIÓN ESCRITA DEL LABORATORIO QUE LO EMITE. ESTE INFORME NO ES VÁLIDO SIN LA FIRMA ORIGINAL DE QUIEN REVISÓ Y APROBÓ, Y EL SELLO.

DΖ

INFORME DE ENSAYO DETERMINACIÓN DE LAS PROPIEDADES DE CONSOLIDACIÓN UNIDIMENSIONAL DE LOS SUELOS COHESIVOS

NTC 1967-00 Referencia SYP-PT-DT-I009-6/14

PROYECTO: SENA (COMPLEJO PALOQUEMAO) - AV. CARRERA 30 # 15-53 FECHA DE ENSAYO: 2016-02-08 CLIENTE: TECNICAS COLOMBIANAS DE INGENIERIA S.A.S ORDEN DE TRABAJO No. DIR CLIENTE: CALLE 53 A No 28-67 OFC 101 INFORME DE ENSAYO No. 7461 - 319 CÓDIGO: 1145

SONDEO:	5	MUESTRA:	5	PROFUNDIDAD(m): 3,00 - 3,50			
DESCRIPCIÓN:	Arcilla, gris	Arcilla, gris claro, con tono negruzco, con oxidación.					
OBSERVACIONES:							

10:35	DE TIEMPO min - s 0 4"	DEFORM. *10^4 plg 340	BRAZO kg
10:35	0 4"	340	_
10:35	4"		
10:35	4"		
	-		8,0
	4.511	400	
	15"	412	
	34"	425	
	1'00"	434	
	1'34"	452	
	2'15"	464	
	3'04"	476	
	4'00"	489	
	6'15"	512	
	9'00"	533,5	
	12'15"	549	
	16'00"	564	
	25'00"	585	
	36'00"	599	
	49'00"	607	
	64'00"	613	
	81'00"	617	
	100'00"	620	
14:25	230'00"	630	8,0
	14:25	36'00" 49'00" 64'00" 81'00" 100'00"	36'00" 599 49'00" 607 64'00" 613 81'00" 617 100'00" 620

FECHA	TIEMPO	INTERVALO	LECTURA	CARGA EN
		DE TIEMPO	DEFORM.	BRAZO
		min - s	*10^-4 plg	kg
2016-01-09	14:25	0	630	16,0
		4"	685	
		15"	705	
		34"	721	
		1'00"	738	
		1'34"	758	
		2'15"	777	
		3'04"	797	
		4'00"	815	
		6'15"	850	
		9'00"	882	
		12'15"	909	
		16'00"	930	
		25'00"	958	
		36'00"	974	
		49'00"	986	
		64'00"	990	
		81'00"	996	
		100'00"	998	
2016-01-09	17:00	155'00"	1005	16,0
2016-01-09	22:05	460'00"	1465	32,0
2016-01-10	10:30		1427	16,0
2016-01-10	14:30		1361	8,0
2016-01-11	07:30		1276	4,0
2016-01-11	10:35		1215	2,0

LECTURA DEFORMACIÓN	CARGA EN BRAZO	ESFUERZO		ALTURA	RELACIÓN DE VACÍOS	ΔΗ/Η
*10 ⁻⁴ in	kg	kg/cm ²	kN/m ²	cm	е	%
0	0,00	0,015	1,46	2,002	1,023	0,00
8	0,50	0,214	20,98	2,000	1,021	0,10
49	1,00	0,413	40,49	1,990	1,010	0,62
152	2,00	0,811	79,52	1,963	0,984	1,93
340	4,00	1,607	157,58	1,916	0,936	4,31
630	8,00	3,199	313,70	1,842	0,861	7,99
1005	16,00	6,383	625,94	1,747	0,765	12,75
1465	32,00	12,751	1250,43	1,630	0,647	18,59
1427	16,00	6,383	625,94	1,640	0,657	18,10
1361	8,00	3,199	313,70	1,656	0,674	17,27
1276	4,00	1,607	157,58	1,678	0,695	16,19
1215	2,00	0,811	79,52	1,693	0,711	15,42

DΖ

REVISÓ Y APROBÓ

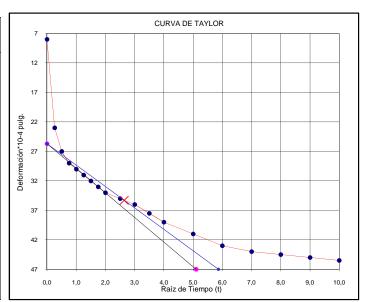
ING. JOHN O. ORDUZ GÓMEZ

SUB DIRECTOR TÉCNICO

PROCEDIMIENTO: SYP-PT-001

DETERMINACIÓN DE LAS PROPIEDADES DE CONSOLIDACIÓN UNIDIMENSIONAL DE LOS SUELOS COHESIVOS

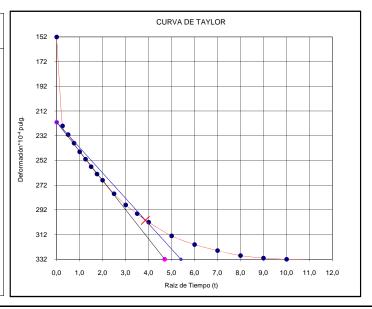
NTC 1967-00 Referencia SYP-PT-DT-I009-6/14



ACREDITADO ISO/IEC 17025:2005 10-LAB-040

PROYECTO:	SENA (COMPLEJO PALOQUEMAO) - AV. CARRERA 30 # 15-53	FECHA DE ENSAYO: NSOFOR!K6
CLIENTE:	TECNICAS COLOMBIANAS DE INGENIERIA S.A.S	ORDEN DE TRABAJO No. 7461
DIR CLIENTE:	CALLE 53 A No 28-67 OFC 101	INFORME DE ENSAYO No. 7461 - 319
CÓDIGO:	-CONSOFORICO	

3,00 - 3,50 m SONDEO: 5 MUESTRA: 5 PROFUNDIDAD: OBSERVACIONES:


CARGA 1 (0,50 - 1,00 kg	1)		
TIE	MPO	RAÍZ DE	LECT.	
		TIEMPO	DEFORM.	DEFORM.
minutos	segundos		*10E -4 plg	*10E -3 m
0	0	0,000	8	0,0203
0	4	0,258	23	0,0584
0	15	0,500	27	0,0686
0	34	0,753	29	0,0737
1	0	1,000	30	0,0762
1	34	1,252	31	0,0787
2	15	1,500	32	0,0813
3	4	1,751	33	0,0838
4	0	2,000	34	0,0864
6	15	2,500	35	0,0889
9	0	3,000	36	0,0914
12	15	3,500	37,5	0,0953
16	0	4,000	39	0,0991
25	0	5,000	41	0,1041
36	0	6,000	43	0,1092
49	0	7,000	44	0,1118
64	0	8,000	44,5	0,1130
81	0	9,000	45	0,1143
100	0	10,000	45,5	0,1156
200	0	14,142	49	0,1245

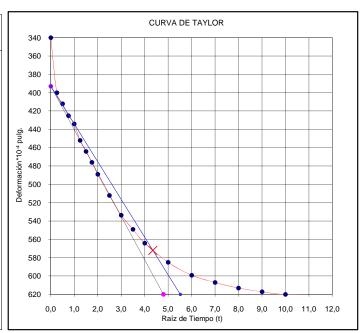
CARGA 2 (2,00 - 4,00 kg)

DΖ

07 11 (O7 (Z	2,00 +,00 Kg	1)		
TIE	MPO	RAÍZ DE	LECT.	
		TIEMPO	DEFORM.	DEFORM.
minutos	segundos		*10E -4 plg	*10E -3 m
0	0	0,000	152	0,3861
0	4	0,258	224	0,5690
0	15	0,500	231	0,5867
0	34	0,753	238	0,6045
1	0	1,000	245	0,6223
1	34	1,252	251	0,6375
2	15	1,500	257	0,6528
3	4	1,751	263	0,6680
4	0	2,000	268	0,6807
6	15	2,500	279	0,7087
9	0	3,000	288	0,7315
12	15	3,500	295	0,7493
16	0	4,000	302	0,7671
25	0	5,000	313	0,7950
36	0	6,000	320	0,8128
49	0	7,000	325	0,8255
64	0	8,000	329	0,8357
81	0	9,000	331	0,8407
100	0	10,000	332	0,8433
1440	0	37,947	340	0,8636

REVISÓ Y APROBÓ

ING. JOHN O. ORDUZ GÓMEZ SUB DIRECTOR TÉCNICO


PROCEDIMIENTO: SYP-PT-001 DETERMINACIÓN DE LAS PROPIEDADES DE CONSOLIDACIÓN UNIDIMENSIONAL DE LOS SUELOS COHESIVOS NTC 1967-00 Referencia SYP-PT-DT-I009-6/14

SENA (COMPLEJO PALOQUEMAO) - AV. CARRERA 30 # 15-53 FECHA ENSAYO: 2016-02-08 PROYECTO: CLIENTE: TECNICAS COLOMBIANAS DE INGENIERIA S.A.S ORDEN DE TRABAJO No. 7461 DIR CLIENTE: CALLE 53 A No 28-67 OFC 101 INFORME DE ENSAYO No. 7461 - 319 CÓDIGO: 1145


SONDEO:	5	MUESTRA:	5	PROFUNDIDAD:	3,00 - 3,50 m
OBSERVACIONES:	-				

CARGA 3 (4	4,00 - 8,00 kg	j)		
TIEN	MPO	RAÍZ DE	LECT.	
		TIEMPO	DEFORM.	DEFORM.
minutos	segundos		*10E -4 plg	*10E -3 m
0	0	0,000	340	0,8636
0	4	0,258	400	1,0160
0	15	0,500	412	1,0465
0	34	0,753	425	1,0795
1	0	1,000	434	1,1024
1	34	1,252	452	1,1481
2	15	1,500	464	1,1786
3	4	1,751	476	1,2090
4	0	2,000	489	1,2421
6	15	2,500	512	1,3005
9	0	3,000	533,5	1,3551
12	15	3,500	549	1,3945
16	0	4,000	564	1,4326
25	0	5,000	585	1,4859
36	0	6,000	599	1,5215
49	0	7,000	607	1,5418
64	0	8,000	613	1,5570
81	0	9,000	617	1,5672
100	0	10,000	620	1,5748
1439	0	37,934	630	1,6002

CARGA 4 (8,00 - 16,00 kg)

TIEMPO		RAIZ DE	LECT.		
		TIEMPO	DEFORM.	DEFORM.	
minutos	segundos		*10E -4 plg	*10E -3 m	
0	0	0,000	630,00	1,6002	
0	4	0,258	685,00	1,7399	
0	15	0,500	705,00	1,7907	
0	34	0,753	721,00	1,8313	
1	0	1,000	738,00	1,8745	
1	34	1,252	758,00	1,9253	
2	15	1,500	777,00	1,9736	
3	4	1,751	797,00	2,0244	
4	0	2,000	815,00	2,0701	
6	15	2,500	850,00	2,1590	
9	0	3,000	882,00	2,2403	
12	15	3,500	909,00	2,3089	
16	0	4,000	930,00	2,3622	
25	0	5,000	958,00	2,4333	
36	0	6,000	974,00	2,4740	
49	0	7,000	986,00	2,5044	
64	0	8,000	990,00	2,5146	
81	0	9,000	996,00	2,5298	
100	0	10,000	998,00	2,5349	
471	0	21,703	1005,00	2,5527	

REVISÓ Y APROBÓ

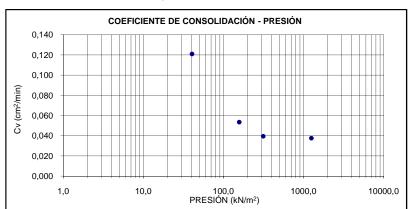
ING. JOHN O. ORDUZ GÓMEZ

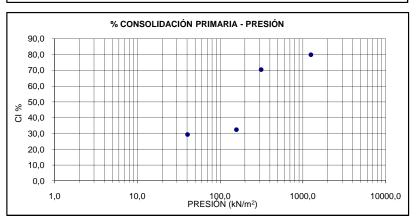
SUB DIRECTOR TÉCNICO

INF7461-319-A11-S5-M5-CONSR Pagina 4 de 6

DΖ

PROCEDIMIENTO: SYP-PT-001 DETERMINACIÓN DE LAS PROPIEDADES DE CONSOLIDACIÓN UNIDIMENSIONAL DE LOS SUELOS COHESIVOS NTC 1967-00 Referencia SYP-PT-DT-I009-6/14


PROYECTO: SENA (COMPLEJO PALOQUEMAO) - AV. CARRERA 30 # 15-53 FECHA ENSAYO: 2016-02-08 CLIENTE: TECNICAS COLOMBIANAS DE INGENIERIA S.A.S 7461 ORDEN DE TRABAJO No. DIR CLIENTE: CALLE 53 A No 28-67 OFC 101 INFORME DE ENSAYO No. 7461 - 319 CÓDIGO: 1145


SONDEO:	5	MUESTRA:	5	PROFUNDIDAD:	3,00 - 3,50 m	
OBSERVACIONES:	-					

INCREMENTO DE CARGA	ALTURA	PF	RESIÓN	Cv	CI
(kg)	(cm)	(kg/cm ²)	(kN/m ²)	(cm ² /min)	(%)
0,50 - 1,00	1,995	0,41	40,491	0,121	29,3
2,00 - 4,00	1,940	1,61	157,582	0,054	32,4
4,00 - 8,00	1,879	3,20	313,702	0,040	70,4
8,00 - 16,00	1,747	12,75	1250,427	0,038	79,8

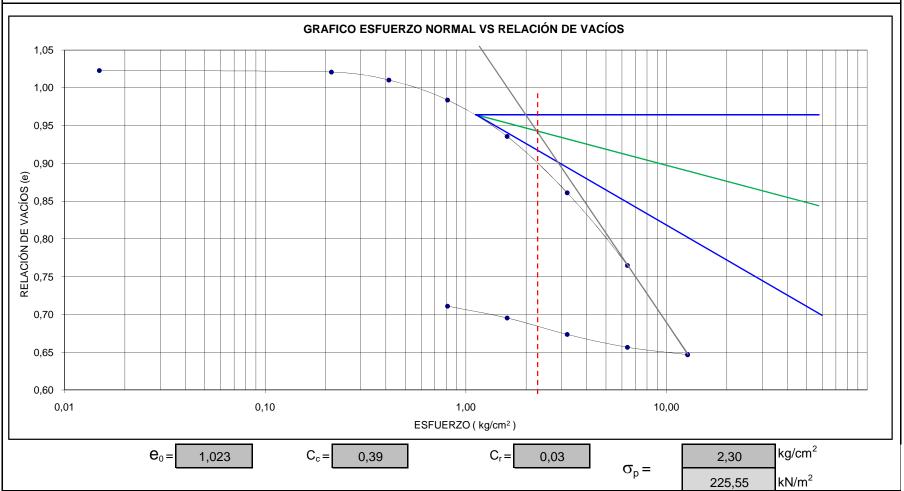
Cv: Coeficiente de consolidación (hallado conforme al numeral 12,3,2 de la norma NTC 1967-2000)

Rc: Relación de consolidación primaria

REVISÓ Y APROBÓ DΖ

ING. JOHN O. ORDUZ GÓMEZ

SUB DIRECTOR TÉCNICO



DETERMINACIÓN DE LAS PROPIEDADES DE CONSOLIDACIÓN UNIDIMENSIONAL DE LOS SUELOS COHESIVOS NTC 1967-00

Referencia SYP-PT-DT-I009-6/14

PROYECTO:	SENA (CC	OMPLEJO PALOQUEMAO) - AV. (CARRI	ERA 30 # 15-53	FECHA ENSAYO:	2016-02-08
SONDEO:	5	MUESTRA:	5	PROFUNDIDAD (m): 3,00 - 3,50	ORDEN DE TRABAJO No.	7461
OBSERVACIONES	: -				INFORME DE ENSAYO No.	7461 - 319

DZ REVISÓ Y APROBÓ

INF7461-319-A11-S5-M5-CONSR Pagina 6 de 6

ING. JOHN O. ORDUZ GÓMEZ

SUB DIRECTOR TÉCNICO

DETERMINACIÓN DE LAS PROPIEDADES DE CONSOLIDACIÓN UNIDIMENSIONAL DE LOS SUELOS COHESIVOS NTC 1967-00 ncia SYP-PT-DT-1009-7/15

			Referencia	TF-F1-D1-1009-7/15		ACREDITADO ISO/IEC 17025:2005 10-LAB-040
PROYECTO:	SENA (COMPLEJO PA	LOQUEMAO) - A	/. CARRERA 30	# 15-53 FECHA DE E	NSAYO:	2016-02-08
CLIENTE:	TECNICAS COLOMBIA	NAS DE INGENIE	RIA S.A.S	ORDEN DE T	RABAJO No.	7461
DIR CLIENTE:	CALLE 53 A No 28-67 (DFC 101		INFORME DE	ENSAYO No.	7461 - 320
CÓDIGO:	1145					
EQUIPOS:	Balanza No: 02			Horno No: HN-0	1	
SONDEO:	5	MUESTRA:	10	PROFUND	DIDAD(m) : 10.0	0 - 10.60

SONDEO:		5		MUESTRA:	10			NDIDAD(m):	10,00 - 10,	60
DESCRIPCIÓ	N:	Limo, color	gris, estru	ctura homog	énea, húmec	la, plasticida	ad alta.			
OBSERVACI	ONES:	-								
Consolidación:	Rápida (B)	X	Eı	nsayo realizado a:	Humedad natural	-	Т	ipo de muestra:	Inalterada	X
	Lenta (A)				Saturado	X			Compactada	
Doble	ciclo de carga								Remoldeada	
Banco número		2		Masa de la celda	+ muestra inicial	248,4	g	CONT	ENIDO DE HUN	MEDAD
Celda número		8P		Masa de la celda	+ muestra final	243,3	g		INICIAL	FINAL
Diámetro de la n	nuestra	5,03	cm	Masa de la celda		186,9		Recipiente No	B55	162
Altura de la mue	stra	2,00		Masa del bloque	+ piedra porosa	277,5		P ₁ (g)	299,10	72,75
Area de la mues		19,84		Masa unitaria tot		1,550 g/cm3			187,72	51,29
/olumen de la m		39,68		Masa unitaria se		0,893 g/cm3		P ₃ (g)	36,50	16,40
Relación de brazo máquina 7,775			Gravedad espec		2,635 g/cm3			73,7%	61,5%	
		- 1,110		Grado de satura		99,4			. 0,1 70	0 1,0 70
				Grado de satura		99,9				
FECHA	TIEMPO	INTERVALO	LECTURA	CARGA EN	Jon IIIai	FECHA	TIEMPO	INTERVALO	LECTURA	CARGA EI
		DE TIEMPO	DEFORM.	BRAZO				DE TIEMPO	DEFORM.	BRAZO
		min - s	*10^-4 plg	kg				min - s	*10^-4 plg	kg
2014-02-08	12:00		0	0,0		2016-02-09	07:40		455	1,0
2014-02-08	14:30		118	0,25		2010-02-03	07.40		433	1,0
				5,25						
0044.00.00	44.00		440	2.5		0044.00.00	07.40	0	455	0.0
2014-02-08	14:30	0 4"	118 124	0,5		2014-02-09	07:40	0 4"	455 508	2,0
		15"	125					15"	514	
		34"	127					34"	520	
		1'00"	129					1'00"	525	
		1'34"	131					1'34"	531	
		2'15"	133					2'15"	537	
		3'04"	135					3'04"	543	
		4'00"	137					4'00"	549	
		6'15"	141					6'15"	563	
		9'00"	145					9'00"	576	
		12'15"	149					12'15"	585	
		16'00"	153					16'00"	600	
		25'00"	161					25'00"	623	
		36'00"	169					36'00"	645	
		49'00"	177					49'00"	667	
		64'00"	185					64'00"	680	
		81'00"	193					81'00"	691	
2014-02-08	18:30	100'00" 240'00"	198 211	0,5		2014-02-09	10:40	100'00" 180'00''	700 720	2,0
		/40.00								

REVISÓ Y APROBÓ DΖ

ING. JOHN O. ORDUZ GÓMEZ

SUB DIRECTOR TÉCNICO

DETERMINACIÓN DE LAS PROPIEDADES DE CONSOLIDACIÓN UNIDIMENSIONAL DE LOS SUELOS COHESIVOS NTC 1967-00 Referencia SYP-PT-DT-I009-6/14

ACREDITADO ISO/IEC 17025:2005

			10-LAB-040
PROYECTO:	SENA (COMPLEJO PALOQUEMAO) - AV. CARRERA 30 # 15-53	FECHA ENSAYO:	2016-02-08
CLIENTE:	TECNICAS COLOMBIANAS DE INGENIERIA S.A.S	ORDEN DE TRABAJO No.	7461
DIR CLIENTE:	CALLE 53 A No 28-67 OFC 101	INFORME DE ENSAYO No.	7461 - 320
CÓDIGO:	1145		·

SONDEO:	5	MUESTRA:	10	PROFUNDIDAD(m): 10,00 - 10,60		
DESCRIPCIÓN:	Limo, color	Limo, color gris, estructura homogénea, húmeda, plasticidad alta.				
OBSERVACIONES:						

EN
EN
0

150'00"

