

21.7.4 Verificación solicitaciones correa existente

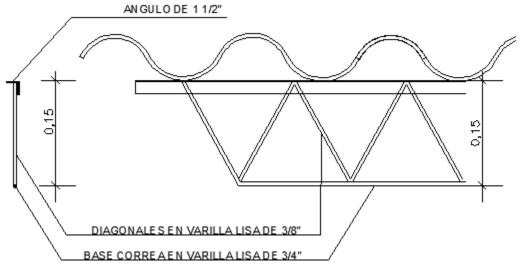
AISC360-05/IBC200 Units : KN, m, C	6 STEEL SECTION O	HECK (Sum	mary for	Combo and Station	1)	
Frame: 2	X Mid: 3,125		,2D+1,6G+			
Length: 5,530	Y Mid: 1,000E-03	Shape: 1	L 1x1/8 +	1B 1/4Frame Type		
Loc : 2,765	Z Mid: 0,000	Class: N	on-Compac	t Princpl R	ot: 0,000	degrees
Provision: LRFD	Analysis: Direct	Analysis				
D/C Limit=0,950	2nd Order: Gener	al 2nd Ord	er	Reduction: Tau-	Fixed	
AlphaPr/Py=0,000	AlphaPr/Pe=0,000	Tau_b=1,	000	EA factor=0,800	EI fact	or=0,800
PhiB=0,900	PhiC=0,900	PhiTY=0,	0 ค ค	PhiTF=0,750		
PhiS=0,900	Phis-RI=1,000	PhiST=0,				
	,,,,,,,,,					
A=1,827E-04	133=0,000	r33=0,05	3	S33=4,343E-06	Av3=9,8	181F-05
J=0,000	122=0,000	r22=0,00		S22=0,000	Au2=1,8	
E=199947978,8	fy=230000,000	Ry=1,000		z33=5,396E-06		
RLLF=1,000	Fu=360000,000	ny-1,000		z22=1,176E-06		
NLLT - 1,000	14-300000,000			222-1,1702-00		
DESIGN MESSAGES						
	n overstressed					
	> 200 (AISC E2)					
STREES OUTON FORG	NES & MONENTS (Co-	b				
	ES & MOMENTS (Con			110	110	
Location	Pu	Mu33	Mu22	Vu2	Vu3	Tu
2,765	0,000	11,005	0,000	0,251	0,000	-1,845
AXIAL FORCE & BIA	IXIAL MOMENT DESIG	N (H1-1b K1) K2	B1	B2	Cm
Major Bending	1,000	1,000	1,000	1,000	1,000	1,000
Minor Bending	1,000	1,000	1,000	1,000	1,000	1,000
	Lltb	K1tb	Cb			
LTB	1,000	1,000	1,149			
	Pu	phi*Pnc	phi*F	nt		
	Force	Capacity	Capaci	ty		
Axial	0,000	0,500	37,8	114		
	Mu	phi*Mn	phi*	•Mn		
	Moment	Capacity	No L			
Major Moment		0,899	0,8			
Minor Moment		0,120	0,0			
niioi nonen	. 0,000	0,120				
SHEAR CHECK	2257			220200		
	Vu	phi*Vn	Stre			
	Force	Capacity	Rat			
Major Shear	0,251	22,688	0,0	311 OK		
Minor Shear	0,000	11,278	0,0			
CONNECTION SHEAD	R FORCES FOR BEAI	1 S				
	VMajor	VMajor				
	Left	Right				
Major (V2)						
major (VZ)	8,356	8,858				

(211)

21.7.4.1 Índices de sobre-esfuerzos correa existente

Índice de sobre-esfuerzos correa

21.8 ALTERNATIVA DE REFORZAMIENTO PROPUESTO


Estas correas presentan un índice de sobreesfuerzo muy elevado, debido a que las mismas tienen una gran separación entre sí, los elementos que las componen no cuentan con la sección transversal apropiada para la luz máxima y las cargas requeridas, principalmente el granizo y el viento. Por lo tanto, se recomienda desmontar todos los elementos estructurales que componen esta cubierta (correas), para ser reemplazados según un nuevo diseño acorde a las exigencias del reglamento NSR-10.