1041

4,0

FECHA	TIEMPO	INTERVALO	LECTURA	CARGA EN
		DE TIEMPO	DEFORM.	BRAZO
		min - s	*10^-4 plg	kg
2014-02-09	17:00		1007	2,0
2014-02-09	22:03		946	1,0
2014-02-10	07:45		879	0,5
		1		

LECTURA DEFORMACIÓN	CARGA EN BRAZO	ESFU	ERZO	ALTURA	RELACIÓN DE VACÍOS	ΔΗ/Η
*10 ⁻⁴ in	kg	kg/cm ²	kN/m ²	cm	е	%
0	0,00	0,014	1,37	2,000	1,952	0,00
118	0,25	0,112	10,98	1,970	1,908	1,50
211	0,50	0,210	20,59	1,946	1,873	2,68
455	1,00	0,406	39,80	1,884	1,782	5,78
720	2,00	0,798	78,23	1,817	1,682	9,14
1041	4,00	1,582	155,10	1,736	1,562	13,22
1007	2,00	0,798	78,23	1,744	1,575	12,79
946	1,00	0,406	39,80	1,760	1,598	12,01
879	0,50	0,210	20,59	1,777	1,623	11,16

DΖ

2014-02-09

13:10

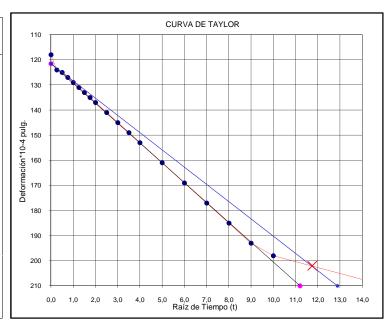
REVISÓ Y APROBÓ

ING. JOHN O. ORDUZ GÓMEZ

SUB DIRECTOR TÉCNICO

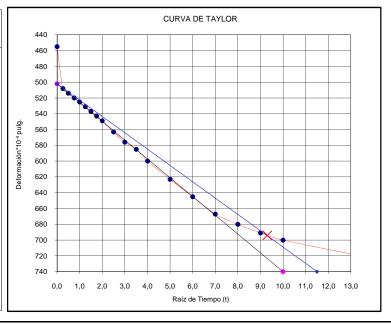
DETERMINACIÓN DE LAS PROPIEDADES DE CONSOLIDACIÓN UNIDIMENSIONAL DE LOS SUELOS COHESIVOS NTC 1967-00

ONAC


Referencia SYP-PT-DT-I009-6/14

ACREDITADO ISO/IEC 17025:2005

PROYECTO:SENA (COMPLEJO PALOQUEMAO) - AV. CARRERA 30 # 15-53FECHA ENSAYO:2016-02-08CLIENTE:TECNICAS COLOMBIANAS DE INGENIERIA S.A.SORDEN DE TRABAJO No.7461DIR CLIENTE:CALLE 53 A No 28-67 OFC 101INFORME DE ENSAYO No.7461 - 320CÓDIGO:1145


CARGA 1 (0,25 - 0,50 kg)						
TIEN	MPO	RAÍZ DE	LECT.			
			DEFORM.	DEFORM.		
minutos	segundos		*10E -4 plg	*10E -3 m		
0	0	0,000	118	0,2997		
0	4	0,258	124	0,3150		
0	15	0,500	125	0,3175		
0	34	0,753	127	0,3226		
1	0	1,000	129	0,3277		
1	34	1,252	131	0,3327		
2	15	1,500	133	0,3378		
3	4	1,751	135	0,3429		
4	0	2,000	137	0,3480		
6	15	2,500	141	0,3581		
9	0	3,000	145	0,3683		
12	15	3,500	149	0,3785		
16	0	4,000	153	0,3886		
25	0	5,000	161	0,4089		
36	0	6,000	169	0,4293		
49	0	7,000	177	0,4496		
64	0	8,000	185	0,4699		
81	0	9,000	193	0,4902		
100	0	10,000	198	0,5029		
240	0	15,492	211	0,5359		

CARGA 2 (1,00 - 2,00 kg)

DΖ

TIEN	MPO	RAÍZ DE	LECT.	
		TIEMPO	DEFORM.	DEFORM.
minutos	segundos	*10E -4 plg		*10E -3 m
0	0	0,000	455	1,1557
0	4	0,258	508	1,2903
0	15	0,500	514	1,3056
0	34	0,753	520	1,3208
1	0	1,000	525	1,3335
1	34	1,252	531	1,3487
2	15	1,500	537	1,3640
3	4	1,751	543	1,3792
4	0	0 2,000 549		1,3945
6	15	2,500	563	1,4300
9	0	3,000	576	1,4630
12	15	3,500	585	1,4859
16	0	4,000	600	1,5240
25	0	5,000	623	1,5824
36	0	6,000	645	1,6383
49	0	7,000	667	1,6942
64	0	8,000	680	1,7272
81	0	9,000	691	1,7551
100	0	10,000	700	1,7780
180	0	13,416	720	1,8288

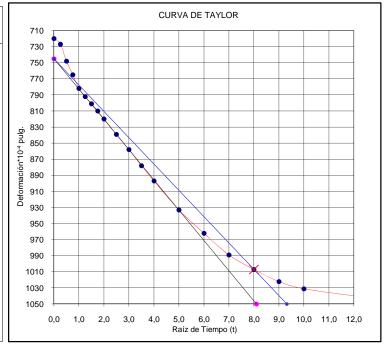
REVISÓ Y APROBÓ

ING. JOHN O. ORDUZ GÓMEZ

SUB DIRECTOR TÉCNICO

LOS RESULTADOS PRESENTADOS CORRESPONDEN ÚNICAMENTE A LA MUESTRA SOMETIDA A ENSAYO. EL LABORATORIO NO ES RESPONSABLE DEL PROCESO DE MUESTREO. ESTE INFORME NO PUEDE SER REPRODI**NDES EN LA FIRMA ORIGINAL DE QUIEN REVISÓ Y APROBÓ, Y EL SELLO.**

DETERMINACIÓN DE LAS PROPIEDADES DE CONSOLIDACIÓN UNIDIMENSIONAL DE LOS SUELOS COHESIVOS NTC 1967-00 Referencia SYP-PT-DT-I009-6/14



ACREDITADO ISO/IEC 17025:2005

PROYECTO:	SENA (COMPLEJO PALOQUEMAO) - AV. CARRERA 30 # 15-53	FECHA ENSAYO:	2016-02-08
CLIENTE:	TECNICAS COLOMBIANAS DE INGENIERIA S.A.S	ORDEN DE TRABAJO No.	7461
DIR CLIENTE:	CALLE 53 A No 28-67 OFC 101	INFORME DE ENSAYO No.	7461 - 320
CÓDIGO:	1145		

10 **10,00 - 10,60** m SONDEO: 5 MUESTRA: PROFUNDIDAD: OBSERVACIONES:

CARGA 3 (2,00 - 4,00 kg)						
TIE	MPO	RAÍZ DE	LECT.			
		TIEMPO	DEFORM.	DEFORM.		
minutos	segundos		*10E -4 plg	*10E -3 m		
0	0	0,000	720	1,8288		
0	4	0,258	727	1,8466		
0	15	0,500	748	1,8999		
0	34	0,753	765	1,9431		
1	0	1,000	782	1,9863		
1	34	1,252	792	2,0117		
2	15	1,500	801	2,0345		
3	4	1,751	810	2,0574		
4	0	2,000	820	2,0828		
6	15	2,500	839	2,1311		
9	0	3,000	858	2,1793		
12	15	3,500	878	2,2301		
16	0	4,000	897	2,2784		
25	0	5,000	933	2,3698		
36	0	6,000	962	2,4435		
49	0	7,000	989	2,5121		
64	0	8,000	1007	2,5578		
81	0	9,000	1022	2,5959		
100	0	10,000	1031	2,6187		
150	0	12.247	1041	2.6441		

REVISÓ Y APROBÓ

DΖ

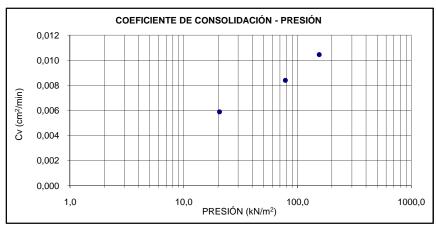
ING. JOHN O. ORDUZ GÓMEZ

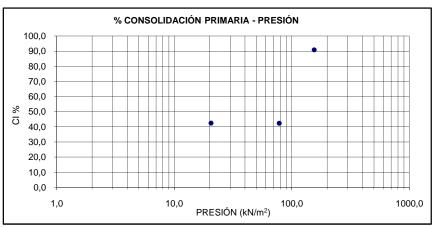
SUB DIRECTOR TÉCNICO

DETERMINACIÓN DE LAS PROPIEDADES DE CONSOLIDACIÓN UNIDIMENSIONAL DE LOS SUELOS COHESIVOS NTC 1967-00

Referencia SYP-PT-DT-I009-6/14

ACREDITADO ISO/IEC 17025:2005 10-LAB-040


PROYECTO:	SENA (COMPLEJO PALOQUEMAO) - AV. CARRERA 30 # 15-53	FECHA ENSAYO:	2016-02-08
CLIENTE:	TECNICAS COLOMBIANAS DE INGENIERIA S.A.S	ORDEN DE TRABAJO No.	7461
DIR CLIENTE:	CALLE 53 A No 28-67 OFC 101	INFORME DE ENSAYO No.	7461 - 320
CÓDIGO:	1145		


SONDEO:	5	MUESTRA:	10	PROFUNDIDAD:	10,00 - 10,60 m
OBSERVACIONES:	-				

INCREMENTO DE CARGA	ALTURA	PRESIÓN		Cv	CI
(kg)	(cm)	(kg/cm ²)	(kN/m ²)	(cm ² /min)	(%)
0,25 - 0,50	1,958	0,21	20,587	0,006	42,4
1,00 - 2,00	1,851	0,80	78,234	0,008	42,3
2,00 - 4,00	1,776	1,58	155,097	0,010	90,8

Cv: Coeficiente de consolidación (hallado conforme al numeral 12,3,2 de la norma NTC 1967-2000)

Rc: Relación de consolidación primaria

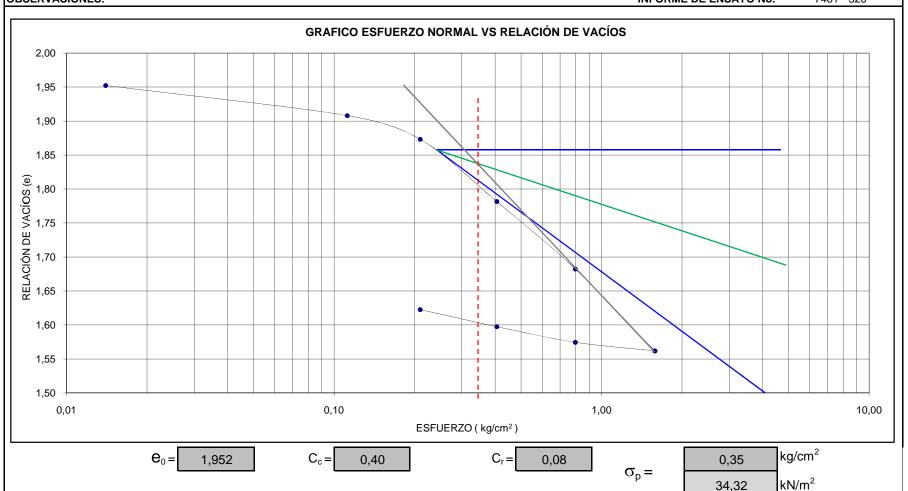
REVISÓ Y APROBÓ

DΖ

ING. JOHN O. ORDUZ GÓMEZ

SUB DIRECTOR TÉCNICO

LOS RESULTADOS PRESENTADOS CORRESPONDEN ÚNICAMENTE A LA MUESTRA SOMETIDA A ENSAYO. EL LABORATORIO NO ES RESPONSABLE DEL PROCESO DE MUESTREO. ESTE INFORME NO PUEDE SER REPRODU<mark>NDES ESTADOS ANTOCIONES E ESTADOS ANTOCIONES E </mark>



DETERMINACIÓN DE LAS PROPIEDADES DE CONSOLIDACIÓN UNIDIMENSIONAL DE LOS SUELOS COHESIVOS NTC 1967-00

ACREDITADO ISO/IEC 17025:2005

Referencia SYP-PT-DT-I009-6/14

PROYECTO: SENA (COMPLEJO PALOQUEMAO) - AV. CARRERA 30 # 15-53 FECHA ENSAYO:				2016-02-08		
SONDEO:	5	MUESTRA:	10	PROFUNDIDAD (m): 10,00 - 10,60	ORDEN DE TRABAJO No.	7461
OBSERVACIONES	: -				INFORME DE ENSAYO No.	7461 - 320

DZ REVISÓ Y APROBÓ

INF7461-320-A11-S5-M10-CONSR Pagina 6 de 6

ING. JOHN O. ORDUZ GÓMEZ

SUB DIRECTOR TÉCNICO

P₁ = Masa del recipiente más muestra húmeda

DΖ

INFORME DE ENSAYO

DETERMINACIÓN DE LAS PROPIEDADES DE CONSOLIDACIÓN UNIDIMENSIONAL DE LOS SUELOS COHESIVOS NTC 1967-00 Referencia SYP-PT-DT-I009-7/15

ACREDITADO ISO/IEC 17025:2005

PROYECTO:		SENA (COM	IPLEJO PAL	OQUEMAO) - A	AV. CARRERA	30 # 15-53	FECHA DE	ENSAYO:	•	2016-02-09
CLIENTE:		TECNICAS COLOMBIANAS DE INGENIERIA S.A.S			ORDEN DE TRABAJO No.			7461		
DIR CLIENTI	E:	CALLE 53 A	No 28-67 OI	FC 101			INFORME	DE ENSAYO	No.	7461 - 321
CÓDIGO:		1145								
EQUIPOS:		Balanza	No: 02			Но	rno No: HN	I-01		
SONDEO:		6		MUESTRA:	8			NDIDAD(m):	8,60 - 9,30)
DESCRIPCIÓ	ĎΝ:	Arcilla aren	nosa, color	gris, estructu	ra homogén	ea, húmeda	l.			
OBSERVACI	ONES:	•								
Consolidación:	Rápida (B)	X	-	insayo realizado a:	Llumodod notural	X	7	ipo de muestra:	Inaltorada	X
Consolidación.	Lenta (A)			ilisayo realizado a.	•		· '	ipo de muestra.		^
Doble	ciclo de carga				Saturado	<u> </u>			Compactada Remoldeada	
Banco número		1		Masa de la celda	+ muestra inicial	283,6	a	CON.	TENIDO DE HU	MEDAD
Celda número		 3P		Masa de la celda		281,5		2311	INICIAL	FINAL
Diámetro de la n	nuestra	5,03	cm	Masa de la celda		206,3	•	Recipiente No	500	126
Altura de la mue		2,00	•	Masa del bloque	•	240,0	•	P ₁ (g)	267,10	92,02
Área de la mues		19,87	•	Masa unitaria tot		1,945 g/cm3			219,44	78,12
Volumen de la m		39,74		Masa unitaria se		1,538 g/cm3		1	39,60	16,90
Relación de braz		7,706		Gravedad espec		2,715 g/cm3			26,5%	22,7%
Troidolott do braz	zo maqama	1,100	:	Grado de satura		94,0		Tumbudu	20,070	22,: 70
				Grado de saturad		99,9	·			
FECHA	TIEMPO	INTERVALO	LECTURA	CARGA EN	Jon Illiai	FECHA	TIEMPO	INTERVALO	LECTURA	CARGA EN
		DE TIEMPO	DEFORM.	BRAZO				DE TIEMPO	DEFORM.	BRAZO
		min - s	*10^-4 plg	kg				min - s	*10^-4 plg	kg
2014-02-09	08:00	0	0	0,0						
2014-02-09	10:30	61	0,5	0,25						
0044.00.00	10.00		0.4	4.0		0044.00.00	44.05		407	0.0
2014-02-09	10:30	0 4"	61 73	1,0		2014-02-09	14:25	0 4"	127 142	2,0
		15"	75 75					15"	147	
		34"	76					34"	153	
		1'00"	78					1'00"	156,5	
		1'34"	80					1'34"	160	
		2'15"	83					2'15"	165	
		3'04"	85					3'04"	170	
		4'00"	87					4'00"	174	
		6'15"	91					6'15"	182	
		9'00"	97					9'00"	190	
		12'15"	101					12'15"	198	
		16'00" 25'00"	105 111					16'00" 25'00"	206	
		36'00"	111 115					36'00"	216 222	
		49'00"	115					49'00"	227	
		64'00"	121					64'00"	231	
		81'00"	123					81'00"	238	
		100'00"	124					100'00"	244	
2014-02-09	14:25	235'00"	127	1,0		2014-02-09	17:00	155'00"	247	2,0
						2014-02-09	22:05		400	4,0

REVISÓ Y APROBÓ

ING. JOHN O. ORDUZ GÓMEZ

SUB DIRECTOR TÉCNICO

P₃ = Masa del recipiente

LOS RESULTADOS PRESENTADOS CORRESPONDEN ÚNICAMENTE A LA MUESTRA SOMETIDA A ENSAYO. EL LABORATORIO NO ES RESPONSABLE DEL PROCESO DE MUESTREO. ESTE INFORME NO PUEDE SER REPR**ÚNIFITAS EN MAS EN**

P₂ = Masa del recipiente más muestra seca

DETERMINACIÓN DE LAS PROPIEDADES DE CONSOLIDACIÓN UNIDIMENSIONAL DE LOS SUELOS COHESIVOS NTC 1967-00 Referencia SYP-PT-DT-I009-6/14

			10-LAB-040
PROYECTO:	SENA (COMPLEJO PALOQUEMAO) - AV. CARRERA 30 # 15-53	FECHA ENSAYO:	2016-02-09
CLIENTE:	TECNICAS COLOMBIANAS DE INGENIERIA S.A.S	ORDEN DE TRABAJO No.	7461
DIR CLIENTE:	CALLE 53 A No 28-67 OFC 101	INFORME DE ENSAYO No.	7461 - 321
CÓDIGO:	1145		

SONDEO:	6	MUESTRA:	8	PROFUNDIDAD(m): 8,60 - 9,30		
DESCRIPCIÓN:	Arcilla arenosa, color gris, estructura homogénea, húmeda.					
OBSED//ACIONES:						

FECHA	TIEMPO	INTERVALO	LECTURA	CARGA EN
		DE TIEMPO	DEFORM.	BRAZO
		min - s	*10^-4 plg	kg
2014-02-10	07:30		618	8,0
2014-02-10	07:30	0	618	16,0
		4"	638	
		15"	652	
		34"	665	
		1'00"	680	
		1'34"	695	
		2'15"	708	
		3'04"	724	
		4'00"	736	
		6'15"	761	
		9'00"	784	
		12'15"	802	
		16'00"	817	
		25'00"	830	
		36'00"	837	
		49'00"	842	
		64'00"	847	
		81'00"	849	
		100'00"	851	
2014-02-10	10:30	180'00"	854	16,0
		1		1

FECHA	TIEMPO	INTERVALO	LECTURA	CARGA EN
		DE TIEMPO	DEFORM.	BRAZO
		min - s	*10^-4 plg	kg
2014-02-10	14:30		828	8,0
2014-02-10	17:30		780	4,0
2014-02-11	07:30		717	2,0
2014-02-11	10:35		662	1,0

LECTURA DEFORMACIÓN	CARGA EN BRAZO	ESFUERZO		ALTURA	RELACIÓN DE VACÍOS	ΔΗ/Η
*10 ⁻⁴ in	kg	kg/cm ²	kN/m ²	cm	е	%
0	0,00	0,012	1,18	2,000	0,766	0,00
61	0,50	0,206	20,20	1,985	0,752	0,77
127	1,00	0,400	39,21	1,968	0,737	1,61
247	2,00	0,788	77,24	1,937	0,710	3,14
400	4,00	1,563	153,30	1,898	0,676	5,08
618	8,00	3,114	305,42	1,843	0,627	7,85
854	16,00	6,217	609,66	1,783	0,574	10,85
828	8,00	3,114	305,42	1,790	0,580	10,52
780	4,00	1,563	153,30	1,802	0,591	9,91
717	2,00	0,788	77,24	1,818	0,605	9,11
662	1,00	0,400	39,21	1,832	0,617	8,41

DΖ

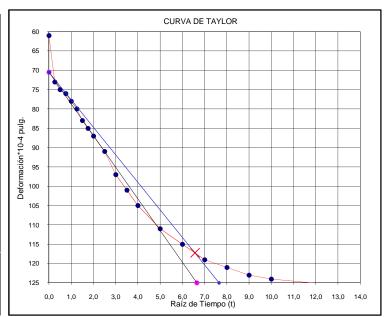
REVISÓ Y APROBÓ

ING. JOHN O. ORDUZ GÓMEZ

SUB DIRECTOR TÉCNICO

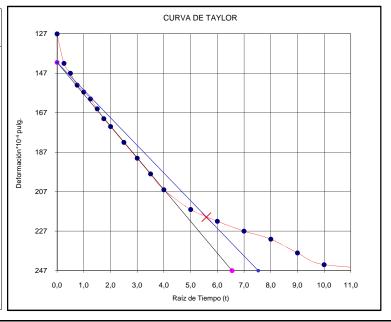
LOS RESULTADOS PRESENTADOS CORRESPONDEN ÚNICAMENTE A LA MUESTRA SOMETIDA A ENSAYO. EL LABORATORIO NO ES RESPONSABLE DEL PROCESO DE MUESTREO. ESTE INFORME NO PUEDE SER REPR**ONIGRAS FINSENTALISCIMIS COSNISIA ENTE**RIA LA QUIEN APROBÓ Y REVISÓ, Y EL SELLO.