22. ANÁLISIS CUBIERTA BLOQUE 17

22.1 CONFIGURACIÓN EXISTENTE

Configuración correa existente: CORREA PLANA CORDON SUPERIOR ANGULO 1-1/2öX1/8ö, DIAGONALES DE 3/8ö Y BASE EN VARILLA LISA DE 3/4ö

22.2 EVALUACIONES DE CARGA

Inclinación de la cubierta 18,80° = 34,0%
Separación máxima entre correas 1,58 m

SERVICIO NACIONAL DE APRENDIZAJE - SENA

CARGA MUERTA: Según tabla B.3.4.1-1 y B.3.4.1-4 del título B de la NSR-10

Teja Eternit

Teja de asbesto cemento

Cielo raso Lámparas

Estructura metálica
Total Carga Muerta (D)

0,00 KN/m² 0,20 KN/m² 0,00 KN/m² 0,05 KN/m² 0,05 KN/m² 0,30 KN/m²

CARGA VIVA: Según tabla B.4.2.1-2 del título B de la NSR-10

Inclinación de la cubierta de 18,80 °

Lr = 0,35 KN/m²

CARGA DE GRANIZO: Según B.4.8.3 del titulo B de la NSR-10, la carga de granizo, G:

G = 0,50 KN/m²

CARGA DE VIENTO:

W= 0,40 KN/m² (Presión)

22.3 CASOS DE CARGA

CASOS DE CARGA	DESCRIPCIÓN
PP	Peso Propio de la estructura
D	Carga muerta
Lr	Carga viva de cubierta
W	Viento
G	Granizo

22.4 COMBINACIONES DE DISEÑO

Según lo estipulado en B.2.4.2 del título B de la NSR-10: Combinaciones de carga para ser utilizadas con el método de resistencia

0.01450114.01011	0.4004.70741
COMBINACION	CARGA TOTAL
	MAYORADA KN/m²
1,4D	0,42
1,2D+0,5Lr	0,54
1.2D+0.5G	0,61
1,2D+1,6Lr+0,8W	0,92
1.2D+1.6G+0.8W	1,48
1,2D+1,6W+0,5Lr	1,18
1,2D+1,0E	0,36
0,9D+1,6W	0,91
0,9D+1,0E	0,27

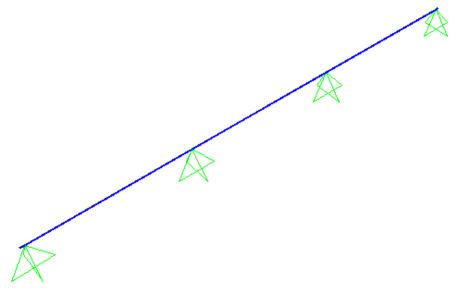
Gobierna la combinación 1,2D+1,6G+0,8W

MUERTA	GRANIZO	VIENTO		
1,2D	1,6G	0,8W	Wtotal	
0,36	0,80	0,32	1,48	KN/m²

Se calcula la resultante carga muerta, según la inclinación de cubierta de 18,80º

Wu muerta = 0,38 KN/m² Wu resultante = 1,50 KN/m²

Con una separacion maxima entre correas de 1,58 m, se calculan las cargas totales SIN MAYORAR:


W D = 0,50 KN/m W Lr = 0,55 KN/m W G = 0,79 KN/m W W = 0,63 KN/m

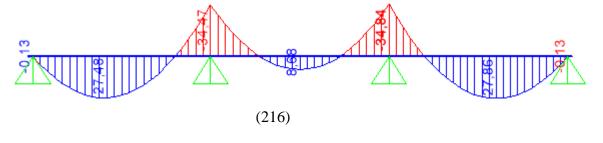
W T = 2,37 KN/m

22.5 RESULTADOS DEL ANÁLISIS

Modelo SAP 2000 Correa

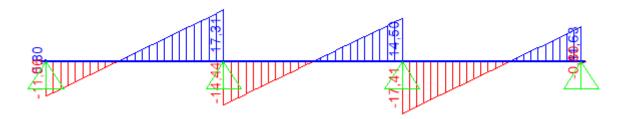
22.6 REACCIONES MÁXIMAS EN LOS APOYOS

Reacciones máximas Correas-Apoyos Dirección Z


REACCIONES SOBRE				
CORREAS (KN)				
Lr	7,27			
D	6,58			
W	8,31			
G	10,39			

22.7 VERIFICACIÓN ESTRUCTURA EXISTENTE

Nombres de los elementos que componen la correa existente (FRAMES) en SAP2000:


22.7.1 Diagrama de momentos (KN-m) combo de diseño 1.2D+1.6G+0.8W, de la correa

22.7.2 Diagrama de cortantes (KN) combo de diseño 1.2D+1.6G+0.8W, de la correa

22.7.3 Valores de momentos máximos (KN-m) y cortantes máximos (KN) combinación 1.2D+1.6G+0.8W, en la correa:

TABLE: Element Forces - Frames						
Frame	OutputCase	Р	V2	M3		
Text	Text	KN	KN	KN-m		
1	1,2D+1,6G+0,8W	0,00	0,80	-0,13		
2	1,2D+1,6G+0,8W	0,00	17,31	-34,47		
5	1,2D+1,6G+0,8W	0,00	14,50	-34,84		
7	1,2D+1,6G+0,8W	0,00	-17,41	-34,84		
9	1,2D+1,6G+0,8W	0,00	-0,80	-0,13		

22.7.4 Verificación solicitaciones correa existente

AISC360-05/IBC200 Units : KN, m, C		N CHECK (Su	mmary for	Combo and Statio	on)	
onics . Kn, M, C						
Frame : 5	X Mid: 18,278	Combo:	1,2D+1,6G+	0,8W Design Ty	ype: Beam	
Length: 11,980	Y Mid: 0,000			/8 + 1BFrame Typ		
Loc : 11,980	Z Mid: 0,000	Class:	Non-Compac	t Princpl F	Rot: 0,000	legrees
Provision: LRFD	Analysis: Dir					
D/C Limit=0,950	2nd Order: Ge			Reduction: Tau-		
AlphaPr/Py=0,000	AlphaPr/Pe=0,	000 Tau_b=1	,000	EA factor=0,800	B EI fact	or=0,800
PhiB=0,900	PhiC=0,900	PhiTY=0		PhiTF=0,750		
PhiS=0,900	Phis-RI=1,000	PhiST=0	,900			
A=5,150E-04	I33=2,186E-06	r33=0,0	65	S33=2,664E-05	Av3=2,3	25E-04
J=0,000	122=0,000	r22=0,0		S22=2,089E-06	Au2=5,1	
E=199947978,8	fy=230000,000	Ry=1,00	0	z33=3,049E-05		
RLLF=1,000	Fu=360000,000			z22=4,090E-06		
DESIGN MESSAGES						
	on overstressed >> 200 (AISC E					
STRESS CHECK FORC	ES & MOMENTS (Combo 1.2D+1	.6G+0.8W)			
Location	Pu	Mu33	Mu22	Vu2	Vu3	Tu
11,980	0,000	-34,841	0,000	14,500	0,000	0,000
PMM DEMAND/CAPACI	TY RATIO (H1	-1b)				
D/C Ratio:	6,319 = 0,000 = (1/2)((Mr22/Mc22)		
AXIAL FORCE & BIA						
Factor	L	K1	К2	B1	B2	Cm
Major Bending		1,000	1,000	1,000	1,000	1,000
Minor Bending	1,000	1,000	1,000	1,000	1,000	1,000
	L1tb	Kltb	Ср			
LTB	1,000	1,000	3,000			

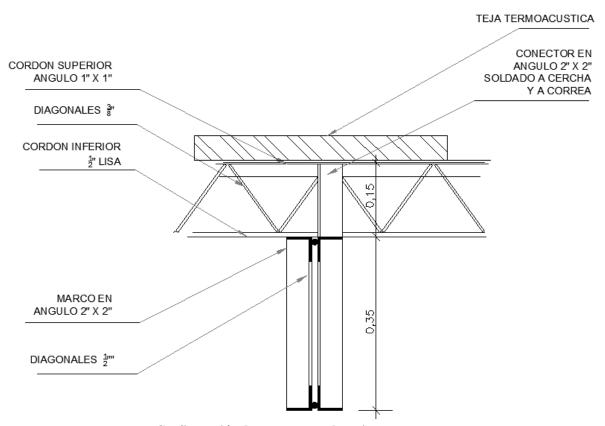
		Pu	phi*Pnc	phi*Pnt	
		Force	Capacity	Capacity	
Axial		0,000	0,517	106,615	
		Mu	phi∗Mn	phi*Mn	
		Moment	Capacity	No LTB	
Major M	loment	-34,841	5,514	5,514	
Minor M	loment	0,000	0,432	0.000 * 0.00*0.000	
SHEAR CHECK					
		Vu	phi∗Vn	Stress	Status
		Force	Capacity	Ratio	Check
Major S	hear	14,500	63,969	0,227	OK
Minor S	hear	0,000	28,875	0,000	ОК
CONNECTION	SHEAR FO	RCES FOR BE	AMS		
		VMajor	VMajor		
		Left	Right		
Major (U2)	14,438	14,500		