PROCEDIMIENTO: SYP-PT-001 **DETERMINACIÓN DE LAS PROPIEDADES DE CONSOLIDACIÓN** UNIDIMENSIONAL DE LOS SUELOS COHESIVOS NTC 1967-00


Referencia SYP-PT-DT-I009-6/14

		ACREDITADO ISO/IEC 17025:2005 10-LAB-040
V. CARRERA 30 # 15-53	FECHA ENSAYO:	2016-02-09
RIA S.A.S	ORDEN DE TRABAJO No.	7461
		7404 004

PROYECTO:	SENA (COMPLEJO PALOQUEMAO) - AV. CARRERA 30 # 15-53	FECHA ENSAYO:	2016-02-09
CLIENTE:	TECNICAS COLOMBIANAS DE INGENIERIA S.A.S	ORDEN DE TRABAJO No.	7461
DIR CLIENTE:	CALLE 53 A No 28-67 OFC 101	INFORME DE ENSAYO No.	7461 - 321
CÓDIGO:	1145		


SONDEO: 6 MUESTRA: 8 PROFUNDIDAD: **8,60 - 9,30** m OBSERVACIONES:

CARGA 1 (0,50 - 1,00 kg)					
TIEN	MPO	RAÍZ DE	LECT.		
		TIEMPO	DEFORM.	DEFORM.	
minutos	segundos		*10E -4 plg	*10E -3 m	
0	0	0,000	61	0,1549	
0	4	0,258	73	0,1854	
0	15	0,500	75	0,1905	
0	34	0,753	76	0,1930	
1	0	1,000	78	0,1981	
1	34	1,252	80	0,2032	
2	15	1,500	83	0,2108	
3	4	1,751	85	0,2159	
4	0	2,000	87	0,2210	
6	15	2,500	91	0,2311	
9	0	3,000	97	0,2464	
12	15	3,500	101	0,2565	
16	0	4,000	105	0,2667	
25	0	5,000	111	0,2819	
36	0	6,000	115	0,2921	
49	0	7,000	119	0,3023	
64	0	8,000	121	0,3073	
81	0	9,000	123	0,3124	
100	0	10,000	124	0,3150	
240	0	15,492	127	0,3226	

CARGA 2 (1,00 - 2,00 kg)

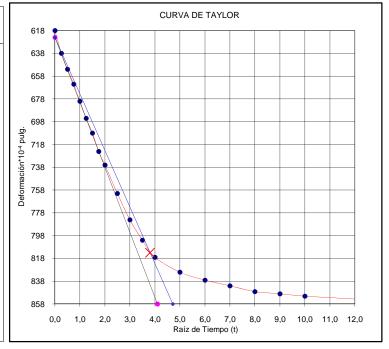
TIEMPO		RAÍZ DE	LECT.	
		TIEMPO	DEFORM.	DEFORM.
minutos	segundos		*10E -4 plg	*10E -3 m
0	0	0,000	127	0,3226
0	4	0,258	142	0,3607
0	15	0,500	147	0,3734
0	34	0,753	153	0,3886
1	0	1,000	156,5	0,3975
1	34	1,252	160	0,4064
2	15	1,500	165	0,4191
3	4	1,751	170	0,4318
4	0	2,000	174	0,4420
6	15	2,500	182	0,4623
9	0	3,000	190	0,4826
12	15	3,500	198	0,5029
16	0	4,000	206	0,5232
25	0	5,000	216	0,5486
36	0	6,000	222	0,5639
49	0	7,000	227	0,5766
64	0	8,000	231	0,5867
81	0	9,000	238	0,6045
100	0	10,000	244	0,6198
180	0	13,416	247	0,6274

REVISÓ Y APROBÓ DΖ

ING. JOHN O. ORDUZ GÓMEZ

SUB DIRECTOR TÉCNICO

DETERMINACIÓN DE LAS PROPIEDADES DE CONSOLIDACIÓN UNIDIMENSIONAL DE LOS SUELOS COHESIVOS NTC 1967-00 Referencia SYP-PT-DT-I009-6/14



ACREDITADO ISO/IEC 17025:2005 10-LAB-040

PROYECTO:	SENA (COMPLEJO PALOQUEMAO) - AV. CARRERA 30 # 15-53	FECHA ENSAYO:	2016-02-09
CLIENTE:	TECNICAS COLOMBIANAS DE INGENIERIA S.A.S	ORDEN DE TRABAJO No.	7461
DIR CLIENTE:	CALLE 53 A No 28-67 OFC 101	INFORME DE ENSAYO No.	7461 - 321
CÓDIGO:	1145		

8 **8,60 - 9,30** m SONDEO: 6 MUESTRA: PROFUNDIDAD: OBSERVACIONES:

CARGA 3 (8	3,00 - 16,00 k	(g)		
TIEMPO		RAÍZ DE TIEMPO	LECT.	
			DEFORM.	DEFORM.
minutos	segundos		*10E -4 plg	*10E -3 m
0	0	0,000	618	1,5697
0	4	0,258	638	1,6205
0	15	0,500	652	1,6561
0	34	0,753	665	1,6891
1	0	1,000	680	1,7272
1	34	1,252	695	1,7653
2	15	1,500	708	1,7983
3	4	1,751	724	1,8390
4	0	2,000	736	1,8694
6	15	2,500	761	1,9329
9	0	3,000	784	1,9914
12	15	3,500	802	2,0371
16	0	4,000	817	2,0752
25	0	5,000	830	2,1082
36	0	6,000	837	2,1260
49	0	7,000	842	2,1387
64	0	8,000	847	2,1514
81	0	9,000	849	2,1565
100	0	10,000	851	2,1615
150	0	12,247	854	2,1692

REVISÓ Y APROBÓ

DΖ

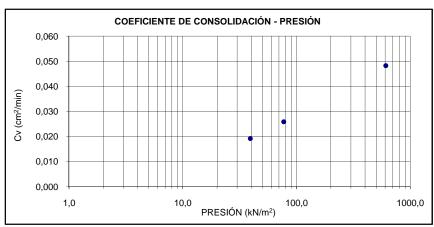
ING. JOHN O. ORDUZ GÓMEZ

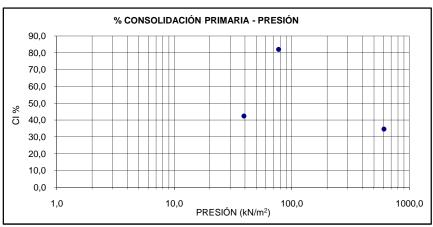
SUB DIRECTOR TÉCNICO

DETERMINACIÓN DE LAS PROPIEDADES DE CONSOLIDACIÓN UNIDIMENSIONAL DE LOS SUELOS COHESIVOS NTC 1967-00

Referencia SYP-PT-DT-I009-6/14

ACREDITADO ISO/IEC 17025:2005 10-LAB-040


PROYECTO:	SENA (COMPLEJO PALOQUEMAO) - AV. CARRERA 30 # 15-53	FECHA ENSAYO:	2016-02-09
CLIENTE:	TECNICAS COLOMBIANAS DE INGENIERIA S.A.S	ORDEN DE TRABAJO No.	7461
DIR CLIENTE:	CALLE 53 A No 28-67 OFC 101	INFORME DE ENSAYO No.	7461 - 321
CÓDIGO:	1145		


SONDEO:	6	MUESTRA:	8	PROFUNDIDAD:	8,60 - 9,30 m
OBSERVACIONES:	-				

INCREMENTO DE CARGA	ALTURA	PR	PRESIÓN		CI
(kg)	(cm)	(kg/cm ²)	(kN/m^2)	(cm ² /min)	(%)
0,50 - 1,00	1,976	0,40	39,214	0,019	42,4
1,00 - 2,00	1,953	0,79	77,244	0,026	82,0
8,00 - 16,00	1,813	6,22	609,661	0,048	34,7

Cv: Coeficiente de consolidación (hallado conforme al numeral 12,3,2 de la norma NTC 1967-2000)

Rc: Relación de consolidación primaria

DZ REVISÓ Y APROBÓ

ING. JOHN O. ORDUZ GÓMEZ

SUB DIRECTOR TÉCNICO

LOS RESULTADOS PRESENTADOS CORRESPONDEN ÚNICAMENTE A LA MUESTRA SOMETIDA A ENSAYO. EL LABORATORIO NO ES RESPONSABLE DEL PROCESO DE MUESTREO. ESTE INFORME NO PUEDE SER REPRODU<mark>NDES ENTRAS DE MESTA SONETA SONETA DE L</mark>ABORATORIO QUE LO EMITE. ESTE INFORME NO ES VÁLIDO SIN LA FIRMA ORIGINAL DE QUIEN REVISÓ Y APROBÓ, Y EL SELLO.

DETERMINACIÓN DE LAS PROPIEDADES DE CONSOLIDACIÓN UNIDIMENSIONAL DE LOS SUELOS COHESIVOS NTC 1967-00

Referencia SYP-PT-DT-I009-6/14

DZ REVISÓ Y APROBÓ

INF7461-321-A11-S6-M8-CONSR Pagina 6 de 6

ING. JOHN O. ORDUZ GÓMEZ

SUB DIRECTOR TÉCNICO

INFORME DE ENSAYO DETERMINACIÓN DE LAS PROPIEDADES DE CONSOLIDACIÓN UNIDIMENSIONAL DE LOS SUELOS COHESIVOS NTC 1967-00 Referencia SYP-PT-DT-1009-7/15

PROYECTO:	O: SENA (COMPLEJO PALC			QUEMAO) - AV. CARRERA 30 # 15-53			FECHA DE ENSAYO: 2016-02-11			
CLIENTE:		TECNICAS C	COLOMBIAN	AS DE INGENI				ORDEN DE TRABAJO No. 7461		
DIR CLIENTE							IN	NFORME DE	ENSAYO No.	7461 - 415
CÓDIGO:		1145								
EQUIPOS: Balanza No: 02 Horno No: HN-01										
SONDEO:		11		MUESTRA:	7		PROFU	NDIDAD(m):	8,15 - 8,75	
DESCRIPCIÓ	N:	Arcilla, colo	or gris, estr	uctura homog	génea, húme	da, plasticio	dad alta, c	onsistencia	blanda.	
OBSERVACI	ONES:	-				-				
Consolidación:	Rápida (B)	Х	E	nsayo realizado a:	Humedad natural	Х	Т	ipo de muestra:	Inalterada	X
	Lenta (A)	-			Saturado	-			Compactada	-
Doble	ciclo de carga	-			-		-		Remoldeada	-
Banco número		2	•	Masa de la celda	+ muestra inicial	268,2	a	CON	TENIDO DE HUN	MEDAD
Celda número				Masa de la celda	-	262,9		30.11	INICIAL	FINAL
Diámetro de la n	nuestra	5,03	cm	Masa de la celda	-	203,3		Recipiente No	11	176
Altura de la mue		2,00		Masa del bloque	-	289,4	• -	P ₁ (g)	174,33	77,23
Área de la mues		19.86		Masa unitaria tota		1,633 g/cm3	Ĭ .		119,54	60,02
Volumen de la m		39,75		Masa unitaria sed		1,059 g/cm3		1	18,40	17,80
Relación de braz		7,920		Gravedad especí					54,2%	40,8%
reaction de braz	o maqama	7,020		Gravedad específica 2,705 g/cm3 26,53 kN/m3 Grado de saturación inicial 94,3 %		Tramedad	01,270	10,070		
						99,9				
FECHA	TIEMPO	INTERVALO	LECTURA	Grado de saturad CARGA EN	JOH IIIIAI	FECHA	TIEMPO	INTERVALO	LECTURA	CARGA EN
TEOTIA	TILIVII O	DE TIEMPO	DEFORM.	BRAZO		LONA	TILIVII O	DE TIEMPO	DEFORM.	BRAZO
		min - s	*10^-4 plg	kg				min - s	*10^-4 plg	kg
2016-02-11 2016-02-11	11:25 14:40		0 76	0,0 0,5		2016-02-12	07:30		345	2,0
2010-02-11	14.40		70	0,5		2016-02-12	07:30	0	345	4,0
						20.0 02 .2	01.00	4"	352	.,0
								15"	370	
2016-02-11	14:40	0	76	1,0				34"	378	
		4"	85					1'00"	387	
		15"	89					1'34"	395	
		34"	92					2'15"	404	
		1'00"	95					3'04"	414	
		1'34"	98					4'00"	424	
		2'15"	101					6'15"	441	
		3'04"	104					9'00"	457	
		4'00"	107					12'15"	472	
		6'15"	113					16'00"	482	
		9'00"	119					25'00"	511	
		12'15"	124					36'00"	523	
		16'00"	128,5					49'00"	535	
		25'00"	136					64'00"	542	
		36'00"	143,5					81'00"	552	
		49'00"	149					100'00"	556	
		64'00"	151,5			2016-02-12	10:45	195'00"	567	4,0
		81'00"	154							
		100'00"	156							
2016-02-11	17:00	140'00''	157	1,0						
P ₁ = Masa del re	cipiente más r	nuestra húmeda		P ₂ = Masa del rec	cipiente más mues	stra seca	<u> </u>	P ₃ = Masa del r	ecipiente	1
,	. , 1			2300 00.100	. ,			3300 0011		

REVISÓ Y APROBÓ

ING. JOHN O. ORDUZ GÓMEZ

SUB DIRECTOR TÉCNICO

INFORME DE ENSAYO DETERMINACIÓN DE LAS PROPIEDADES DE CONSOLIDACIÓN UNIDIMENSIONAL DE LOS SUELOS COHESIVOS

NTC 1967-00 Referencia SYP-PT-DT-I009-6/14

PROYECTO: SENA (COMPLEJO PALOQUEMAO) - AV. CARRERA 30 # 15-53 FECHA DE ENSAYO: 2016-02-11 CLIENTE: TECNICAS COLOMBIANAS DE INGENIERIA S.A.S ORDEN DE TRABAJO No. DIR CLIENTE: CALLE 53 A No 28-67 OFC 101 INFORME DE ENSAYO No. 7461 - 415 CÓDIGO: 1145

SONDEO:	11	MUESTRA:	7	PROFUNDIDAD(m): 8,15 - 8,75				
DESCRIPCIÓN:	Arcilla, co	Arcilla, color gris, estructura homogénea, húmeda, plasticidad alta, consistencia blanda.						
OBSERVACIONES:								

ODSLIVACI	ONLO.			
FECHA	TIEMPO	INTERVALO	LECTURA	CARGA EN
		DE TIEMPO	DEFORM.	BRAZO
		min - s	*10^-4 plg	kg
2016-02-12	10:45	0	567	8,0
		4"	598	
		15"	610	
		34"	622	
		1'00"	636	
		1'34"	650	
		2'15"	664	
		3'04"	678	
		4'00"	693	
		6'15"	721	
		9'00"	749	
		12'15"	777	
		16'00"	801	
		25'00"	842	
		36'00"	866	
		49'00"	883	
		64'00"	900	
		81'00"	905	
		100'00"	907	
2016-02-12	14:15	210'00"	922	8,0

FECHA	TIEMPO	INTERVALO	LECTURA	CARGA EN
		DE TIEMPO	DEFORM.	BRAZO
		min - s	*10^-4 plg	kg
2016-02-12	14:25	0	922	16,0
		4"	945	
		15"	965	
		34"	990	
		1'00"	1012	
		1'34"	1033	
		2'15"	1053	
		3'04"	1074	
		4'00"	1100	
		6'15"	1135	
		9'00"	1173	
		12'15"	1210	
		16'00"	1240	
		25'00"	1288	
		36'00"	1319	
		49'00"	1340	
		64'00"	1350	
		81'00"	1359	
		100'00"	1368	
2016-02-12	18:00	215'00"	1379	16,0
2016-02-13	06:45		1923	32,0
2016-02-13	11:30		1849	16,0
2016-02-14	08:00		1711	8,0
2016-02-14	11:00		1575	4,0
2016-02-15	06:30		1390	2,0
	1	1	1	1

LECTURA	CARGA EN	ESFL	ESFUERZO		RELACIÓN	ΔΗ/Η
DEFORMACIÓN	BRAZO				DE VACÍOS	
*10 ⁻⁴ in	kg	kg/cm ²	kN/m ²	cm	е	%
0	0,00	0,015	1,43	2,002	1,554	0,00
76	0,50	0,214	20,99	1,983	1,530	0,96
157	1,00	0,413	40,55	1,962	1,503	1,99
345	2,00	0,812	79,66	1,914	1,443	4,38
567	4,00	1,610	157,90	1,858	1,371	7,19
922	8,00	3,206	314,37	1,768	1,256	11,70
1379	16,00	6,397	627,30	1,652	1,107	17,50
1923	32,00	12,779	1253,17	1,514	0,931	24,40
1849	16,00	6,397	627,30	1,532	0,955	23,46
1711	8,00	3,206	314,37	1,567	1,000	21,71
1575	4,00	1,610	157,90	1,602	1,044	19,98
1390	2,00	0,812	79,66	1,649	1,104	17,64

DΖ

REVISÓ Y APROBÓ

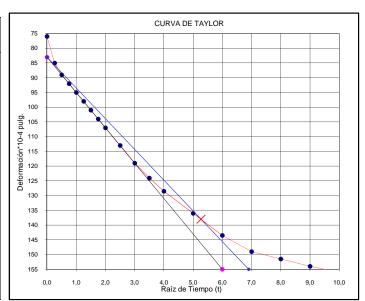
ING. JOHN O. ORDUZ GÓMEZ

SUB DIRECTOR TÉCNICO

DETERMINACIÓN DE LAS PROPIEDADES DE CONSOLIDACIÓN UNIDIMENSIONAL DE LOS SUELOS COHESIVOS

NTC 1967-00 Referencia SYP-PT-DT-I009-6/14

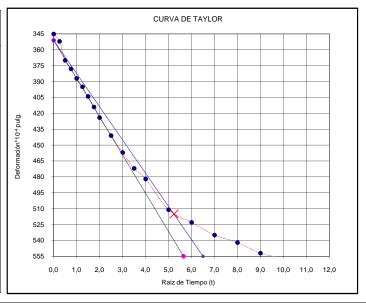
ACREDITADO ISO/IEC 17025:2005 10-LAB-040


PROYECTO:	SENA (COMPLEJO PALOQUEMAO) - AV. CARRERA 30 # 15-53	FECHA DE ENSAYO: NSOFOR!K6
CLIENTE:	TECNICAS COLOMBIANAS DE INGENIERIA S.A.S	ORDEN DE TRABAJO No. 7461
DIR CLIENTE:	CALLE 53 A No 28-67 OFC 101	INFORME DE ENSAYO No. 7461 - 415
CÓDICO:	_CONSOEODICO	

SONDEO: 11 MUESTRA: 7 PROFUNDIDAD: 8,15 - 8,75 m

OBSERVACIONES: -

CARGA 1 (0,50 - 1,00 kg)


CARGA 1 (0,50 - 1,00 kg)							
TIE	MPO	RAÍZ DE	LECT.				
		TIEMPO	DEFORM.	DEFORM.			
minutos	segundos		*10E -4 plg	*10E -3 m			
0	0	0,000	76	0,1930			
0	4	0,258	85	0,2159			
0	15	0,500	89	0,2261			
0	34	0,753	92	0,2337			
1	0	1,000	95	0,2413			
1	34	1,252	98	0,2489			
2	15	1,500	101	0,2565			
3	4	1,751	104	0,2642			
4	0	2,000	107	0,2718			
6	15	2,500	113	0,2870			
9	0	3,000	119	0,3023			
12	15	3,500	124	0,3150			
16	0	4,000	128,5	0,3264			
25	0	5,000	136	0,3454			
36	0	6,000	143,5	0,3645			
49	0	7,000	149	0,3785			
64	0	8,000	151,5	0,3848			
81	0	9,000	154	0,3912			
100	0	10,000	156	0,3962			
200	0	14,142	157	0,3988			
i							

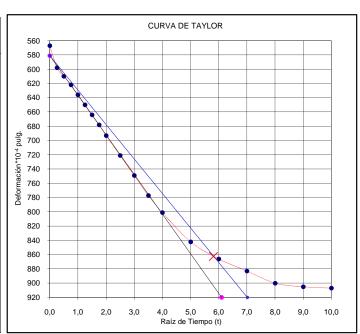
CARGA 2 (2,00 - 4,00 kg)

DΖ

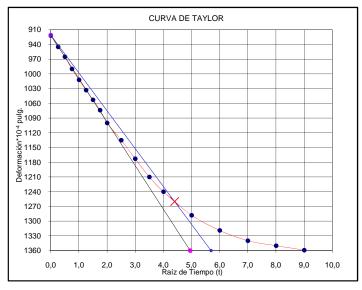
TIEMPO		RAÍZ DE	LECT.	
		TIEMPO	DEFORM.	DEFORM.
minutos	segundos		*10E -4 plg	*10E -3 m
0	0	0,000	345	0,8763
0	4	0,258	352	0,8941
0	15	0,500	370	0,9398
0	34	0,753	378	0,9601
1	0	1,000	387	0,9830
1	34	1,252	395	1,0033
2	15	1,500	404	1,0262
3	4	1,751	414	1,0516
4	0	2,000	424	1,0770
6	15	2,500	441	1,1201
9	0	3,000	457	1,1608
12	15	3,500	472	1,1989
16	0	4,000	482	1,2243
25	0	5,000	511	1,2979
36	0	6,000	523	1,3284
49	0	7,000	535	1,3589
64	0	8,000	542	1,3767
81	0	9,000	552	1,4021
100	0	10,000	556	1,4122
1440	0	37,947	567	1,4402

REVISÓ Y APROBÓ

ING. JOHN O. ORDUZ GÓMEZ SUB DIRECTOR TÉCNICO


PROCEDIMIENTO: SYP-PT-001 DETERMINACIÓN DE LAS PROPIEDADES DE CONSOLIDACIÓN UNIDIMENSIONAL DE LOS SUELOS COHESIVOS NTC 1967-00 Referencia SYP-PT-DT-I009-6/14

2016-02-11 PROYECTO: SENA (COMPLEJO PALOQUEMAO) - AV. CARRERA 30 # 15-53 FECHA ENSAYO: CLIENTE: TECNICAS COLOMBIANAS DE INGENIERIA S.A.S ORDEN DE TRABAJO No. 7461 DIR CLIENTE: CALLE 53 A No 28-67 OFC 101 INFORME DE ENSAYO No. 7461 - 415 CÓDIGO: 1145


SONDEO:	11	MUESTRA:	7	PROFUNDIDAD:	8,15 - 8,75 m
OBSERVACIONES:	-				

CARGA 3 (4	CARGA 3 (4,00 - 8,00 kg)						
TIEN	ИPO	RAÍZ DE	LECT.				
		TIEMPO	DEFORM.	DEFORM.			
minutos	segundos		*10E -4 plg	*10E -3 m			
0	0	0,000	567	1,4402			
0	4	0,258	598	1,5189			
0	15	0,500	610	1,5494			
0	34	0,753	622	1,5799			
1	0	1,000	636	1,6154			
1	34	1,252	650	1,6510			
2	15	1,500	664	1,6866			
3	4	1,751	678	1,7221			
4	0	2,000	693	1,7602			
6	15	2,500	721	1,8313			
9	0	3,000	749	1,9025			
12	15	3,500	777	1,9736			
16	0	4,000	801	2,0345			
25	0	5,000	842	2,1387			
36	0	6,000	866	2,1996			
49	0	7,000	883	2,2428			
64	0	8,000	900	2,2860			
81	0	9,000	905	2,2987			
100	0	10,000	907	2,3038			
1439	0	37,934	922	2,3419			

CARGA 4 (8,00 - 16,00 kg)

TIEMPO		RAÍZ DE	LECT.	
	-	TIEMPO	DEFORM.	DEFORM.
minutos	segundos		*10E -4 plg	*10E -3 m
0	0	0,000	922,00	2,3419
0	4	0,258	945,00	2,4003
0	15	0,500	965,00	2,4511
0	34	0,753	990,00	2,5146
1	0	1,000	1012,00	2,5705
1	34	1,252	1033,00	2,6238
2	15	1,500	1053,00	2,6746
3	4	1,751	1074,00	2,7280
4	0	2,000	1100,00	2,7940
6	15	2,500	1135,00	2,8829
9	0	3,000	1173,00	2,9794
12	15	3,500	1210,00	3,0734
16	0	4,000	1240,00	3,1496
25	0	5,000	1288,00	3,2715
36	0	6,000	1319,00	3,3503
49	0	7,000	1340,00	3,4036
64	0	8,000	1350,00	3,4290
81	0	9,000	1359,00	3,4519
100	0	10,000	1368,00	3,4747
471	0	21.703	1379.00	3.5027

REVISÓ Y APROBÓ

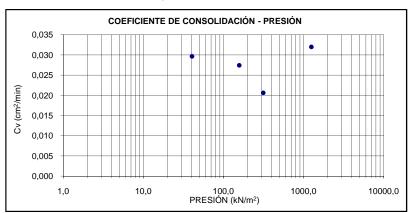
ING. JOHN O. ORDUZ GÓMEZ

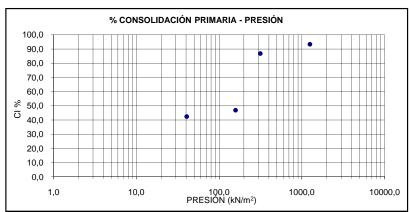
SUB DIRECTOR TÉCNICO

INF7461-415-A14-S11-M7-CONSR Pagina 4 de 6

DΖ

PROCEDIMIENTO: SYP-PT-001 DETERMINACIÓN DE LAS PROPIEDADES DE CONSOLIDACIÓN UNIDIMENSIONAL DE LOS SUELOS COHESIVOS NTC 1967-00 Referencia SYP-PT-DT-I009-6/14


PROYECTO: SENA (COMPLEJO PALOQUEMAO) - AV. CARRERA 30 # 15-53 FECHA ENSAYO: 2016-02-11 CLIENTE: TECNICAS COLOMBIANAS DE INGENIERIA S.A.S 7461 ORDEN DE TRABAJO No. 7461 - 415 DIR CLIENTE: CALLE 53 A No 28-67 OFC 101 INFORME DE ENSAYO No. CÓDIGO: 1145


SONDEO:	11	MUESTRA:	7	PROFUNDIDAD:	8,15 - 8,75 m
OBSERVACIONES:	_				

INCREMENTO DE CARGA	ALTURA	PR	RESIÓN	Cv	CI
(kg)	(cm)	(kg/cm ²)	(kN/m ²)	(cm ² /min)	(%)
0,50 - 1,00	1,972	0,41	40,546	0,030	42,4
0.00 4.00					
2,00 - 4,00	1,886	1,61	157,897	0,027	46,8
4,00 - 8,00	1,813	3,21	314,365	0,021	86,7
4,00 - 0,00	1,013	3,21	314,300	0,021	00,7
8,00 - 16,00	1,652	12,78	1253,173	0,032	93,3

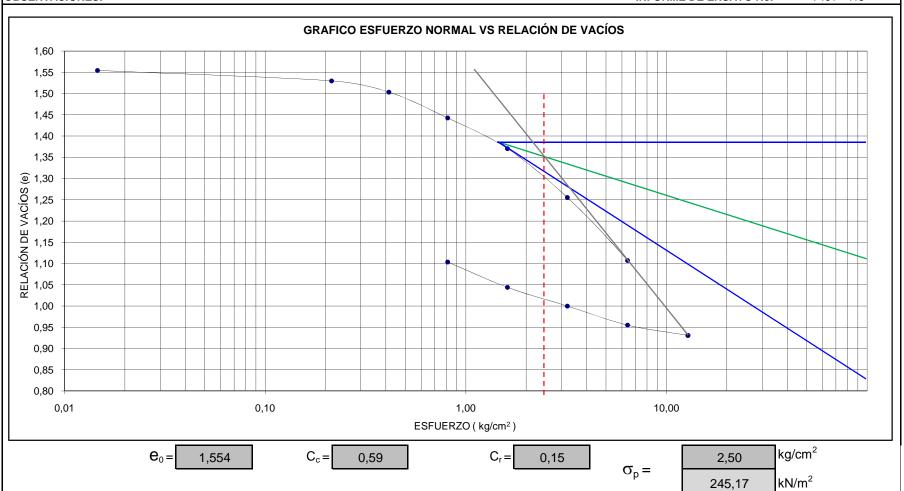
Cv: Coeficiente de consolidación (hallado conforme al numeral 12,3,2 de la norma NTC 1967-2000)

Rc: Relación de consolidación primaria

REVISÓ Y APROBÓ DΖ

ING. JOHN O. ORDUZ GÓMEZ

SUB DIRECTOR TÉCNICO



DETERMINACIÓN DE LAS PROPIEDADES DE CONSOLIDACIÓN UNIDIMENSIONAL DE LOS SUELOS COHESIVOS NTC 1967-00

ACREDITADO ISO/IEC 17025:2005

Referencia SYP-PT-DT-I009-6/14

DZ REVISÓ Y APROBÓ

INF7461-415-A14-S11-M7-CONSR Pagina 6 de 6

ING. JOHN O. ORDUZ GÓMEZ

SUB DIRECTOR TÉCNICO

INFORME DE ENSAYO DETERMINACIÓN DE LAS PROPIEDADES DE CONSOLIDACIÓN UNIDIMENSIONAL DE LOS SUELOS COHESIVOS NTC 1967-00 Referencia SYP-PT-DT-1009-7/15

PROYECTO:		SENA (COM	MPLEJO PALOQUEMAO) - AV. CARRERA 30 # 15-53			FECHA DE ENSAYO: 2016-02-11				
CLIENTE:		TECNICAS COLOMBIANAS DE INGENIERIA S.A.S						RABAJO No.		
DIR CLIENTE	:	CALLE 53 A No 28-67 OFC 101				IN	NFORME DE	ENSAYO No.	7461 - 416	
CÓDIGO:		1145								
EQUIPOS:		Balanza	No: 02			Hoi	rno No: HN	I-01		
SONDEO:		11		MUESTRA:	13			. ,	16,60 - 17,20	
DESCRIPCIÓ	N:	Arcilla, colo	or marrón,	estructura ho	mogénea, pl	asticidad alt	a, consist	encia firme.	•	
OBSERVACIO	ONES:	-								
Consolidación:	Rápida (B)	X	E	nsayo realizado a:	Humedad natural	X	Т	ipo de muestra:	Inalterada	X
	Lenta (A)	-			Saturado				Compactada	
Doble	ciclo de carga	-							Remoldeada	
Banco número		2		Masa de la celda	+ muestra inicial	268,0	g	CON	TENIDO DE HUN	1EDAD
Celda número	•	5P		Masa de la celda	+ muestra final	260,7	g		INICIAL	FINAL
Diámetro de la m	nuestra	5,03	cm	Masa de la celda	1	200,1	g	Recipiente No	B55	194
Altura de la mue:	stra	2,00	cm	Masa del bloque	+ piedra porosa	240,9	g	P ₁ (g)	254,30	79,37
Área de la mues	tra	19,89	cm ²	Masa unitaria tot	al	1,707 g/cm3	16,74 kN/m3	P ₂ (g)	181,61	64,77
Volumen de la m	uestra	39,77	cm ³	Masa unitaria se	co	1,137 g/cm3	11,15 kN/m3		36,50	18,70
Relación de braz	o máquina	7,837	•	Gravedad espec	ífica	2,705 g/cm3			50,1%	31,7%
			•	Grado de satura	ción inicial	98,3	%			
				Grado de satura		99,9				
FECHA	TIEMPO	INTERVALO	LECTURA	CARGA EN		FECHA	TIEMPO	INTERVALO	LECTURA	CARGA EN
		DE TIEMPO	DEFORM.	BRAZO				DE TIEMPO	DEFORM.	BRAZO
		min - s	*10^-4 plg	kg				min - s	*10^-4 plg	kg
2016-02-11	11:25		0	0,0		2016-02-12	07:30		188	2,0
2016-02-11	14:40		45	0,5		2010 02 12	07.00		100	2,0
						2016-02-12	07:30	0	188	4,0
								4"	210	
0040 00 44	44:40	0	45	4.0				15"	220	
2016-02-11	14:40	0 4"	45 57	1,0				34" 1'00"	229 237	
		15"	54					1'34"	245	
		34"	56					2'15"	252	
		1'00"	58					3'04"	259	
		1'34"	59					4'00"	266	
		2'15"	61					6'15"	278	
		3'04"	63					9'00"	290	
		4'00"	64					12'15"	300	
		6'15"	66					16'00"	307	
		9'00"	69					25'00"	317	
		12'15"	71					36'00"	323	
		16'00"	73					49'00"	328	
		25'00"	75					64'00"	332	
		36'00"	77					81'00"	334	
		49'00"	78,5					100'00"	338	
		64'00"	79			2016-02-12	10:45	195'00"	344	4,0
		81'00"	81							
0040 55 44	47.00	100'00"	82							
2016-02-11	17:00	140'00''	83	1,0						
P ₁ = Masa del re	ciniente más n	nuestra húmeda		Po = Masa del ro	cipiente más mue:	stra seca		P ₃ = Masa del r	reciniente	I
ı ı – ıvıasa üci le	orprome mas n	nacona numeua		i 2 – ividod del le	orprofite mas mues	,a 300a		i 3 – iviasa uel l	Colpierite	

REVISÓ Y APROBÓ

ING. JOHN O. ORDUZ GÓMEZ SUB DIRECTOR TÉCNICO

INFORME DE ENSAYO DETERMINACIÓN DE LAS PROPIEDADES DE CONSOLIDACIÓN UNIDIMENSIONAL DE LOS SUELOS COHESIVOS

NTC 1967-00 Referencia SYP-PT-DT-I009-6/14

PROYECTO: SENA (COMPLEJO PALOQUEMAO) - AV. CARRERA 30 # 15-53 FECHA DE ENSAYO: 2016-02-11 CLIENTE: TECNICAS COLOMBIANAS DE INGENIERIA S.A.S ORDEN DE TRABAJO No. DIR CLIENTE: CALLE 53 A No 28-67 OFC 101 INFORME DE ENSAYO No. 7461 - 416 CÓDIGO: 1145

SONDEO:	11	MUESTRA:	13	PROFUNDIDAD(m): 16,60 - 17,20				
DESCRIPCIÓN:	Arcilla, colo	Arcilla, color marrón, estructura homogénea, plasticidad alta, consistencia firme.						
OBSERVACIONES:								

OBSERVACI	ONES:			
FECHA	TIEMPO	INTERVALO	LECTURA	CARGA EN
		DE TIEMPO	DEFORM.	BRAZO
		min - s	*10^-4 plg	kg
2016-02-12	10:45	0	344	8,0
		4"	382	
		15"	398	
		34"	411	
		1'00"	425	
		1'34"	438	
		2'15"	451	
		3'04"	462,5	
		4'00"	474	
		6'15"	496	
		9'00"	516	
		12'15"	532	
		16'00"	547	
		25'00"	571	
		36'00"	580	
		49'00"	596	
		64'00"	604	
		81'00"	608	
		100'00"	613	
2016-02-12	14:15	210'00"	628	8,0
		1		

FECHA	TIEMPO	INTERVALO	LECTURA	CARGA EN
		DE TIEMPO	DEFORM.	BRAZO
		min - s	*10^-4 plg	kg
2016-02-12	14:25	0	628	16,0
		4"	666	
		15"	686	
		34"	709	
		1'00"	732	
		1'34"	747	
		2'15"	783	
		3'04"	810	
		4'00"	836	
		6'15"	886	
		9'00"	936	
		12'15"	982	
		16'00"	1030	
		25'00"	1096	
		36'00"	1150	
		49'00"	1191	
		64'00"	1217	
		81'00"	1236	
		100'00"	1252	
2016-02-12	18:00	215'00"	1276	16,0
2016-02-13	06:45	460'00"	2042	32,0
2016-02-13	11:30		2006	16,0
2016-02-14	08:00		1930	8,0
2016-02-14	11:00		1860	4,0
2016-02-15	06:30		1722	2,0

LECTURA DEFORMACIÓN	CARGA EN BRAZO	ESFU	ERZO	ALTURA	RELACIÓN DE VACÍOS	ΔΗ/Η
*10 ⁻⁴ in	kg	kg/cm ²	kN/m ²	cm	е	%
0	0,00	0,012	1,19	2,000	1,378	0,00
45	0,50	0,209	20,51	1,989	1,365	0,57
83	1,00	0,406	39,83	1,979	1,353	1,05
188	2,00	0,800	78,48	1,952	1,321	2,39
344	4,00	1,588	155,77	1,913	1,274	4,37
628	8,00	3,165	310,35	1,840	1,189	7,98
1276	16,00	6,317	619,52	1,676	0,993	16,21
2042	32,00	12,623	1237,85	1,481	0,761	25,93
2006	16,00	6,317	619,52	1,490	0,772	25,48
1930	8,00	3,165	310,35	1,510	0,795	24,51
1860	4,00	1,588	155,77	1,528	0,816	23,62
1722	2,00	0,800	78,48	1,563	0,858	21,87

DΖ

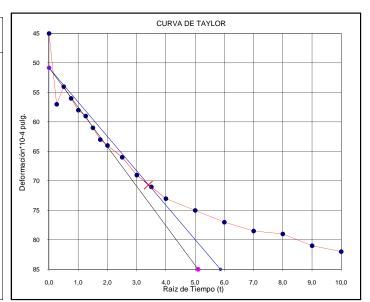
REVISÓ Y APROBÓ

ING. JOHN O. ORDUZ GÓMEZ

SUB DIRECTOR TÉCNICO

DETERMINACIÓN DE LAS PROPIEDADES DE CONSOLIDACIÓN UNIDIMENSIONAL DE LOS SUELOS COHESIVOS

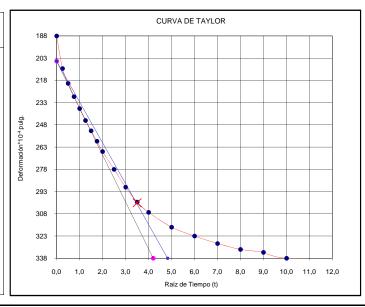
NTC 1967-00 Referencia SYP-PT-DT-I009-6/14



ACREDITADO ISO/IEC 17025:2005 10-LAB-040

PROYECTO:	SENA (COMPLEJO PALOQUEMAO) - AV. CARRERA 30 # 15-53	FECHA DE ENSAYO: NSOFOR!K6
CLIENTE:	TECNICAS COLOMBIANAS DE INGENIERIA S.A.S	ORDEN DE TRABAJO No. 7461
DIR CLIENTE:	CALLE 53 A No 28-67 OFC 101	INFORME DE ENSAYO No. 7461 - 416
CÓDIGO:	-CONSOFORICO	

16,60 - 17,20 m SONDEO: MUESTRA: 13 PROFUNDIDAD: OBSERVACIONES:


CARGA 1 (0	0,50 - 1,00 kg	j)		
TIE	MPO	RAÍZ DE	LECT.	
		TIEMPO	DEFORM.	DEFORM.
minutos	segundos		*10E -4 plg	*10E -3 m
0	0	0,000	45	0,1143
0	4	0,258	57	0,1448
0	15	0,500	54	0,1372
0	34	0,753	56	0,1422
1	0	1,000	58	0,1473
1	34	1,252	59	0,1499
2	15	1,500	61	0,1549
3	4	1,751	63	0,1600
4	0	2,000	64	0,1626
6	15	2,500	66	0,1676
9	0	3,000	69	0,1753
12	15	3,500	71	0,1803
16	0	4,000	73	0,1854
25	0	5,000	75	0,1905
36	0	6,000	77	0,1956
49	0	7,000	78,5	0,1994
64	0	8,000	79	0,2007
81	0	9,000	81	0,2057
100	0	10,000	82	0,2083
200	0	14,142	83	0,2108

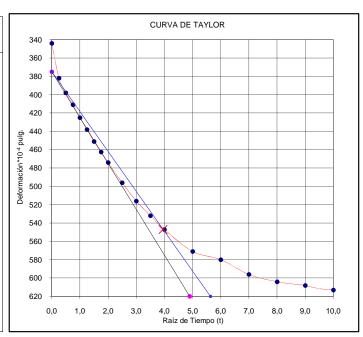
CARGA 2 (2.00 - 4.00 kg)

DΖ

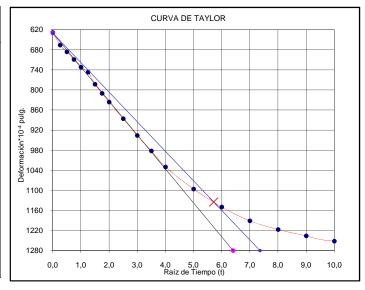
CARGA 2 (2,00 - 4,00 kg)					
TIEN	MPO	RAÍZ DE	LECT.		
		TIEMPO	DEFORM.	DEFORM.	
minutos	segundos		*10E -4 plg	*10E -3 m	
0	0	0,000	188	0,4775	
0	4	0,258	210	0,5334	
0	15	0,500	220	0,5588	
0	34	0,753	229	0,5817	
1	0	1,000	237	0,6020	
1	34	1,252	245	0,6223	
2	15	1,500	252	0,6401	
3	4	1,751	259	0,6579	
4	0	2,000	266	0,6756	
6	15	2,500	278	0,7061	
9	0	3,000	290	0,7366	
12	15	3,500	300	0,7620	
16	0	4,000	307	0,7798	
25	0	5,000	317	0,8052	
36	0	6,000	323	0,8204	
49	0	7,000	328	0,8331	
64	0	8,000	332	0,8433	
81	0	9,000	334	0,8484	
100	0	10,000	338	0,8585	
1440	0	37,947	344	0,8738	

REVISÓ Y APROBÓ

ING. JOHN O. ORDUZ GÓMEZ SUB DIRECTOR TÉCNICO


PROCEDIMIENTO: SYP-PT-001 DETERMINACIÓN DE LAS PROPIEDADES DE CONSOLIDACIÓN UNIDIMENSIONAL DE LOS SUELOS COHESIVOS NTC 1967-00 Referencia SYP-PT-DT-I009-6/14