22.7.4.1 Índices de sobre-esfuerzos correa existente

Índice de sobre-esfuerzos correa

22.8 ALTERNATIVA DE REFORZAMIENTO PROPUESTO

Estas correas presentan un índice de sobreesfuerzo muy elevado, debido a que las mismas tienen una gran separación entre sí, los elementos que las componen no cuentan con la sección transversal apropiada para la luz máxima y las cargas requeridas, principalmente el granizo y el viento. Por lo tanto, se recomienda desmontar todos los elementos estructurales que componen esta cubierta (correas), para ser reemplazados según un nuevo diseño acorde a las exigencias del reglamento NSR-10.



- 23. ANÁLISISCUBIERTA BLOQUE 18
- 23.1 CONFIGURACION EXISTENTE

Configuración de correa y cercha existente

23.2 EVALUACIONES DE CARGA

Inclinación de la cubierta Separación máxima entre correas

7,56	=	13,3%
1,49	m	

SERVICIO NACIONAL DE APRENDIZAJE - SENA

0,15 KN/m²

CARGA MUERTA: Según tabla B.3.4.1-1 y B.3.4.1-4 del título B de la NSR-10

 Teja Eternit
 0,00 KN/m²

 Teja termoacustica
 0,05 KN/m²

 Cielo raso
 0,00 KN/m²

 Lámparas
 0,05 KN/m²

 Estructura metálica
 0,05 KN/m²

Estructura metálica

Total Carga Muerta (D)

CARGA VIVA: Según tabla B.4.2.1-2 del título B de la NSR-10

Inclinación de la cubierta de 7,56

Lr = 0,50 KN/m²

CARGA DE GRANIZO: Según B.4.8.3 del titulo B de la NSR-10, la carga de granizo, G:

G = 1,00 KN/m²

CARGA DE VIENTO:

W= 0,40 KN/m² (Presión)

23.3 CASOS DE CARGA

CASOS DE CARGA	DESCRIPCIÓN
PP	Peso Propio de la estructura
D	Carga muerta
Lr	Carga viva de cubierta
W	Viento
G	Granizo

23.4 COMBINACIONES DE DISEÑO

Según lo estipulado en B.2.4.2 del título B de la NSR-10:

Combinaciones de carga para ser utilizadas con el método de resistencia

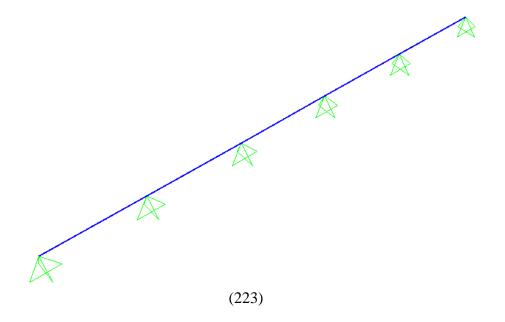
COMBINACION	CARGA TOTAL		
	MAYORADA KN/m²		
1,4D	0,21		
1,2D+0,5Lr	0,43		
1.2D+0.5G	0,68		
1,2D+1,6Lr+0,8W	0,98		
1.2D+1.6G+0.8W	2,10		
1,2D+1,6W+0,5Lr	1,07		
1,2D+1,0E	0,18		
0,9D+1,6W	0,78		
0,9D+1,0E	0,14		

Gobierna la combinación 1,2D+1,6G+0,8W

MUERTA	GRANIZO	VIENTO		
1,2D	1,6G	0,8W	Wtotal	
0,18	1,60	0,32	2,10	KN/m²

Se calcula la resultante carga muerta, según la inclinación de cubierta de 7,56

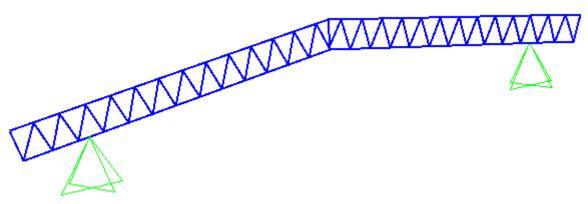
Wu muerta = 0.18 KN/m² Wu resultante = 2.10 KN/m²


Con una separacion maxima entre correas de 1,49 m, se calculan las cargas totales SIN MAYORAR:

 W D =
 0,23
 KN/m
 W Lr =
 0,75
 KN/m

 W G =
 1,49
 KN/m
 W w =
 0,60
 KN/m

W T = 3,13 KN/m


23.5 RESULTADOS DEL ANÁLISIS

Modelo SAP 2000 Correa

Modelo SAP 2000 Cercha

23.6 REACCIONES MAXIMAS EN LOS APOYOS

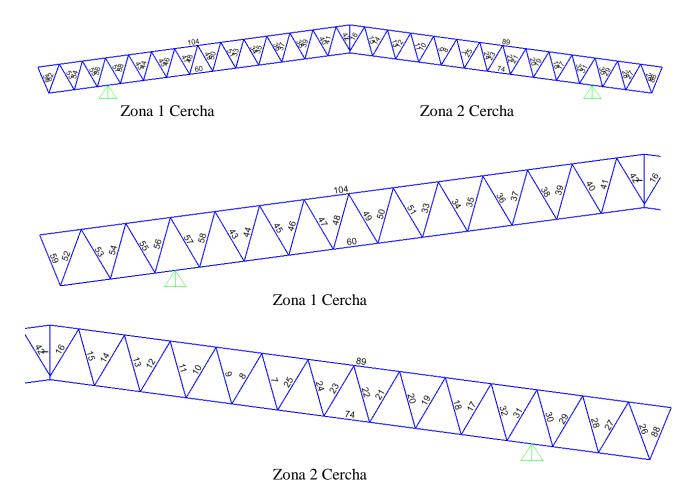
Reacciones Correas- Cercha Dirección Z

REACCIONES SOBRE		
CORREAS (KN)		
Lr	3,23	
D	1,95	
W	2,58	
G	6,46	

Reacciones Cercha- Apoyos Dirección Z

REACCIONES SOBRE		
LA CERCHA (KN)		
Lr 8,43		
D 3,57		
W 4,72		
G	11,80	

23.7 VERIFICACIÓN ESTRUCTURA EXISTENTE


Nombres del elemento que compone la correa (frames) en SAP2000:

Nombres de los elementos que componen la cercha (frames) en SAP2000: (224)

23.7.1 Valores de momentos máximos (KN-M) y cortantes máximos (KN) combinación 1.2D+1.6G+0.8W, en la correa:

	TABLE: Element Forces - Frames				
Frame	OutputCase	P	V2	M3	
Text	Text	KN	KN	KN-m	
2	1,2D+1,6G+0,8W	0,00	7,93	-6,90	
3	1,2D+1,6G+0,8W	0,00	-6,91	-6,90	
4	1,2D+1,6G+0,8W	0,00	-6,53	-5,15	
5	1,2D+1,6G+0,8W	0,00	6,92	-6,91	
6	1,2D+1,6G+0,8W	0,00	-7,95	-6,91	

23.7.2 Valores de momentos máximos (KN-M) y cortantes máximos (KN) combinación 1.2D+1.6G+0.8W, en la cercha:

(225)