SENA (COMPLEJO PALOQUEMAO) - AV. CARRERA 30 # 15-53 FECHA ENSAYO: 2016-02-11 PROYECTO: CLIENTE: TECNICAS COLOMBIANAS DE INGENIERIA S.A.S ORDEN DE TRABAJO No. 7461 DIR CLIENTE: CALLE 53 A No 28-67 OFC 101 INFORME DE ENSAYO No. 7461 - 416 CÓDIGO: 1145


SONDEO:	11	MUESTRA:	13	PROFUNDIDAD:	16,60 - 17,20 m
OBSERVACIONES:	-				

CARGA 3 (4,00 - 8,00 kg)				
TIEN	ИРО	RAÍZ DE	LECT.	
		TIEMPO	DEFORM.	DEFORM.
minutos	segundos		*10E -4 plg	*10E -3 m
0	0	0,000	344	0,8738
0	4	0,258	382	0,9703
0	15	0,500	398	1,0109
0	34	0,753	411	1,0439
1	0	1,000	425	1,0795
1	34	1,252	438	1,1125
2	15	1,500	451	1,1455
3	4	1,751	462,5	1,1748
4	0	2,000	474	1,2040
6	15	2,500	496	1,2598
9	0	3,000	516	1,3106
12	15	3,500	532	1,3513
16	0	4,000	547	1,3894
25	0	5,000	571	1,4503
36	0	6,000	580	1,4732
49	0	7,000	596	1,5138
64	0	8,000	604	1,5342
81	0	9,000	608	1,5443
100	0	10,000	613	1,5570
1439	0	37,934	628	1,5951
I				

CARGA 4 (8,00 - 16,00 kg)

TIEN	ИΡО	RAIZ DE	LECT.	
		TIEMPO	DEFORM.	DEFORM.
minutos	segundos		*10E -4 plg	*10E -3 m
0	0	0,000	628,00	1,5951
0	4	0,258	666,00	1,6916
0	15	0,500	686,00	1,7424
0	34	0,753	709,00	1,8009
1	0	1,000	732,00	1,8593
1	34	1,252	747,00	1,8974
2	15	1,500	783,00	1,9888
3	4	1,751	810,00	2,0574
4	0	2,000	836,00	2,1234
6	15	2,500	886,00	2,2504
9	0	3,000	936,00	2,3774
12	15	3,500	982,00	2,4943
16	0	4,000	1030,00	2,6162
25	0	5,000	1096,00	2,7838
36	0	6,000	1150,00	2,9210
49	0	7,000	1191,00	3,0251
64	0	8,000	1217,00	3,0912
81	0	9,000	1236,00	3,1394
100	0	10,000	1252,00	3,1801
471	0	21,703	1276,00	3,2410

DΖ REVISÓ Y APROBÓ

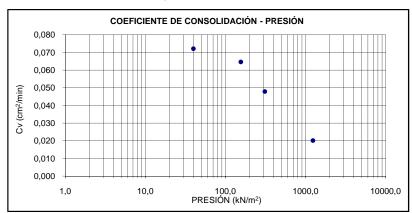
ING. JOHN O. ORDUZ GÓMEZ

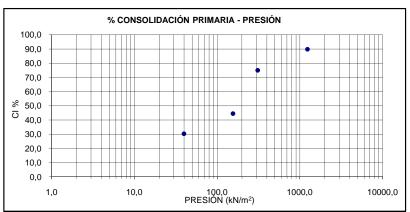
SUB DIRECTOR TÉCNICO

INF7461-416-A14-S11-M13-CONSR_Pagina 4 de 6

PROCEDIMIENTO: SYP-PT-001 DETERMINACIÓN DE LAS PROPIEDADES DE CONSOLIDACIÓN UNIDIMENSIONAL DE LOS SUELOS COHESIVOS

NTC 1967-00 Referencia SYP-PT-DT-I009-6/14


PROYECTO:SENA (COMPLEJO PALOQUEMAO) - AV. CARRERA 30 # 15-53FECHA ENSAYO:2016-02-11CLIENTE:TECNICAS COLOMBIANAS DE INGENIERIA S.A.SORDEN DE TRABAJO No.7461DIR CLIENTE:CALLE 53 A No 28-67 OFC 101INFORME DE ENSAYO No.7461 - 416CÓDIGO:1145


SONDEO:	11	MUESTRA:	13	PROFUNDIDAD: 16,60 - 17,20 m	
OBSERVACIONES:	-				

INCREMENTO DE CARGA	ALTURA	PR	RESIÓN	Cv	CI
(kg)	(cm)	(kg/cm ²)	(kN/m ²)	(cm ² /min)	(%)
0,50 - 1,00	1,984	0,41	39,833	0,072	30,3
2.00 4.00	4.000	4.50	455.770	0.005	44.5
2,00 - 4,00	1,932	1,59	155,770	0,065	44,5
4,00 - 8,00	1,877	3,16	310,352	0,048	74,9
8,00 - 16,00	1,676	12,62	1237,845	0,020	89,8

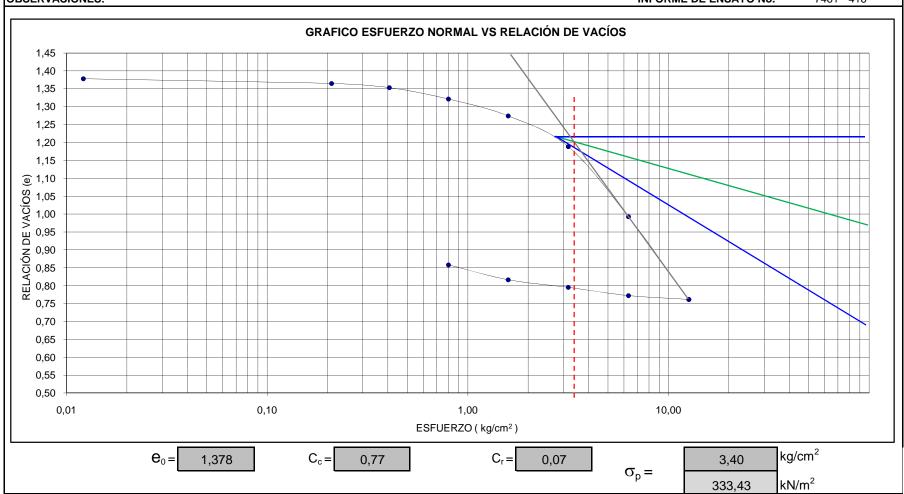
Cv: Coeficiente de consolidación (hallado conforme al numeral 12,3,2 de la norma NTC 1967-2000)

Rc: Relación de consolidación primaria

DZ REVISÓ Y APROBÓ

ING. JOHN O. ORDUZ GÓMEZ

SUB DIRECTOR TÉCNICO



DETERMINACIÓN DE LAS PROPIEDADES DE CONSOLIDACIÓN UNIDIMENSIONAL DE LOS SUELOS COHESIVOS NTC 1967-00

ACREDITADO ISO/IEC 17025:2005

Referencia SYP-PT-DT-I009-6/14

DZ REVISÓ Y APROBÓ

INF7461-416-A14-S11-M13-CONSR Pagina 6 de 6

ING. JOHN O. ORDUZ GÓMEZ

SUB DIRECTOR TÉCNICO

INFORME DE ENSAYO ENSAYO PARA DETERMINAR EL CORTE DIRECTO EN ROCA POR DIACLASA O PLANO DE DISCONTINUIDAD

METODO ISRM

Referencia SYP-PT-DT-I 040-4/15

PROYECTO:	SENA (COMPLEJO PALOQUEMAO) - AV. CARRERA 30 # 15-53	FECHA DE ENSAYO:	2016-02-16
CLIENTE:	TECNICAS COLOMBIANAS DE INGENIERIA S.A.S	ORDEN DE TRABAJO No.	7461
DIR CLIENTE:	CALLE 53 A No 28-67 OFC 101	INFORME DE ENSAYO No.	7461 - 400
CÓDIGO:	1145		

4,05 - 4,50 SONDEO: MUESTRA: PROFUNDIDAD(m): DESCRIPCIÓN: Arcilla limosa, color gris verdoso, con algunos puntos orgánicos y tonos amarillos, estructura homogénea, húmeda, **OBSERVACIONES: -**

EQUIPOS:	Calibrador	No:
Diámetro muestra	5,02	cm
Altura muestra	2,50	cm
Área inicial muestra	19,79	cm ²
Volumen de la muestra	49,48	cm ³
Peso de la muestra	84,1	g
Carga normal	15,00	kg
Esfuerzo normal	0,76	kg/cm²
Altura después de consolidada	2,444	cm
Altura final	2,395	cm

CONTENII	TIPO DE MU	JESTRA		
	INICIAL	FINAL	Inalterada	Х
Recipiente	66	72	Compactada	-
P ₁ (g)	152,21	100,42		
P ₂ (g)	112,78	73,54	SECCIÓN DE I	MUESTRA
P ₃ (g)	18,90	19,20	Circular	Х
Humedad (%)	42,0	49,5	Cuadrada	-
P ₄ = Peso del recipiente	P ₂ = Peso del rec	cipiente		

P₂ = Peso del recipiente mas muestra seca

DΖ

Balanza No:	16	Horno No: H	IN-01
	EQUIPO DE CORTE:	1	
	ESFUERZO NORMAL:	Menor	

Peso unitario total	1,700	(g/cm³)
Peso unitario seco inicial	-	(g/cm³)
Masa seca inicial	-	(g)

FALLADO EN CONDICIÓN:				
Humedad natural	-			
Inundado	X			
Velocidad de falla (mm/min)	0,0562			

ETAPA DE CONSOLIDACIÓN					
Def. inicial 1233 1*10E-4 in					
Def. final	1012	1*10E-4 in			
Delta	cm				

hh-mm-ss kg		AL VERTICAL	CORREGIDA		ESFUERZO		DEFORMACIÓN	
hh-mm-ss kg	1*10E-3 in		CORREGIDA	NORMAL	CORTE	VERTICAL	HORIZONT.	τ/σ
		1*10E- ⁴ in	cm²	σ kg/cm²	τ kgf/cm²	%	%	
00'00" 0,0	0	826	19,79	0,758	0,000	0,000	0,000	0,000
03'51" 3,5	9	803	19,68	0,762	0,182	0,239	0,455	0,239
08'17" 6,8	7 19	780	19,55	0,767	0,351	0,478	0,961	0,458
11'34" 7,0	5 26	768	19,46	0,771	0,362	0,603	1,316	0,470
16'10" 7,3	36	756	19,33	0,776	0,382	0,728	1,822	0,492
26'21" 7,5	57	730	19,07	0,787	0,398	0,998	2,884	0,506
34'55" 7,7	2 78	712	18,80	0,798	0,410	1,185	3,947	0,514
45'34" 7,9	7 102	700	18,49	0,811	0,431	1,310	5,161	0,531
59'55" 7,8	132	677	18,11	0,828	0,433	1,549	6,679	0,523
1H13'24" 6,2	162	668	17,73	0,846	0,350	1,642	8,197	0,413
2H25'31" 5,6	192	660	17,35	0,865	0,325	1,725	9,715	0,376
1H40'36" 5,5	222	653	16,97	0,884	0,327	1,798	11,233	0,370
1H52'28" 5,4	250	647	16,61	0,903	0,328	1,860	12,649	0,363
2H04'44" 5,3	277	643	16,27	0,922	0,331	1,902	14,016	0,360
2H19'37" 5,3	2 310	639	15,86	0,946	0,336	1,944	15,685	0,355
2H33'09" 5,2	340	636	15,48	0,969	0,342	1,975	17,203	0,353
2H46'00" 5,2	2 370	636	15,10	0,993	0,346	1,975	18,721	0,348
3H00'39" 5,0	400	634	14,73	1,019	0,340	1,996	20,239	0,334

REVISÓ Y APROBÓ

ING. JOHN O. ORDUZ GÓMEZ SUB DIRECTOR TÉCNICO

INFORME DE ENSAYO ENSAYO PARA DETERMINAR EL CORTE DIRECTO EN ROCA POR DIACLASA O

PLANO DE DISCONTINUIDAD METODO ISRM Referencia SYP-PT-DT-I 040-4/15

PROYECTO:	SENA (COMPLEJO PALOQUEMAO) - AV. CARRERA 30 # 15-53	FECHA DE ENSAYO:	2016-02-16
CLIENTE:	TECNICAS COLOMBIANAS DE INGENIERIA S.A.S	ORDEN DE TRABAJO No.	7461
DIR CLIENTE:	CALLE 53 A No 28-67 OFC 101	INFORME DE ENSAYO No.	7461 - 400

CÓDIGO: 1145 SONDEO: 4.05 - 4.50 11 MUESTRA: 4 PROFUNDIDAD(m): DESCRIPCIÓN: Arcilla limosa, color gris verdoso, con algunos puntos orgánicos y tonos amarillos, estructura homogénea, húmeda,

Balanza No: 16

OBSERVACIONES: -

EQUIPOS: Calibrador No: 02			
Diámetro muestra	5,02	cm	
Altura muestra	2,50	cm	
Área inicial muestra	19,79	cm ²	
Volumen de la muestra	49,48	cm ³	
Peso de la muestra	83,8	g	
Carga normal	20,0	kg	
Esfuerzo normal	1,01	kg/cm²	
Altura después de consolidada	2,416	cm	
Altura final	2,386	cm	

CONTENI	TIPO DE MU	JESTRA					
	INICIAL	FINAL	Inalterada	Х			
Recipiente	96	86	Compactada	-			
P ₁ (g)	181,12	101,50					
P ₂ (g)	129,73	74,30	SECCIÓN DE MUESTR				
P ₃ (g)	16,50	17,00	Circular	Х			
Humedad (%)	45,4	47,5	Cuadrada	-			
P ₁ = Peso del recipiente	P ₃ = Peso del rec	cipiente					

P₁ = Peso del recipiente mas muestra húmeda

DΖ

EQUIPO DE CORTE:	2
ESFUERZO NORMAL:	Intermedio

Peso unitario total	1,694	(g/cm³)
Peso unitario seco inicial	-	(g/cm³)
Masa seca inicial	-	(g)

Horno No: HN-01

FALLADO EN CONDICIÓN:			
Humedad natural -			
Inundado	X		
Velocidad de falla (mm/min)	0,0565		

ETAPA DE CONSOLIDACIÓN						
Def. inicial	1*10E-4 in					
Def. final	963	1*10E-4 in				
Delta	0,0838	cm				

TIEMPO LECTURA	LECTURA	DEFORM	MACIÓN	ÁREA	ESFU	IERZO	DEFOR	RMACIÓN	RELACIÓN
	CELDA	HORIZONTAL	VERTICAL	CORREGIDA	NORMAL	CORTE	VERTICAL	HORIZONT.	τ/σ
hh-mm-ss	kgf	1*10E-3 in	1*10E-4 in	cm ²	σ kg/cm ²	τ kgf/cm²	%	%	
00'00"	0,00	0	950	19,79	1,010	0,000	0,000	0,000	0,000
04'03	6,48	8	947	19,69	1,016	0,329	0,032	0,405	0,324
08'23"	8,02	18	945	19,56	1,022	0,410	0,053	0,911	0,401
11'34"	8,37	25	946	19,47	1,027	0,430	0,042	1,265	0,419
16'16"	8,54	36	945	19,33	1,034	0,442	0,053	1,822	0,427
26'28"	8,73	59	944	19,04	1,050	0,459	0,063	2,985	0,437
35'04"	9,11	78	493	18,80	1,064	0,485	4,804	3,947	0,455
45'42"	9,43	101	841	18,51	1,081	0,509	1,146	5,110	0,471
1H00'08"	9,69	134	841	18,09	1,106	0,536	1,146	6,780	0,485
1H13'41"	9,46	164	846	17,70	1,130	0,534	1,093	8,298	0,473
1H25'39"	9,24	193	840	17,34	1,154	0,533	1,156	9,765	0,462
1H40'11"	9,20	223	838	16,95	1,180	0,542	1,177	11,283	0,460
1H52'59"	9,11	251	835	16,60	1,205	0,549	1,209	12,700	0,455
2H04'13"	9,08	278	833	16,26	1,230	0,558	1,230	14,066	0,454
2H20'08"	9,02	311	831	15,84	1,262	0,569	1,251	15,736	0,451
2H34'24"	8,99	342	830	15,45	1,294	0,582	1,261	17,304	0,449
2H46'13"	8,94	374	830	15,05	1,329	0,594	1,261	18,924	0,447
3H01'03"	8,91	403	830	14,69	1,362	0,607	1,261	20,391	0,446

REVISÓ Y APROBÓ

ING. JOHN O. ORDUZ GÓMEZ

SUB DIRECTOR TÉCNICO

LOS RESULTADOS PRESENTADOS CORRESPONDEN ÚNICAMENTE A LA MUESTRA SOMETIDA A ENSAYO. ESTE INFORME NO PUEDE SER REPRODUCIDO EN SU TOTALIDAD NI PARCIALMENTE, SIN LA AUTORIZACIÓN ESCINIFORMENTO, PLES SELLO.

INFORME DE ENSAYO ENSAYO PARA DETERMINAR EL CORTE DIRECTO EN ROCA POR DIACLASA O PLANO DE DISCONTINUIDAD

METODO ISRM

Referencia SYP-PT-DT-I 040-4/15

SENA (COMPLEJO PALOQUEMAO) - AV. CARRERA 30 # 15-53 PROYECTO: **FECHA DE ENSAYO:** 2016-02-16 CLIENTE: TECNICAS COLOMBIANAS DE INGENIERIA S.A.S ORDEN DE TRABAJO No. 7461 DIR CLIENTE: CALLE 53 A No 28-67 OFC 101 INFORME DE ENSAYO No. 7461 - 400 CÓDIGO: 1145

SONDEO: MUESTRA: 4 PROFUNDIDAD(m): 4,05 - 4,50 11 DESCRIPCIÓN: Arcilla limosa, color gris verdoso, con algunos puntos orgánicos y tonos amarillos, estructura homogénea, húmeda, OBSERVACIONES: -

EQUIPOS:	Calibrador No: 02			
Diámetro muestra	5,02	cm		
Altura muestra	2,50	cm		
Área inicial muestra	19,79	cm ²		
Volumen de la muestra	49,48	cm ³		
Peso de la muestra	82,1	g		
Carga normal	30,0	kg		
Esfuerzo normal	1,52	kg/cm²		
Altura después de consolidada	2,294	cm		
Altura final	2,253	cm		

CONTENI	TIPO DE MU	JESTRA							
	INICIAL	FINAL	Inalterada	Х					
Recipiente	116	99	Compactada	-					
P ₁ (g)	171,85	105,02							
P ₂ (g)	123,76	82,47	SECCIÓN DE	MUESTRA					
P ₃ (g)	17,50	17,70	Circular	Х					
Humedad (%)	45,3	34,8	Cuadrada	-					
P ₁ = Peso del recipiente mas muestra húmeda			P ₃ = Peso del rec	cipiente					

DΖ

Balanza No:	16	Horno No:	HN-01
	EQUIPO DE CORTE:	5	
	ESFUERZO NORMAL:	Mayor	

Peso unitario total	1,659	(g/cm³)
Peso unitario seco inicial	-	(g/cm³)
Masa seca inicial	-	(g)

FALLADO EN COND	ICIÓN:
Humedad natural	-
Inundado	Х
Velocidad de falla (mm/min)	0,0563

ETAPA DE CONSOLIDACIÓN							
Def. inicial	1649	1*10E-4 in					
Def. final	839	1*10E-4 in					
Delta	0,2057	cm					