TABLE: Element Forces - Frames				
Frame	OutputCase	Р	V2	M3
Text	Text	KN	KN	KN-m
1	1,2D+1,6G+0,8W	19,26	0,00	0,00
7	1,2D+1,6G+0,8W	-34,39	0,05	0,01
8	1,2D+1,6G+0,8W	7,92	0,03	0,01
9	1,2D+1,6G+0,8W	-8,99	0,02	0,00
10	1,2D+1,6G+0,8W	5,91	0,00	0,00
11	1,2D+1,6G+0,8W	-4,88	0,02	0,00
12	1,2D+1,6G+0,8W	5,78	0,01	0,00
13	1,2D+1,6G+0,8W	-4,76	0,02	0,00
14	1,2D+1,6G+0,8W	1,81	0,00	0,00
15	1,2D+1,6G+0,8W	-4,98	-0,01	0,00
16	1,2D+1,6G+0,8W	-15,26	-0,01	0,00
17	1,2D+1,6G+0,8W	54,15	0,11	0,02
18	1,2D+1,6G+0,8W	-50,52	0,08	0,02
19	1,2D+1,6G+0,8W	36,25	0,07	-0,01
20	1,2D+1,6G+0,8W	-36,61	0,08	-0,02
21	1,2D+1,6G+0,8W	37,58	0,07	-0,01
22	1,2D+1,6G+0,8W	-36,93	0,08	-0,01
23	1,2D+1,6G+0,8W	37,23	0,07	-0,01
24	1,2D+1,6G+0,8W	-36,33	0,08	-0,02
25	1,2D+1,6G+0,8W	33,34	0,06	0,01
26	1,2D+1,6G+0,8W	28,63	-0,03	0,01
27	1,2D+1,6G+0,8W	-26,17	-0,06	-0,01
28	1,2D+1,6G+0,8W	33,26	-0,05	-0,01
29	1,2D+1,6G+0,8W	-33,67	-0,08	0,02
30	1,2D+1,6G+0,8W	-24,77	-0,05	-0,01
31	1,2D+1,6G+0,8W	21,30	0,12	-0,03
32	1,2D+1,6G+0,8W	-71,85	0,16	0,03
33	1,2D+1,6G+0,8W	-34,39	0,05	0,01
34	1,2D+1,6G+0,8W	7,92	0,03	0,01
35	1,2D+1,6G+0,8W	-8,99	0,02	0,00
36	1,2D+1,6G+0,8W	5,91	0,00	0,00
37	1,2D+1,6G+0,8W	-4,88	0,02	0,00
38	1,2D+1,6G+0,8W	5,78	0,01	0,00
39	1,2D+1,6G+0,8W	-4,76	0,02	0,00
40	1,2D+1,6G+0,8W	1,81	0,00	0,00

41	1,2D+1,6G+0,8W	-4,98	-0,01	0,00
42	1,2D+1,6G+0,8W	-15,26	-0,01	0,00
43	1,2D+1,6G+0,8W	54,15	0,11	0,02
44	1,2D+1,6G+0,8W	-50,52	0,08	0,02
45	1,2D+1,6G+0,8W	36,25	0,07	-0,01
46	1,2D+1,6G+0,8W	-36,61	0,08	-0,02
47	1,2D+1,6G+0,8W	37,58	0,07	-0,01
48	1,2D+1,6G+0,8W	-36,93	0,08	-0,01
49	1,2D+1,6G+0,8W	37,23	0,07	-0,01
50	1,2D+1,6G+0,8W	-36,33	0,08	-0,02
51	1,2D+1,6G+0,8W	33,34	0,06	0,01
52	1,2D+1,6G+0,8W	28,63	-0,03	0,01
53	1,2D+1,6G+0,8W	-26,17	-0,06	-0,01
54	1,2D+1,6G+0,8W	33,26	-0,05	-0,01
55	1,2D+1,6G+0,8W	-33,67	-0,08	0,02
56	1,2D+1,6G+0,8W	-24,77	-0,05	-0,01
57	1,2D+1,6G+0,8W	21,30	0,12	-0,03
58	1,2D+1,6G+0,8W	-71,85	0,16	0,03
59	1,2D+1,6G+0,8W	-30,01	-3,37	0,68
60	1,2D+1,6G+0,8W	-251,72	50,05	-5,97
74	1,2D+1,6G+0,8W	-251,72	-50,05	-5,97
88	1,2D+1,6G+0,8W	-30,01	3,37	0,68
89	1,2D+1,6G+0,8W	-145,22	-17,30	1,56
104	1,2D+1,6G+0,8W	-145,22	17,30	1,56

23.7.3 Verificación solicitaciones correa existente

AISC360-05/IBC2006 STEEL SECTION CHECK (Summary for Combo and Station) Units : KN, m, C						
Frame : 5 Length: 5,000 Loc : 5,000	X Mid: 17,460 Y Mid: 3,000 Z Mid: 0,000	Shape: 11	,2D+1,6G+0 L 1x1/8 + on-Compact	1B 1/2Frame Type	: Special	
Provision: LRFD D/C Limit=0,950 AlphaPr/Py=0,000	Analysis: Direct 2nd Order: Genera AlphaPr/Pe=0,000	al 2nd Ordo		Reduction: Tau-b EA factor=0,800	Fixed EI facto	r=0,800
PhiB=0,900 PhiS=0,900	PhiC=0,900 PhiS-RI=1,000	PhiTY=0,9 PhiST=0,9		PhiTF=0,750		
A=2,771E-04 J=0,000 E=199947978,8 RLLF=1,000	I33=1,283E-06 I22=0,000 fy=230000,000 Fu=360000,000	r33=0,060 r22=0,000 Ry=1,000	7	\$33=1,591E-05 \$22=0,000 \$33=1,754E-05 \$222=1,555E-06	Au3=1,51 Au2=2,77	
	n overstressed > 200 (AISC E2)					
STRESS CHECK FORC Location 5,000	ES & MOMENTS (Com Pu 9,000	00 1,2D+1,0 Mu33 -6,915	6G+0,8W) Mu22 0,000	Vu2 6,919	Vu3 0,000	Tu 9,888
PMM DEMAND/CAPACI D/C Ratio:	TY RATIO (H1-1b) 2,099 = 0,000 + 2 = (1/2)(Pr/	,099 + 0,0		(Mr22/Mc22)		
AXIAL FORCE & BIA	XIAL MOMENT DESIG	N (H1-1b))			
Factor	L	K1	K2	B1	B2	Cm
Major Bending		1,000	1,000	1,000	1,000	1,000
Minor Bending	1,000	1,000	1,000	1,000	1,000	1,000
	Lltb	K1tb	СЬ			
LTB	1,000	1,000	3,000			
	D.,,	ahi vDaa	nhi vDnt			
	Pu Force C	phi*Pnc apacity	phi*Pnt Capacity			
Axial	0,000	0,757	57,354			
				N.)		
	Mu	phi∗Mn	phi*Mn			
		apacity	No LTB			
Major Moment		3,294	3,294	ı		
Minor Moment	0,000	0,162				
SHEAR CHECK						
	Vu	phi*Vn	Stress	Status		
		apacity	Ratio			
Major Shear	6,919	34,413	0,201	OK OK		
Minor Shear	0,000	18,800	0,000	ок		
COMMENTANT CHEAT	FORCE FOR REALS	Si .				
CONNECTION 2HEAR	FORCES FOR BEAMS	5.5.				
	UMajor Left	VMajor Right				
Major (V2)	6,209	6,919				
110,01 (02)	0,207	0,717				

23.7.4 Verificación solicitaciones cercha existente

(228)

AISC360-05/IBC20	96 STEEL SECTION	N CHECK (Sum	mary for (Combo and Stati	ion)	
Units : KN, m,						
Frame : 60	X Mid: 1,180	Combo: 1	,2D+1,6G+6	3.8W Design 1	Type: Brace	
Length: 3,924	Y Mid: 0,000	Shape: 2	L 2x3/16 i	inf -18Frame Tu	pe: Special	Moment Fram
Loc : 0,771	Z Mid: 0,157		lon-Compact	Princpl	Rot: 0,000	degrees
Provision: LRFD	Analysis: Dire					
D/C Limit=0,950	2nd Order: Ger			Reduction: Tau		
AlphaPr/Py=1,187	AlphaPr/Pe=3,	137 Tau_b=-0	,885	EA factor=0,80	30 EI fact	or=0,800
PhiB=0,900	PhiC=0,900	PhiTY=0.	900	PhiTF=0,750		
PhiS=0,900	PhiS-RI=1,000	PhiST=0,	900			
A=9,224E-04	133=0,000	r33=0,01	6	S33=6,240E-06	Av3=7,6	70F-0h
J=0,000	122=0,000	r22=0,02		S22=1,096E-05	AU2=4,3	
alpha=90,000	122-0,000	122-0,02		322-1,0702 07	1102-4,0	202 64
E=199947978,8	fy=230000,000	Ry=1,000		z33=1,124E-05		
RLLF=1,000	Fu=360000,000			z22=1,919E-05		
DECTON MESSAGES						
DESIGN MESSAGES Error: Section	on overstressed					
STRESS CHECK FOR	CES & MOMENTS (Combo 1 20+1	ለር+በ ጸሠነ			
Location	Pu Pu	Mu33	Mu22	Vu2	Vu3	Tu
0,771	-251,715	-5,974	0,000	-43,280	0,000	0,000
PMM DEMAND/CAPAC	ITY RATIO (H1-	-1a)				
D/C Ratio:	8,085 = 3,974 = (Pr/Pc)			(8/9)(Mr22/Mc2	22)	
AXIAL FORCE & BI	AXIAL MOMENT DES	SIGN (H1-1a	ı)			
Factor	L	K1	K2	B1	B2	Cm
Major Bendin		1,000	1,000	1,000	1,000	1,000
Minor Bendin		1,000	1,000	1,000	1,000	1,000
	Lltb	Kltb	СЬ			
LTB	1,000	1,000	2,019			
	Pu	phi*Pnc	phi*Pn	t		
	Force	Capacity	Capacit	y		
Axial	-251,715	63,341	190,93	2		
	Mu	phi∗Mn	phi*M	n		
V/00/02/20 00/4	Moment	Capacity	No LTI			
Major Momen		1,292	1,29	2		
Minor Momen	t 0,000	2,268				
				na manusin annon		
SHEAR CHECK	17,424,635	100000000000000000000000000000000000000				
SHEAR CHECK	Vu	phi∗Vn	Stres			
	Force	Capacity	Ratio	o Check		
Major Shear Minor Shear	Force 43,280	7000 B		o Check 6 OK		