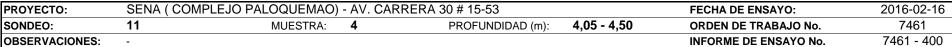
LECTURA	DEFORM	MACIÓN	ÁREA	ESFU	IERZO	DEFOR	RMACIÓN	RELACIÓN
CELDA	HORIZONTAL	VERTICAL	CORREGIDA	NORMAL	CORTE	VERTICAL	HORIZONT.	τ/σ
kgf	1*10E-3 in	1*10E-4 in	cm ²	σ kg/cm ²	τ kgf/cm²	%	%	
0,00	0	828	19,79	1,516	0,000	0,000	0,000	0,000
9,44	8	805	19,69	1,524	0,479	0,255	0,405	0,315
10,30	19	786	19,55	1,535	0,527	0,465	0,961	0,343
10,69	26	776	19,46	1,542	0,549	0,576	1,316	0,356
10,89	35	760	19,35	1,551	0,563	0,753	1,771	0,363
11,56	60	733	19,03	1,577	0,607	1,052	3,036	0,385
12,41	78	716	18,80	1,596	0,660	1,240	3,947	0,414
13,16	101	703	18,51	1,621	0,711	1,384	5,110	0,439
13,36	135	700	18,07	1,660	0,739	1,417	6,831	0,445
12,52	164	690	17,70	1,695	0,707	1,528	8,298	0,417
11,86	193	681	17,34	1,731	0,684	1,627	9,765	0,395
11,80	224	676	16,94	1,771	0,697	1,683	11,334	0,393
11,65	257	673	16,52	1,815	0,705	1,716	13,004	0,388
11,41	279	671	16,25	1,847	0,702	1,738	14,117	0,380
11,28	310	669	15,86	1,892	0,711	1,760	15,685	0,376
11,34	341	667	15,47	1,940	0,733	1,782	17,254	0,378
11,36	375	665	15,04	1,995	0,756	1,805	18,974	0,379
11,35	400	664	14,73	2,037	0,771	1,816	20,239	0,378
	CELDA kgf 0,00 9,44 10,30 10,69 10,89 11,56 12,41 13,16 13,36 12,52 11,86 11,80 11,65 11,41 11,28 11,34 11,36	CELDA HORIZONTAL kgf 1*10E-³ in 0,00 0 9,44 8 10,30 19 10,69 26 10,89 35 11,56 60 12,41 78 13,16 101 13,36 135 12,52 164 11,86 193 11,80 224 11,65 257 11,41 279 11,28 310 11,34 341 11,36 375	CELDA HORIZONTAL VERTICAL kgf 1*10E-3 in 1*10E-4 in 0,00 0 828 9,44 8 805 10,30 19 786 10,69 26 776 10,89 35 760 11,56 60 733 12,41 78 716 13,16 101 703 13,36 135 700 12,52 164 690 11,86 193 681 11,80 224 676 11,65 257 673 11,41 279 671 11,28 310 669 11,34 341 667 11,36 375 665	CELDA HORIZONTAL VERTICAL CORREGIDA kgf 1*10E-3 in 1*10E-4 in cm² 0,00 0 828 19,79 9,44 8 805 19,69 10,30 19 786 19,55 10,69 26 776 19,46 10,89 35 760 19,35 11,56 60 733 19,03 12,41 78 716 18,80 13,16 101 703 18,51 13,36 135 700 18,07 12,52 164 690 17,70 11,86 193 681 17,34 11,80 224 676 16,94 11,65 257 673 16,52 11,41 279 671 16,25 11,28 310 669 15,86 11,34 341 667 15,47 11,36 375 665 15,04 </td <td>CELDA HORIZONTAL VERTICAL CORREGIDA NORMAL kgf 1*10E-3 in 1*10E-4 in cm² \$\sigma \text{kg/cm²}\$ 0,00 0 828 19,79 1,516 9,44 8 805 19,69 1,524 10,30 19 786 19,55 1,535 10,69 26 776 19,46 1,542 10,89 35 760 19,35 1,551 11,56 60 733 19,03 1,577 12,41 78 716 18,80 1,596 13,16 101 703 18,51 1,621 13,36 135 700 18,07 1,660 12,52 164 690 17,70 1,695 11,86 193 681 17,34 1,731 11,80 224 676 16,94 1,771 11,65 257 673 16,52 1,815 11,41 279</td> <td>CELDA HORIZONTAL VERTICAL CORREGIDA NORMAL CORTE kgf 1*10E-3 in 1*10E-4 in cm² \$\sigma \text{kgf/cm²}\$ \$\sigma \text{kgf/cm²}\$ 0,00 0 828 19,79 1,516 0,000 9,44 8 805 19,69 1,524 0,479 10,30 19 786 19,55 1,535 0,527 10,69 26 776 19,46 1,542 0,549 10,89 35 760 19,35 1,551 0,563 11,56 60 733 19,03 1,577 0,607 12,41 78 716 18,80 1,596 0,660 13,16 101 703 18,51 1,621 0,711 13,36 135 700 18,07 1,660 0,739 12,52 164 690 17,70 1,695 0,707 11,86 193 681 17,34 1,731 0,684</td> <td>CELDA HORIZONTAL VERTICAL CORREGIDA NORMAL CORTE VERTICAL kgf 1*10E-3 in 1*10E-4 in cm² \$\sigma\$ kg/cm² \$\sigma\$ kgf/cm² % 0,00 0 828 19,79 1,516 0,000 0,000 9,44 8 805 19,69 1,524 0,479 0,255 10,30 19 786 19,55 1,535 0,527 0,465 10,69 26 776 19,46 1,542 0,549 0,576 10,89 35 760 19,35 1,551 0,563 0,753 11,56 60 733 19,03 1,577 0,607 1,052 12,41 78 716 18,80 1,596 0,660 1,240 13,16 101 703 18,51 1,621 0,711 1,384 13,36 135 700 18,07 1,660 0,739 1,417 12,52 164 690<td>CELDA HORIZONTAL VERTICAL CORREGIDA NORMAL CORTE VERTICAL HORIZONT. kgf 1*10E-³ in 1*10E-⁴ in cm² \$\sigma \text{kgf/cm²}\$ % % 0,00 0 828 19,79 1,516 0,000 0,000 0,000 9,44 8 805 19,69 1,524 0,479 0,255 0,405 10,30 19 786 19,55 1,535 0,527 0,465 0,961 10,69 26 776 19,46 1,542 0,549 0,576 1,316 10,89 35 760 19,35 1,551 0,563 0,753 1,771 11,56 60 733 19,03 1,577 0,607 1,052 3,036 12,41 78 716 18,80 1,596 0,660 1,240 3,947 13,16 101 703 18,51 1,621 0,711 1,384 5,110 13,36</td></td>	CELDA HORIZONTAL VERTICAL CORREGIDA NORMAL kgf 1*10E-3 in 1*10E-4 in cm² \$\sigma \text{kg/cm²}\$ 0,00 0 828 19,79 1,516 9,44 8 805 19,69 1,524 10,30 19 786 19,55 1,535 10,69 26 776 19,46 1,542 10,89 35 760 19,35 1,551 11,56 60 733 19,03 1,577 12,41 78 716 18,80 1,596 13,16 101 703 18,51 1,621 13,36 135 700 18,07 1,660 12,52 164 690 17,70 1,695 11,86 193 681 17,34 1,731 11,80 224 676 16,94 1,771 11,65 257 673 16,52 1,815 11,41 279	CELDA HORIZONTAL VERTICAL CORREGIDA NORMAL CORTE kgf 1*10E-3 in 1*10E-4 in cm² \$\sigma \text{kgf/cm²}\$ \$\sigma \text{kgf/cm²}\$ 0,00 0 828 19,79 1,516 0,000 9,44 8 805 19,69 1,524 0,479 10,30 19 786 19,55 1,535 0,527 10,69 26 776 19,46 1,542 0,549 10,89 35 760 19,35 1,551 0,563 11,56 60 733 19,03 1,577 0,607 12,41 78 716 18,80 1,596 0,660 13,16 101 703 18,51 1,621 0,711 13,36 135 700 18,07 1,660 0,739 12,52 164 690 17,70 1,695 0,707 11,86 193 681 17,34 1,731 0,684	CELDA HORIZONTAL VERTICAL CORREGIDA NORMAL CORTE VERTICAL kgf 1*10E-3 in 1*10E-4 in cm² \$\sigma\$ kg/cm² \$\sigma\$ kgf/cm² % 0,00 0 828 19,79 1,516 0,000 0,000 9,44 8 805 19,69 1,524 0,479 0,255 10,30 19 786 19,55 1,535 0,527 0,465 10,69 26 776 19,46 1,542 0,549 0,576 10,89 35 760 19,35 1,551 0,563 0,753 11,56 60 733 19,03 1,577 0,607 1,052 12,41 78 716 18,80 1,596 0,660 1,240 13,16 101 703 18,51 1,621 0,711 1,384 13,36 135 700 18,07 1,660 0,739 1,417 12,52 164 690 <td>CELDA HORIZONTAL VERTICAL CORREGIDA NORMAL CORTE VERTICAL HORIZONT. kgf 1*10E-³ in 1*10E-⁴ in cm² \$\sigma \text{kgf/cm²}\$ % % 0,00 0 828 19,79 1,516 0,000 0,000 0,000 9,44 8 805 19,69 1,524 0,479 0,255 0,405 10,30 19 786 19,55 1,535 0,527 0,465 0,961 10,69 26 776 19,46 1,542 0,549 0,576 1,316 10,89 35 760 19,35 1,551 0,563 0,753 1,771 11,56 60 733 19,03 1,577 0,607 1,052 3,036 12,41 78 716 18,80 1,596 0,660 1,240 3,947 13,16 101 703 18,51 1,621 0,711 1,384 5,110 13,36</td>	CELDA HORIZONTAL VERTICAL CORREGIDA NORMAL CORTE VERTICAL HORIZONT. kgf 1*10E-³ in 1*10E-⁴ in cm² \$\sigma \text{kgf/cm²}\$ % % 0,00 0 828 19,79 1,516 0,000 0,000 0,000 9,44 8 805 19,69 1,524 0,479 0,255 0,405 10,30 19 786 19,55 1,535 0,527 0,465 0,961 10,69 26 776 19,46 1,542 0,549 0,576 1,316 10,89 35 760 19,35 1,551 0,563 0,753 1,771 11,56 60 733 19,03 1,577 0,607 1,052 3,036 12,41 78 716 18,80 1,596 0,660 1,240 3,947 13,16 101 703 18,51 1,621 0,711 1,384 5,110 13,36

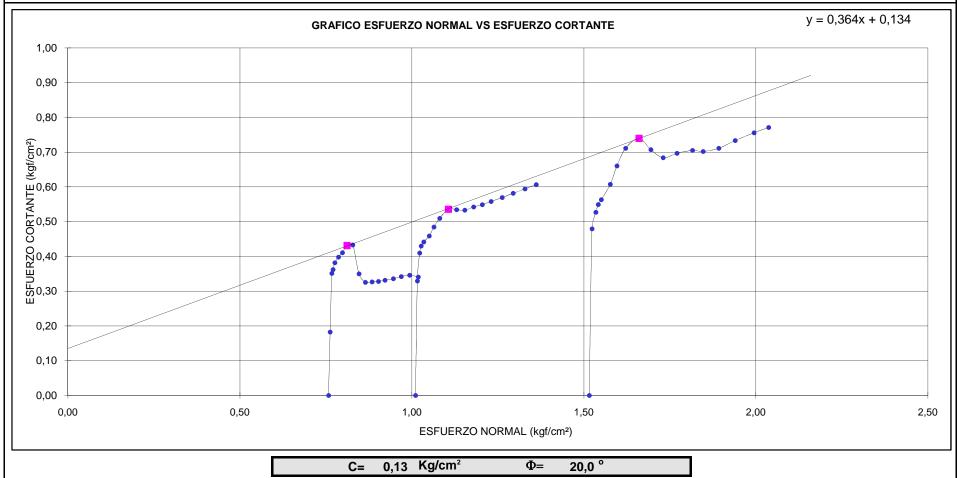
REVISÓ Y APROBÓ

ING. JOHN O. ORDUZ GÓMEZ SUB DIRECTOR TÉCNICO

LOS RESULTADOS PRESENTADOS CORRESPONDEN, ÚNICAMENTE A LA MUESTRA SOMETIDA A ENSAYO. ESTE INFORME NO PUEDE SER REPRODUCIDO EN SU TOTALIDAD NI PARCIALMENTE, SIN LA AUTORIZACIÓN ESCRITA DEUL ABORNORIO DE LO BINITE. ESTE INFORME NO ES VÁLIDO SIN LA FIRMA ORIGINAL DE QUIEN REVISÓ Y APROBÓ, Y EL SELLO.

P₂ = Peso del recipiente mas muestra seca


ENSAYO PARA DETERMINAR EL CORTE DIRECTO EN ROCA POR DIACLASA O PLANO DE DISCONTINUIDAD


METODO ISRM

Referencia SYP-PT-DT-I 040-3/14

SUB DIRECTOR TECNICO

DZ REVISÓ Y APROBÓ ING. JOHN O. ORDUZ GÓMEZ

REPORTE DE ENSAYO: INF7461-400-A13-S11-M4-CD

ESTUDIO DE SUELOS

Colombianas de Ingeniería S.A.S. Versión 2: Mayo de 2016

Cto. 937 de 2015

Estudios de vulnerabilidad sísmica y los diseños de reforzamiento estructural de los elementos estructurales y no estructurales con fundamento en el reglamento colombiano de diseño y construcción sismo resistente NSR-10 de edificaciones del SENA Fase 3, localizadas en la ciudad de Bogotá D.C., ubicada en zona de amenaza sísmica intermedia, en los grupos 1,2,3 y 4

ANEXO C NORMALIZACIÓN PRUEBA DEL SPT

RESISTENCIA DEL ENSAYO DE PENETRACIÓN ESTANDAR - SENA PALOQUEMAO Profundidad (m) golpes/pie Cn Seed-Ncorr Φ` equiv σ,' η_1 σ_{v} N_{45} γSPT Muestra NF Rs Sondeo γ 1 2 (Ton/m²) de media 3 (Ton/m²) Idriss USA Japón USA Japón Kishida а 5 12 0.90 1.35 1.125 14 26 n.e. 1.850 1.850 2.08 2.08 0.21 1.961 0.75 0.63 38 39.90 1 2 1.80 2.25 2.025 6 6 4 10 n.e. 1.850 1.850 3.75 3.75 0.37 1.601 0.75 0.63 12 10 29.14 3 2.70 2.925 5 5 7 12 1.850 5.41 5.41 0.54 12 10 1 3.15 n.e. 1.850 1.376 0.75 0.63 29.14 1 4 3.60 4.05 3.825 3 4 4 8 1.850 1.850 7.08 7.08 0.71 1.212 0.75 0.63 7 6 25.95 n.e. 5 4.60 4.825 3 3 3 8.93 0.89 1 5.05 6 1.850 1.850 8.93 1.070 0.75 0.63 4 4 23.94 n.e. 6 5.925 4 4 5 1.700 1.700 10.07 6 5 1 5.70 6.15 9 n.e. 10.07 1.01 0.997 0.75 0.63 25.00 7 6.80 7.25 7.025 4 8 8 16 n.e. 1.850 1.850 13.00 13.00 1.30 0.895 0.75 0.63 10 8 27.65 2 1 2.50 3.00 2.750 4 3 3 6 1.4 1.850 1.850 5.09 3.74 0.37 1.603 0.75 0.63 7 6 25.95 2 2 3.40 4.00 3.700 5 6 6 12 1.4 1.850 1.850 6.85 4.55 0.45 1.483 0.75 0.63 13 11 29.83 2 3 4.40 5.00 4.700 4 3 3 6 1.4 1.850 1.850 8.70 5.40 0.54 1.378 0.75 0.63 6 5 25.00 5.800 2 2 4 2 4 5.50 6.10 1 1.4 1.850 1.850 10.73 6.33 0.63 1.280 0.75 0.63 3 3 22.75 2 5 6.70 7.50 7.100 2 2 2 4 1.4 1.850 1.850 13.14 7.44 0.74 1.181 0.75 0.63 3 2 21.32 1.75 2.050 20 1.594 0.75 3 1 2.35 7 9 11 n.e. 1.850 1.850 3.79 3.79 0.38 0.63 23 19 34.49 16 23 3 2 2.85 3.45 3.150 18 41 1.890 1.890 5.95 5.95 0.60 1.318 0.75 0.63 40 33 40.69 n.e. 3 3 3.75 4.35 4.050 5 8 7 15 1.850 1.850 7.49 7.49 0.75 1.177 0.75 13 11 n.e. 0.63 29.83 4.95 5.55 22.75 3 4 5.250 3 3 2 5 n.e. 1.850 1.850 9.71 9.71 0.97 1.018 0.75 0.63 3 3 3 5 6.15 6.75 6.450 2 2 2 4 1.850 1.850 11.93 11.93 1.19 0.929 0.75 0.63 2 2 21.32 n.e. 3 6 7.30 7.90 7.600 2 3 3 6 1.700 1.700 12.92 12.92 1.29 0.898 0.75 0.63 4 3 22.75 n.e. 1.425 10 10 10 2.52 4 2 1.20 1.65 20 3.2 1.770 1.770 2.52 0.25 1.843 0.75 0.63 27 23 36.45

5

8

10

7

3

17

10

12

14

19

17

4

7

31

20

45

24

12

3.2

3.2

3.2

3.2

3.2

3.2

3.2

3.2

3.2

3.2

3.2

3.2

1.800

1.770

1.770

1.770

1.770

1.770

1.770

1.770

1.770

1.770

1.770

1.770

1.800

1.770

1.770

1.770

1.770

1.770

1.770

1.770

1.770

1.770

1.770

1.770

4.73

6.42

8.19

9.96

12.91

14.74

15.53

21.32

22.97

23.76

24.56

26.33

4.73

5.99

6.76

7.53

8.82

9.61

9.96

12.47

13.19

13.54

13.88

14.65

0.47

0.60

0.68

0.75

0.88

0.96

1.00

1.25

1.32

1.35

1.39

1.47

1.459

1.314

1.240

1.174

1.077

1.024

1.003

0.912

0.889

0.879

0.869

0.847

0.75

0.75

0.75

0.75

0.75

0.75

0.75

0.75

0.75

0.75

0.75

0.75

0.63

0.63

0.63

0.63

0.63

0.63

0.63

0.63

0.63

0.63

0.63

0.63

10

11

13

16

13

3

5

21

13

29

15

7

9

9

10

13

11

2

4

17

11

24

13

6

28.42

28.42

29.14

31.12

29.83

21.32

23.94

33.44

29.83

36.91

31.12

25.95

4

4

4

4

4

4

4

4

4

4

4

4

3

4

5

6

7

8

9

13

14

15

16

17

2.40

3.40

4.40

5.40

7.07

8.10

8.55

11.82

12.75

13.20

13.65

14.65

2.85

3.85

4.85

5.85

7.52

8.55

9.00

12.27

13.20

13.65

14.10

15.10

2.625

3.625

4.625

5.625

7.295

8.325

8.775

3 5

4 5 7

5 6

8 9

2 2 2

4

18 | 14 | 10

6 7

12.045 14 14

12.975 20

13.425 29

13.875

14.875

13 | 10

4

13 7

24 21

Candaa	Mussalus	Pro	fundidad	d (m)	go	lpes/	pie	N ₄₅	NF	γSPT	٥,	σ_{v}	σ,'	Rs	Cn Seed-	r]1	No	orr	Φ` equiv
Sondeo	Muestra	de	а	media	1	2	3	IN45	NF	үзгі	γ	(Ton/m²)	(Ton/m²)	ns	Idriss	USA	Japón	USA	Japón	Kishida
5	2	1.25	1.70	1.475	2	2	4	6	2.12	1.920	1.920	2.83	2.83	0.28	1.773	0.75	0.63	7	6	25.95
5	4	2.20	2.65	2.425	3	4	5	9	2.12	1.920	1.920	4.66	4.35	0.44	1.510	0.75	0.63	10	8	27.65
5	8	6.73	7.18	6.955	6	6	6	12	2.12	1.920	1.920	13.35	8.52	0.85	1.098	0.75	0.63	9	8	27.65
5	9	8.00	8.45	8.225	4	6	5	11	2.12	1.920	1.920	15.79	9.69	0.97	1.019	0.75	0.63	8	7	26.83
5	11	10.67	11.12	10.895	3	3	3	6	2.12	1.920	1.920	20.92	12.14	1.21	0.922	0.75	0.63	4	3	22.75
5	12	12.25	12.70	12.475	11	12	12	24	2.12	1.920	1.920	23.95	13.60	1.36	0.877	0.75	0.63	15	13	31.12
5	13	13.70	14.15	13.925	9	8	9	17	2.12	1.920	1.920	26.74	14.93	1.49	0.840	0.75	0.63	10	8	27.65
5	14	14.70	15.15	14.925	7	8	8	16	2.12	1.920	1.920	28.66	15.85	1.59	0.816	0.75	0.63	9	8	27.65
6	2	1.00	1.45	1.225	5	6	6	12	3	1.940	1.940	2.38	2.38	0.24	1.880	0.75	0.63	16	14	31.73
6	3	2.25	2.70	2.475	11	13	18	31	3	1.940	1.940	4.80	4.80	0.48	1.449	0.75	0.63	33	28	38.66
6	4	3.50	3.95	3.725	7	8	8	16	3	1.940	1.940	7.23	6.50	0.65	1.264	0.75	0.63	15	12	30.49
6	5	4.75	5.20	4.975	9	7	6	13	3	1.940	1.940	9.65	7.68	0.77	1.162	0.75	0.63	11	9	28.42
6	6	6.10	6.55	6.325	7	8	8	16	3	1.940	1.940	12.27	8.95	0.89	1.068	0.75	0.63	12	10	29.14
6	7	7.35	7.80	7.575	4	4	4	8	3	1.940	1.940	14.70	10.12	1.01	0.995	0.75	0.63	5	4	23.94
6	9	10.10	10.55	10.325	10	14	14	28	3	1.940	1.940	20.03	12.71	1.27	0.904	0.75	0.63	18	15	32.32
6	10	11.35	11.80	11.575	11	12	11	23	3	1.940	1.940	22.46	13.88	1.39	0.869	0.75	0.63	14	12	30.49
6	11	12.60	13.05	12.825	7	8	7	15	3	1.610	1.610	20.65	10.82	1.08	0.968	0.75	0.63	10	9	28.42
6	12	13.85	14.30	14.075	8	7	6	13	3	1.940	1.940	27.31	16.23	1.62	0.806	0.75	0.63	7	6	25.95
6	13	15.30	16.10	15.700	6	7	8	15	3	1.940	1.940	30.46	17.76	1.78	0.771	0.75	0.63	8	7	26.83
6	14	17.10	17.55	17.325	6	8	7	15	3	1.990	1.990	34.48	20.15	2.02	0.720	0.75	0.63	8	6	25.95
6	15	18.55	19.10	18.825	7	9	6	15	3	1.940	1.940	36.52	20.70	2.07	0.709	0.75	0.63	7	6	25.95
6	16	20.05	20.50	20.275	12	14	18	32	3	1.940	1.940	39.33	22.06	2.21	0.684	0.75	0.63	16	13	31.12
7	1	0.50	0.95	0.725	4	4	7	11	4	1.920	1.920	1.39	1.39	0.14	2.000	0.75	0.63	16	13	31.12
7	2	1.75	2.30	2.025	6	5	6	11	4	1.920	1.920	3.89	3.89	0.39	1.578	0.75	0.63	13	10	29.14
7	3	3.10	3.55	3.325	8	7	9	16	4	1.920	1.920	6.38	6.38	0.64	1.275	0.75	0.63	15	12	30.49
7	4	4.35	4.80	4.575	6	9	7	16	4	1.920	1.920	8.78	8.21	0.82	1.121	0.75	0.63	13	11	29.83
7	5	5.60	6.05	5.825	7	8	10	18	4	1.920	1.920	11.18	9.36	0.94	1.041	0.75	0.63	14	11	29.83
7	6	6.85	7.30	7.075	6	5	6	11	4	1.920	1.920	13.58	10.51	1.05	0.980	0.75	0.63	8	6	25.95
7	7	8.10	8.55	8.325	6	6	5	11	4	1.920	1.920	15.98	11.66	1.17	0.939	0.75	0.63	7	6	25.95
7	8	9.30	9.75	9.525	7	9	9	18	4	1.920	1.920	18.29	12.76	1.28	0.903	0.75	0.63	12	10	29.14
7	9	10.55	11.00	10.775	6	5	6	11	4	1.920	1.920	20.69	13.91	1.39	0.868	0.75	0.63	7	5	25.00
7	10	12.00	12.45	12.225	10	16	15	31	4	1.920	1.920	23.47	15.25	1.52	0.831	0.75	0.63	19	16	32.89
7	11	13.45	13.90	13.675	9	7	8	15	4	1.920	1.920	26.26	16.58	1.66	0.798	0.75	0.63	8	7	26.83
7	12	14.90	15.35	15.125	12	18	20	38	4	1.920	1.920	29.04	17.92	1.79	0.767	0.75	0.63	21	18	33.97

Od	M	Pro	fundidad	d (m)	go	lpes/	pie	NI.	МЕ	ODT		σ_{v}	σ,'	D-	Cn Seed-	r]1	No	orr	Φ` equiv
Sondeo	Muestra	de	а	media	1	2	3	N ₄₅	NF	γSPT	γ	(Ton/m²)	(Ton/m²)	Rs	Idriss	USA	Japón	USA	Japón	Kishida
8	1	0.55	1.00	0.775	6	7	9	16	n.e.	1.880	1.880	1.46	1.46	0.15	2.000	0.75	0.63	24	20	35.00
8	2	1.55	2.00	1.775	9	6	7	13	n.e.	1.880	1.880	3.34	3.34	0.33	1.672	0.75	0.63	16	13	31.12
8	3	2.55	3.00	2.775	7	9	9	18	n.e.	1.880	1.880	5.22	5.22	0.52	1.398	0.75	0.63	18	15	32.32
8	4	3.55	4.00	3.775	8	8	10	18	n.e.	1.880	1.880	7.10	7.10	0.71	1.210	0.75	0.63	16	13	31.12
8	5	4.55	5.00	4.775	5	6	6	12	n.e.	1.880	1.880	8.98	8.98	0.90	1.066	0.75	0.63	9	7	26.83
8	6	5.55	6.00	5.775	7	6	5	11	n.e.	1.880	1.880	10.86	10.86	1.09	0.967	0.75	0.63	7	6	25.95
8	7	6.55	7.00	6.775	6	5	7	12	n.e.	1.880	1.880	12.74	12.74	1.27	0.903	0.75	0.63	8	6	25.95
8	8	7.00	7.50	7.250	6	5	5	10	n.e.	1.880	1.880	13.63	13.63	1.36	0.876	0.75	0.63	6	5	25.00
9	1	1.00	1.45	1.225	7	6	8	14	n.e.	1.820	1.820	2.23	2.23	0.22	1.919	0.75	0.63	20	16	32.89
9	2	2.25	2.70	2.475	10	12	11	23	n.e.	1.820	1.820	4.50	4.50	0.45	1.488	0.75	0.63	25	21	35.49
9	3	3.50	3.95	3.725	11	11	12	23	n.e.	1.820	1.820	6.78	6.78	0.68	1.238	0.75	0.63	21	17	33.44
9	4	4.75	5.20	4.975	7	9	8	17	n.e.	1.820	1.820	9.05	9.05	0.91	1.061	0.75	0.63	13	11	29.83
9	5	6.00	6.45	6.225	12	16	14	30	n.e.	1.820	1.820	11.33	11.33	1.13	0.950	0.75	0.63	21	17	33.44
9	6	7.25	7.70	7.475	8	7	7	14	n.e.	1.820	1.820	13.60	13.60	1.36	0.877	0.75	0.63	9	7	26.83
9	7	7.70	8.15	7.925	6	7	6	13	n.e.	1.820	1.820	14.42	14.42	1.44	0.854	0.75	0.63	8	6	25.95
10	1	0.35	0.80	0.575	5	5	6	11	4	1.800	1.800	1.04	1.04	0.10	2.000	0.75	0.63	16	13	31.12
10	2	1.60	2.05	1.825	8	8	6	14	4	1.800	1.800	3.29	3.29	0.33	1.682	0.75	0.63	17	14	31.73
10	3	2.85	3.25	3.050	9	8	7	15	4	1.800	1.800	5.49	5.49	0.55	1.367	0.75	0.63	15	12	30.49
10	4	4.05	4.50	4.275	6	5	7	12	4	1.800	1.800	7.70	7.42	0.74	1.183	0.75	0.63	10	8	27.65
10	5	5.30	5.75	5.525	7	8	8	16	4	1.800	1.800	9.95	8.42	0.84	1.105	0.75	0.63	13	11	29.83
10	6	6.55	7.05	6.800	12	16	20	36	4	1.800	1.800	12.24	9.44	0.94	1.035	0.75	0.63	27	23	36.45
10	7	7.85	8.30	8.075	7	6	7	13	4	1.800	1.800	14.54	10.46	1.05	0.982	0.75	0.63	9	7	26.83
10	8	9.10	9.55	9.325	6	8	7	15	4	1.800	1.800	16.79	11.46	1.15	0.946	0.75	0.63	10	8	27.65
10	9	10.35	11.15	10.750	7	8	7	15	4	1.800	1.800	19.35	12.60	1.26	0.908	0.75	0.63	10	8	27.65
10	10	11.95	12.75	12.350	6	7	7	14	4	1.800	1.800	22.23	13.88	1.39	0.869	0.75	0.63	9	7	26.83
10	11	13.55	14.00	13.775	10	6	9	15	4	1.800	1.800	24.80	15.02	1.50	0.837	0.75	0.63	9	7	26.83
11	1	0.40	0.85	0.625	6	8	8	16	n.e.	1.800	1.800	1.13	1.13	0.11	2.000	0.75	0.63	24	20	35.00
11	2	1.65	2.05	1.850	5	6	7	13	n.e.	1.800	1.800	3.33	3.33	0.33	1.673	0.75	0.63	16	13	31.12
11	3	2.85	3.25	3.050	6	8	5	13	n.e.	1.800	1.800	5.49	5.49	0.55	1.367	0.75	0.63	13	11	29.83
11	5	5.30	6.10	5.700	6	5	7	12	n.e.	1.800	1.800	10.26	10.26	1.03	0.990	0.75	0.63	8	7	26.83
11	6	6.90	7.35	7.125	7	6	7	13	n.e.	1.800	1.800	12.83	12.83	1.28	0.901	0.75	0.63	8	7	26.83
11	8	9.55	10.05	9.800	6	5	5	10	n.e.	1.800	1.800	17.64	17.64	1.76	0.773	0.75	0.63	5	4	23.94
11	9	10.80	11.25	11.025	6	7	7	14	n.e.	1.800	1.800	19.85	19.85	1.98	0.726	0.75	0.63	7	6	25.95
11	10	12.25	12.70	12.475	12	18	18	36	n.e.	1.800	1.800	22.46	22.46	2.25	0.677	0.75	0.63	18	15	32.32
11	11	13.70	14.15	13.925	18	20	27	47	n.e.	1.800	1.800	25.07	25.07	2.51	0.633	0.75	0.63	22	18	33.97
11	12	15.15	15.60	15.375	17	15	12	27	n.e.	1.800	1.800	27.68	27.68	2.77	0.593	0.75	0.63	12	10	29.14

ESTUDIO DE SUELOS

Colombianas de Ingeniería S.A.S. Versión 2: Mayo de 2016

Cto. 937 de 2015

Estudios de vulnerabilidad sísmica y los diseños de reforzamiento estructural de los elementos estructurales y no estructurales con fundamento en el reglamento colombiano de diseño y construcción sismo resistente NSR-10 de edificaciones del SENA Fase 3, localizadas en la ciudad de Bogotá D.C., ubicada en zona de amenaza sísmica intermedia, en los grupos 1,2,3 y 4

ANEXO D EVALUACIÓN DE LICUACIÓN

ANEXO D - EVALUACIÓN DE POTENCIAL DE LICUACIÓN (IDRISS & BOULANGER, 2008)

 Sondeo
 S-4

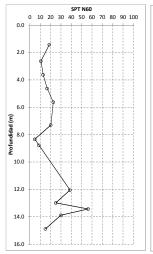
 Parámetros de entrada
 0.18

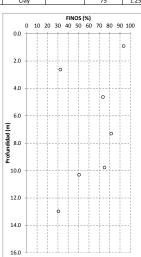
 Aceleración pico del terreno
 0.18

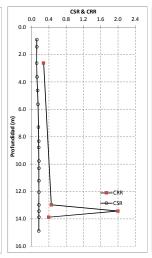
 Magnitud del sismo M=
 6,9

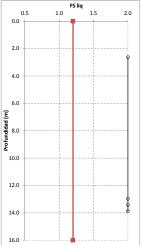
 Profundidad NF (m)
 3.2

 Peso unitario 1(kN/m³)
 17


 Pesó unitario 2(kN/m³)
 17


 Diámetro de la perforación (mm)
 100

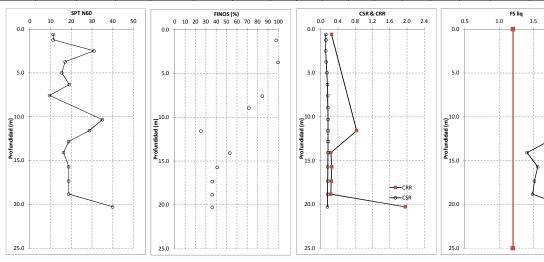

Requiere corrección (SI/NO) NO


Rod lengths assumed equal to the depth plus 1.5 m (for the above ground extension)

No. Muestra SPT	Profundidad media (m)	Medición de N	Tipo de suelo USCS	"Arcilla" "no saturado" "unreliable"	Contenido de finos (%)	Relación de energia ER(%)	CE	СВ	CR	cs	N60	σνς (kPa)	σ vc' (kPa)	CN	(N1)60	∆N por contenido de finos	(N1)60-cs	Coeff reduc esfuerzo, rd	CSR	MSF para arenas	K para arenas	CRR para M=7.5 & ovc'=1 atm	CRR	Factor de seguridad	Licuable
			-	-																					I
1	0.900		CL	Clay	93.5	75	1.25	1	0.75	1.00		15	15	1.64	n.a.	n.a.	n.a.	1.00	0.117	1.17	1.10	n.a.	n.a.	n.a.	NO
	1.425	20	CL	Clay		75	1.25	1	0.75	1.00	18.8	24	24	1.46	n.a.	n.a.	n.a.	0.99	0.116	1.17	1.10	n.a.	n.a.	n.a.	NO
3	2.625	10	SC		32.5	75	1.25	1	0.85	1.00	10.6	45	45	1.43	15.2	5.4	20.61	0.98	0.114	1.17	1.10	0.214	0.275	2.00	NO
4	3.625	12	CL	Clay		75	1.25	1	0.85	1.00	12.8	62	57	1.16	n.a.	n.a.	n.a.	0.96	0.121	1.17	1.10	n.a.	n.a.	n.a.	NO
5	4.625	14	CH	Clay	73.5	75	1.25	1	0.95	1.00	16.6	79	65	1.12	n.a.	n.a.	n.a.	0.95	0.135	1.17	1.10	n.a.	n.a.	n.a.	NO
6	5.625	19	CL	Clay		75	1.25	1	0.95	1.00	22.6	96	72	1.09	n.a.	n.a.	n.a.	0.93	0.145	1.17	1.10	n.a.	n.a.	n.a.	NO
7	7.295	17	CL	Clay	81.5	75	1.25	1	0.95	1.00	20.2	124	84	1.05	n.a.	n.a.	n.a.	0.91	0.157	1.17	1.05	n.a.	n.a.	n.a.	NO
8	8.325	4	CL	Clay		75	1.25	1	0.95	1.00	4.8	142	91	1.03	n.a.	n.a.	n.a.	0.89	0.161	1.17	1.03	n.a.	n.a.	n.a.	NO
9	8.775	7	CL	Clay		75	1.25	1	1	1.00	8.8	149	94	1.02	n.a.	n.a.	n.a.	0.88	0.162	1.17	1.02	n.a.	n.a.	n.a.	NO
10	9.775		CL	Clay	75.1	75	1.25	1	1	1.00		166	102	1.00	n.a.	n.a.	n.a.	0.86	0.164	1.17	1.00	n.a.	n.a.	n.a.	NO
11	10.3		CL	Clay	50.5	75	1.25	1	1	1.00		175	105	0.99	n.a.	n.a.	n.a.	0.85	0.165	1.17	0.99	n.a.	n.a.	n.a.	NO
12	11.21		CL	Clav		75	1.25	1	1	1.00		191	112	0.97	n.a.	n.a.	n.a.	0.83	0.166	1.17	0.97	n.a.	n.a.	n.a.	NO
13	12.045	31	CL	Clav		75	1.25	1	1	1.00	38.8	205	118	0.96	n.a.	n.a.	n.a.	0.82	0.166	1.17	0.95	n.a.	n.a.	n.a.	NO
14	12.975	20	SC		30.5	75	1.25	1	1	1.00	25.0	221	125	0.92	23.1	5.4	28.49	0.80	0.166	1.17	0.96	0.405	0.455	2.00	NO
15	13.425	45	SC			75	1.25	1	1	1.00	56.3	228	128	0.94	52.9	0.0	52.86	0.79	0.165	1.17	0.93	2.000	2.000	2.00	NO
16	13.875	24	SC			75	1.25	1	1	1.00	30.0	236	131	0.90	27.1	0.0	27.14	0.78	0.165	1.17	0.95	0.351	0.392	2.00	NO
17	14.875	12	CL	Clay		75	1.25	1	1	1.00	15.0	253	138	0.92	n.a.	n.a.	n.a.	0.76	0.163	1.17	0.91	n.a.	n.a.	n.a.	NO

Diámetro de la perforación (mm) 100

Requiere corrección (SI/NO) NO


17

17

Rod lengths assumed equal to the depth plus 1.5 m (for the above ground extension)

No. Muestra SPT	Profundidad media (m)	Medición de N	Tipo de suelo USCS	"Arcilla" "no saturado" "unreliable"	Contenido de finos (%)	Relación de energia ER(%)	CE	СВ	CR	cs	N60	σνς (kPa)	σνc' (kPa)	CN	(N1)60	∆N por contenido de finos	(N1)60-cs	Coeff reduc esfuerzo, rd	CSR	MSF para arenas	K para arenas	CRR para M=7.5 & ovc'=1 atm	CRR	Factor de seguridad	Licuable
1	0.600	12	GC			75	1.25	1	0.75	1.00	11.3	10	10	1.70	19.1	0.0	19.13	1.00	0.117	1.17	1.10	0.196	0.252	2.00	NO
2	1.225	12	CL	Clav	97.9	75	1.25	1	0.75	1.00	11.3	21	21	1.52	n.a.	n.a.	n.a.	0.99	0.117	1.17	1.10	n.a.	n.a.	n.a.	NO
3	2.475	31	CL	Clay	37.3	75	1.25	1	0.73	1.00	31.0	42	42	1.26	n.a.	n.a.	n.a.	0.98	0.115	1.17	1.10	n.a.		n.a.	NO
4	3.725	16	CL	Clay	99.7	75	1.25	1	0.85	1.00	17.0	63	56	1.17	n.a.	n.a.	n.a.	0.96	0.113	1.17	1.10	n.a.	n.a.	n.a.	NO
- 4	4.975	13	CL	Clay	33.7	75	1.25	1	0.85	1.00	15.4	85	65	1.17	n.a.	n.a.	n.a.	0.94	0.127	1.17	1.10	n.a.	n.a.	n.a.	NO
6	6.325	16	CL	Clay		75	1.25	1	0.95	1.00	19.0	108	75	1.08	n.a.		n.a.	0.92	0.143	1.17	1.09			n.a.	NO
7	7.575	10	CL	Clay	84.5	75	1.25	1	0.95	1.00			84			n.a.				1.17		n.a.	n.a.		
,	8.950	٥	CL		71.5		1.25	1	0.95	1.00	9.5	129 152	94	1.05	n.a.	n.a.	n.a.	0.90	0.162	1.17	1.05	n.a.	n.a.	n.a.	NO NO
8		20	CL	Clay	/1.5	75		1	1		25.0	_	-	1.02	n.a.	n.a.	n.a.		0.166			n.a.	n.a.	n.a.	NO NO
9	10.325	28	CL	Clay	25.2	75	1.25	1	1	1.00	35.0	176	104	0.99	n.a.	n.a.	n.a.	0.85	0.168	1.17	0.99	n.a.	n.a.	n.a.	NO NO
10	11.575	23	SC	Class	25.2	75	1.25	1	1	1.00	28.8	197	113	0.96	27.7	5.1	32.78	0.83	0.169	1.17	0.97	0.731	0.834	2.00	NO NO
11	12.825	15	CL	Clay		75	1.25	1	1	1.00	18.8	218	122	0.95	n.a.	n.a.	n.a.	0.80	0.168	1.17	0.95	n.a.	n.a.	n.a.	NO
12	14.075	13	ML		53.1	75	1.25	1	1	1.00	16.3	239	131	0.89	14.5	5.6	20.13	0.78	0.167	1.17	0.97	0.207	0.235	1.41	NO
13	15.7	15	SM		40.9	75	1.25	1	1	1.00	18.8	267	142	0.86	16.2	5.6	21.79	0.75	0.164	1.17	0.95	0.230	0.256	1.56	NO
14	17.325	15	SM		36.1	75	1.25	1	1	1.00	18.8	295	154	0.83	15.6	5.5	21.16	0.72	0.161	1.17	0.94	0.221	0.244	1.51	NO
15	18.825	15	SM		36.1	75	1.25	1	1	1.00	18.8	320	165	0.81	15.2	5.5	20.68	0.69	0.158	1.17	0.93	0.214	0.234	1.49	NO
16	20.275	32	SM		36.1	75	1.25	1	1	1.00	40.0	345	175	0.85	33.9	5.5	39.40	0.67	0.154	1.17	0.84	2.000	1.962	2.00	NO

2.0

ESTUDIO DE SUELOS

Colombianas de Ingeniería S.A.S. Versión 2: Mayo de 2016

Cto. 937 de 2015

Estudios de vulnerabilidad sísmica y los diseños de reforzamiento estructural de los elementos estructurales y no estructurales con fundamento en el reglamento colombiano de diseño y construcción sismo resistente NSR-10 de edificaciones del SENA Fase 3, localizadas en la ciudad de Bogotá D.C., ubicada en zona de amenaza sísmica intermedia, en los grupos 1,2,3 y 4

ANEXO E MEMORIAS DE CÁLCULO - CONSOLIDACIONES

PROYECTO: SENA COMPLEJO PALOQUEMAO

SONDEO: S5 γt (kN/m³): 18.21

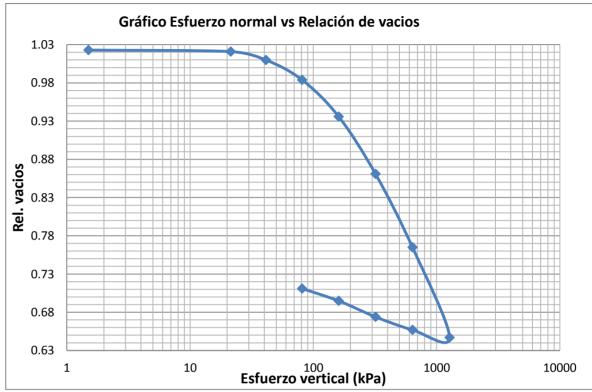
0.811

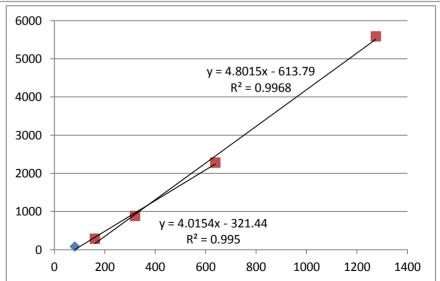
MUESTRA: M5

0.711

PROFUNDIDAD:

3.00 - 3.50 m


Esfuerzo (kg/cm2)	Esfuerzo (kPa)	Def (%)	ΔW	e
0.015	1.5	0.00%	0.00	1.023
0.214	21.4	0.10%	1.15	1.021
0.413	41.3	0.62%	16.30	1.010
0.811	81.1	1.93%	80.17	0.984
1.607	160.7	4.31%	287.74	0.936
3.199	319.9	7.99%	884.30	0.861
6.383	638.3	12.75%	2280.52	0.765
12.751	1275.1	18.59%	5587.13	0.647
6.383	638.3	18.10%		0.657
3.199	319.9	17.27%		0.674
1.607	160.7	16.19%		0.695


15.42%

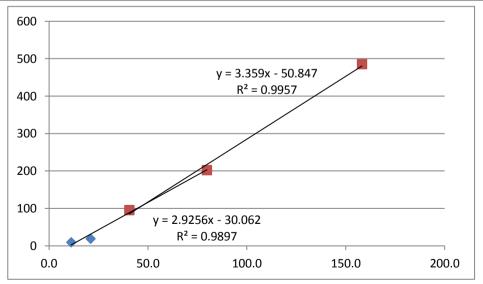
	Linea 1	Linea 2
Pendiente	4.015	4.802
Intersecto	-321.437	-613.793
R2	0.995	0.997

81.1

σ'p (kPa)	371.9
Cc	0.356
Cr	0.053
σ'v (kPa)	59.2
OCR	6.28

 SONDEO:
 S5

 γt (kN/m³):
 15.5

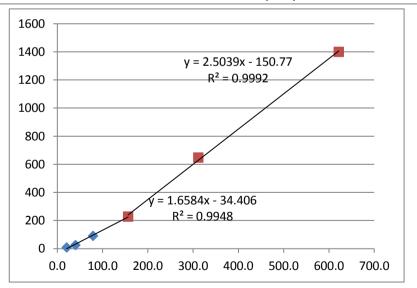

MUESTRA: M10 **PROFUNDIDAD:** 10.00 - 10.60 m

Esfuerzo (kg/cm2)	Esfuerzo (kPa)	Def (%)	ΔW	е
0.014	1.4	0.00%	0.00	1.952
0.112	11.2	1.50%	9.45	1.908
0.210	21.0	2.68%	19.00	1.873
0.406	40.6	5.78%	95.48	1.782
0.798	79.8	9.14%	202.27	1.682
1.582	158.2	13.22%	485.52	1.562
0.798	79.8	12.79%		1.575
0.406	40.6	12.01%		1.598
0.210	21.0	11.16%		1.623

1.98					
1.88					
. 1.70					
1.68					
-					
1.68					
1.58					
			<u> </u>		
1.48					

	Linea 1	Linea 2
Pendiente	2.926	3.359
Intersecto	-30.062	-50.847
R2	0.991	0.996

σ'p (kPa)	48.0
Cc	0.372
Cr	0.070
σ'v (kPa)	159.7
OCR	0.30


SONDEO: **S**6 γ t (kN/m³): 19.45 **MUESTRA:** PROFUNDIDAD: M8 8.60 - 9.30 m

Esfuerzo (kg/cm2)	Esfuerzo (kPa)	Def (%)	$\Delta \mathbf{W}$	е
0.012	1.2	0.00%	0.00	0.766
0.206	20.6	0.77%	8.39	0.752
0.400	40.0	1.61%	25.45	0.737
0.788	78.8	3.14%	90.88	0.710
1.563	156.3	5.08%	228.05	0.676
3.114	311.4	7.85%	647.76	0.627
6.217	621.7	10.85%	1399.65	0.574
3.114	311.4	10.52%		0.580
1.563	156.3	9.91%		0.591
0.788	78.8	9.11%		0.605
0.400	40.0	8.41%		0.617

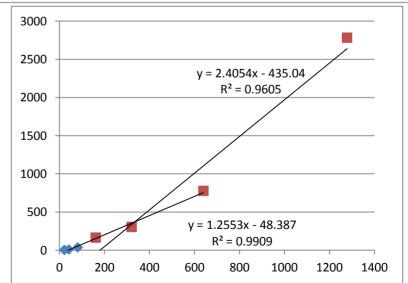
	Gráfico Esfuerzo normal vs Relación de vacios	
0.80		
0.75		
છ 0.70		
Rel. vacios 0.70		
Na Va		
e .		
2 0.65		
0.60		+++
0.55		
	.0 10.0 Esfuerzo vertical (kPa)	1000.0

Linea 1 Linea 2 Pendiente 2.504 1.658 -150.773 Intersecto -34.406 R2 0.999 0.995

σ'p (kPa)	137.6
Cc	0.170
CC	0.170
Cr	0.036
σ'v (kPa)	174.1
OCR	0.79

 SONDEO:
 \$11

 γt (kN/m³):
 16.33


MUESTRA: M7 **PROFUNDIDAD:** 8.15 - 8.75 m

Esfuerzo (kg/cm2)	Esfuerzo (kPa)	Def (%)	ΔW	е
0.015	1.5	0.00%	0.00	1.554
0.214	21.4	0.96%	3.89	1.530
0.413	41.3	1.99%	9.60	1.503
0.812	81.2	4.38%	36.73	1.443
1.610	161	7.19%	165.71	1.371
3.206	320.6	11.70%	304.69	1.256
6.397	639.7	17.50%	777.20	1.107
12.779	1277.9	24.40%	2783.18	0.931
6.397	639.7	23.46%	8614.98	0.955
3.206	320.6	21.71%		1.000
1.610	161	19.98%		1.044
0.812	81.2	17.64%		1.104

	Gráfico Esfuerzo	normal vs Relación de va	acios	
1.60				
1.50				
1.40				
1.30 Se 1.20				
1.20				
1.10				
1.00				
0.90				
1	10	Esfuerzo vertical (kPa)	1000	10000

Linea 1 Linea 2
Pendiente 1.255 2.405
Intersecto -48.387 -435.037
R2 0.991 0.961

σ'p (kPa)	336.2
Cc	0.541
Cr	0.145
σ'v (kPa)	138.0
OCR	2.44

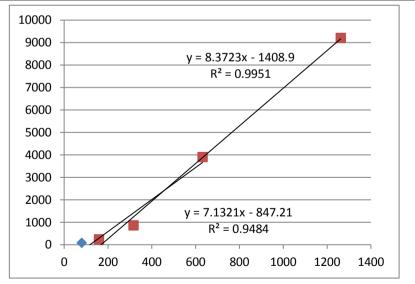
 SONDEO:
 S11

 γt (kN/m³):
 17.07

MUESTRA: M13

PROFUNDIDAD:

16.60 - 17.20 m


Esfuerzo (kg/cm2)	Esfuerzo (kPa)	Def (%)	ΔW	е
0.012	1.2	0.00%	0.00	1.378
0.209	20.9	0.57%	6.30	1.365
0.406	40.6	1.05%	14.76	1.353
0.800	80	2.39%	80.80	1.321
1.588	158.8	4.37%	236.41	1.274
3.165	316.5	7.98%	857.92	1.189
6.317	631.7	16.21%	3901.84	0.993
12.623	1262.3	25.93%	9204.84	0.761
6.317	631.7	25.48%		0.772
3.165	316.5	24.51%		0.795
1.588	158.8	23.62%		0.816
0.800	80	21.87%		0.858

		G	ráfico Esfuerz	o normal vs Relación de vacios	
1	L.40	•			
1	L.30				
1	L. 2 0				
Rel. vacios	L. 10				
Rel. 1	L.00				
0).90				
0	0.80				
0	0.70				
	1		10	Esfuerzo vertical (kPa)	10000

452.9

1.57

Сс	0.712
Cr	0.081
σ'v (kPa)	288.5

σ'p (kPa)

OCR

ESTUDIO DE SUELOS

Versión 2: Mayo de 2016

Cto. 937 de 2015

Estudios de vulnerabilidad sísmica y los diseños de reforzamiento estructural de los elementos estructurales y no estructurales con fundamento en el reglamento colombiano de diseño y construcción sismo resistente NSR-10 de edificaciones del SENA Fase 3, localizadas en la ciudad de Bogotá D.C., ubicada en zona de amenaza sísmica intermedia, en los grupos 1,2,3 y 4

ANEXO F CALCULOS DE CAPACIDAD PORTANTE Y ASENTAMIENTOS

ANEXO F-1. CALCULO DE CAPACIDAD PORTANTE PARA CIMIENTOS CUADRADOS - METODO DE MEYERHOF

Metodo de Terzaghi - Cimientos Cuadrados

L (m)	В
F.S	3.00

Cu (kPa)	φ (º)	B (m)	Df (m)	γ1 (kN/m3)	γ2 (kN/m3)	Nc	Nq	Νγ	Qu (kPa)	Qadm (kPa)	Padm (kN)
67.7	0.0	0.50	1.10	17.30	17.30	5.14	1.00	0.00	471.4	157.1	39.3
67.7	0.0	0.75	1.10	17.30	17.30	5.14	1.00	0.00	471.4	157.1	88.4
67.7	0.0	1.00	1.10	17.30	17.30	5.14	1.00	0.00	471.4	157.1	157.1
67.7	0.0	1.25	1.10	17.30	17.30	5.14	1.00	0.00	471.4	157.1	245.5
67.7	0.0	1.50	1.10	17.30	17.30	5.14	1.00	0.00	471.4	157.1	353.6
67.7	0.0	1.75	1.10	17.30	17.30	5.14	1.00	0.00	471.4	157.1	481.2
67.7	0.0	2.00	1.10	17.30	17.30	5.14	1.00	0.00	471.4	157.1	628.5
67.7	0.0	2.25	1.10	17.30	17.30	5.14	1.00	0.00	471.4	157.1	795.5
67.7	0.0	2.50	1.10	17.30	17.30	5.14	1.00	0.00	471.4	157.1	982.1
67.7	0.0	3.00	1.10	17.30	17.30	5.14	1.00	0.00	471.4	157.1	1414.2

Metodo de Meyerhof - Cimientos Cuadrados

Cu	ф	В	Df	γ1	γ2	NI-	NI		Qu	Qadm	Padm
(kPa)	(°)	(m)	(m)	(kN/m3)	(kN/m3)	Nc	Nq	Νγ	(kPa)	(kPa)	(kN)
67.7	0.0	0.50	1.10	17.30	17.30	5.14	1.00	0.00	625.0	208.3	52.1
67.7	0.0	0.75	1.10	17.30	17.30	5.14	1.00	0.00	596.4	198.8	111.8
67.7	0.0	1.00	1.10	17.30	17.30	5.14	1.00	0.00	573.2	191.1	191.1
67.7	0.0	1.25	1.10	17.30	17.30	5.14	1.00	0.00	581.0	193.7	302.6
67.7	0.0	1.50	1.10	17.30	17.30	5.14	1.00	0.00	556.6	185.5	417.5
67.7	0.0	1.75	1.10	17.30	17.30	5.14	1.00	0.00	539.2	179.7	550.5
67.7	0.0	2.00	1.10	17.30	17.30	5.14	1.00	0.00	526.2	175.4	701.5
67.7	0.0	2.25	1.10	17.30	17.30	5.14	1.00	0.00	516.0	172.0	870.7
67.7	0.0	2.50	1.10	17.30	17.30	5.14	1.00	0.00	507.9	169.3	1058.1
67.7	0.0	3.00	1.10	17.30	17.30	5.14	1.00	0.00	495.7	165.2	1487.0

ANEXO F-1. CALCULO DE CAPACIDAD PORTANTE PARA CIMIENTOS CONTINUOS - METODO DE TERZAGHI Y MEYERHOF

Metodo de Terzaghi - Cimientos Continuos

L (m)	30.00
F.S	3.00

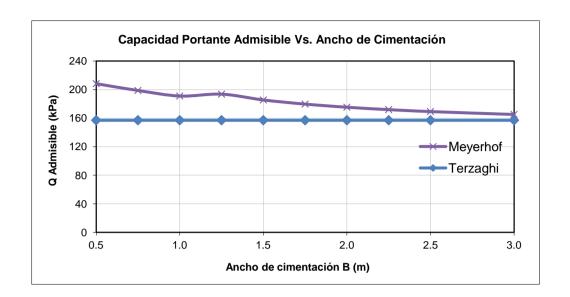
Cu (kPa)	φ (°)	B (m)	Df (m)	γ1 (kN/m3)	γ2 (kN/m3)	Nc	Nq	Νγ	Qu (kPa)	Qadm (kPa)	Padm (kN/m)
67.70	0.00	0.50	1.20	17.30	17.30	5.14	1.00	0.00	368.7	122.9	61.5
67.70	0.00	0.75	1.20	17.30	17.30	5.14	1.00	0.00	368.7	122.9	92.2
67.70	0.00	1.00	1.20	17.30	17.30	5.14	1.00	0.00	368.7	122.9	122.9
67.70	0.00	1.25	1.20	17.30	17.30	5.14	1.00	0.00	368.7	122.9	153.6
67.70	0.00	1.50	1.20	17.30	17.30	5.14	1.00	0.00	368.7	122.9	184.4
67.70	0.00	1.75	1.20	17.30	17.30	5.14	1.00	0.00	368.7	122.9	215.1
67.70	0.00	2.00	1.20	17.30	17.30	5.14	1.00	0.00	368.7	122.9	245.8
67.70	0.00	2.25	1.20	17.30	17.30	5.14	1.00	0.00	368.7	122.9	276.6
67.70	0.00	2.50	1.20	17.30	17.30	5.14	1.00	0.00	368.7	122.9	307.3
67.70	0.00	3.00	1.20	17.30	17.30	5.14	1.00	0.00	368.7	122.9	368.7

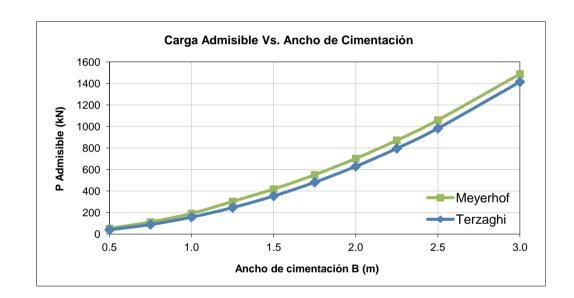
Metodo de Meyerhof - Cimientos Continuos

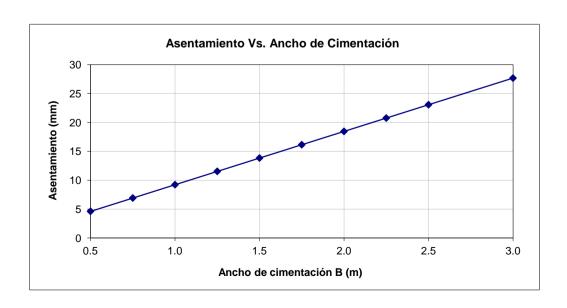
Cu (kPa)	φ (°)	B (m)	Df (m)	γ1 (kN/m3)	γ2 (kN/m3)	Nc	Nq	Νγ	Qu (kPa)	Qadm (kPa)	Padm (kN/m)
67.70	0.00	0.50	1.20	17.30	17.30	5.14	1.00	0.00	534.1	178.0	89.0
67.70	0.00	0.75	1.20	17.30	17.30	5.14	1.00	0.00	512.0	170.7	128.0
67.70	0.00	1.00	1.20	17.30	17.30	5.14	1.00	0.00	493.7	164.6	164.6
67.70	0.00	1.25	1.20	17.30	17.30	5.14	1.00	0.00	506.3	168.8	210.9
67.70	0.00	1.50	1.20	17.30	17.30	5.14	1.00	0.00	484.6	161.5	242.3
67.70	0.00	1.75	1.20	17.30	17.30	5.14	1.00	0.00	469.2	156.4	273.7
67.70	0.00	2.00	1.20	17.30	17.30	5.14	1.00	0.00	457.8	152.6	305.2
67.70	0.00	2.25	1.20	17.30	17.30	5.14	1.00	0.00	449.1	149.7	336.9
67.70	0.00	2.50	1.20	17.30	17.30	5.14	1.00	0.00	442.3	147.4	368.6
67.70	0.00	3.00	1.20	17.30	17.30	5.14	1.00	0.00	432.3	144.1	432.3

ANEXO F-2. CALCULO DE ASENTAMIENTOS INMEDIATOS PARA CIMIENTOS CUADRADOS - METODO DE HARR

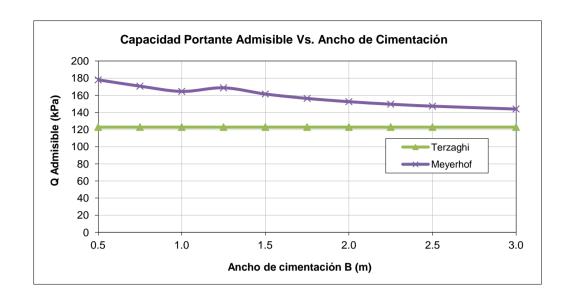
Cimientos Rigidos

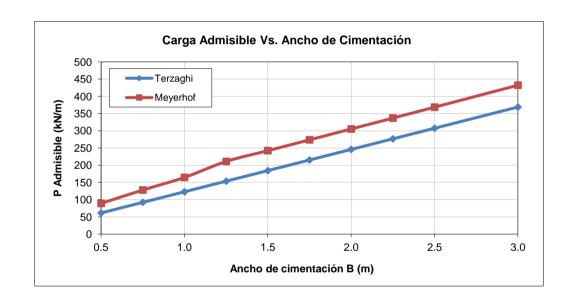

B (m)	Qapl. (kPa)	Es (kPa)	μs	L/B	αr	Se (mm)
0.50	180	16900	0.35	1.00	0.988	4.6
0.75	180	16900	0.35	1.00	0.988	6.9
1.00	180	16900	0.35	1.00	0.988	9.2
1.25	180	16900	0.35	1.00	0.988	11.5
1.50	180	16900	0.35	1.00	0.988	13.8
1.75	180	16900	0.35	1.00	0.988	16.2
2.00	180	16900	0.35	1.00	0.988	18.5
2.25	180	16900	0.35	1.00	0.988	20.8
2.50	180	16900	0.35	1.00	0.988	23.1
3.00	180	16900	0.35	1.00	0.988	27.7

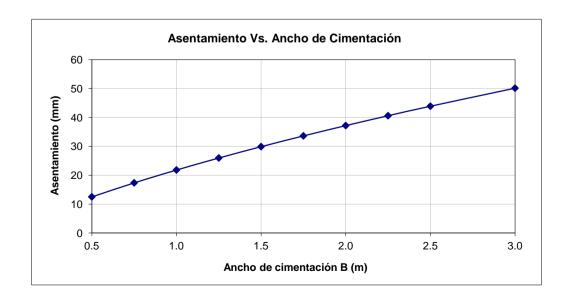

ANEXO F-2. CALCULO DE ASENTAMIENTOS INMEDIATOS PARA CIMIENTOS CONTINUOS - METODO DE HARR


Cimientos Rigidos

B (m)	Qadm (kPa)	Es (kPa)	μs	L/B	αr	Se (mm)
0.50	160	16900	0.35	40.00	3.015	12.5
0.75	160	16900	0.35	26.67	2.788	17.4
1.00	160	16900	0.35	20.00	2.627	21.8
1.25	160	16900	0.35	16.00	2.502	26.0
1.50	160	16900	0.35	13.33	2.400	29.9
1.75	160	16900	0.35	11.43	2.314	33.6
2.00	160	16900	0.35	10.00	2.239	37.2
2.25	160	16900	0.35	8.89	2.173	40.6
2.50	160	16900	0.35	8.00	2.114	43.9
3.00	160	16900	0.35	6.67	2.012	50.2


GRAFICAS DE CAPACIDAD PORTANTE Y ASENTAMIENTO - CIMIENTO CUADRADO





GRAFICAS DE CAPACIDAD PORTANTE Y ASENTAMIENTO - CIMIENTO CONTINUO

ESTUDIO DE SUELOS

Ingeniería S.A.S.

Versión 2: Mayo de 2016

Cto. 937 de 2015

Estudios de vulnerabilidad sísmica y los diseños de reforzamiento estructural de los elementos estructurales y no estructurales con fundamento en el reglamento colombiano de diseño y construcción sismo resistente NSR-10 de edificaciones del SENA Fase 3, localizadas en la ciudad de Bogotá D.C., ubicada en zona de amenaza sísmica intermedia, en los grupos 1,2,3 y 4

ANEXO G REGISTRO FOTOGRÁFICO

ANEXO FOTOGRÁFICO

Ejecución del Sondeo No. 1

Ejecución del Sondeo No. 3

Ejecución del Sondeo No. 5

Ejecución del Sondeo No. 7

Ejecución del Sondeo No. 2

Ejecución del Sondeo No. 4

Ejecución del Sondeo No. 6

Ejecución del Sondeo No. 8

ANEXO FOTOGRÁFICO

Ejecución del Sondeo No. 9

Ejecución del Sondeo No. 11

Muestra No. 7 del Sondeo No. 2

Muestra No. 11 del Sondeo No. 5

Ejecución del Sondeo No. 10

Muestra No. 6 del Sondeo No. 1

Muestra No. 8 del Sondeo No. 4

Muestra No. 7 del Sondeo No. 6