23.7.5 Índices de sobre-esfuerzos correa existente

Índice de sobre-esfuerzos correa

(229)

23.7.6 Índices de sobre-esfuerzos cercha existente

Índice de sobre-esfuerzos cercha

23.8 ALTERNATIVA DE REFORZAMIENTO PROPUESTO


La cercha principal y las correas presentan un índice de sobreesfuerzo muy elevado, debido a que las correas tienen una gran separación entre sí, los perfiles de los cordones inferior y superior no cuentan con la sección transversal apropiada para la luz máxima y las cargas requeridas, principalmente el granizo y el viento. Por lo tanto, se recomienda desmontar todos los elementos estructurales que componen esta cubierta (cercha y correas), para ser reemplazados según un nuevo diseño acorde a las exigencias del reglamento NSR-10.

24. ANÁLISISCUBIERTA BLOQUE 19

24.1 CONFIGURACION ESTRUCTURA EXISTENTE

(231)

24.2 EVALUACIONES DE CARGA

Inclinación de la cubierta 5,46° = 9,6%
Separación máxima entre correas 2,74 m

CARGA MUERTA: Según tabla B.3.4.1-1 y B.3.4.1-4 del título B de la NSR-10

Teja Eternit 0,00 KN/m²

 Teja de asbesto cemento
 0,20 KN/m²

 Cielo raso
 0,00 KN/m²

 Lámparas
 0,05 KN/m²

Estructura metálica 0,05 KN/m²

Total Carga Muerta (D) 0,30 KN/m²

CARGA VIVA: Según tabla B.4.2.1-2 del título B de la NSR-10

Inclinación de la cubierta de 5,46 º

Lr = 0,50 KN/m²

CARGA DE GRANIZO: Según B.4.8.3 del título B de la NSR-10, la carga de granizo, G:

G = 1,00 KN/m²

CARGA DE VIENTO:

W= 0,40 KN/m² (Presión)

24.3 CASOS DE CARGA

CASOS DE CARGA	DESCRIPCIÓN
PP	Peso Propio de la estructura
D	Carga muerta
Lr	Carga viva de cubierta
W	Viento
G	Granizo

24.4 COMBINACIONES DE DISEÑO

Según lo estipulado en B.2.4.2 del título B de la NSR-10:

Combinaciones de carga para ser utilizadas con el método de resistencia

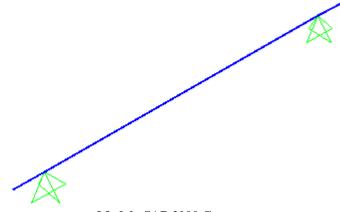
(232)

COMBINACION	CARGA TOTAL
	MAYORADA KN/m²
1,4D	0,42
1,2D+0,5Lr	0,61
1.2D+0.5G	0,86
1,2D+1,6Lr+0,8W	1,16
1.2D+1.6G+0.8W	2,28
1,2D+1,6W+0,5Lr	1,25
1,2D+1,0E	0,36
0,9D+1,6W	0,91
0,9D+1,0E	0,27

Gobierna la combinación 1,2D+1,6G+0,8W

MUERTA	GRANIZO	VIENTO		
1,2D	1,6G	0,8W	Wtotal	
0,36	1,60	0,32	2,28	KN/m²

Se calcula la resultante carga muerta, según la inclinación de cubierta de 5,46º


Wu muerta = 0,36 KN/m² Wu resultante = 2,28 KN/m²

Con una separacion maxima entre correas de 2,74 m, se calculan las cargas totales SIN MAYORAR:

W D = 0,83 KN/m W Lr = 1,37 KN/m W G = 2,74 KN/m W w = 1,10 KN/m

W T = 6.25 KN/m

24.5 RESULTADOS DEL ANÁLISIS

Modelo SAP 2000 Correa

(233)

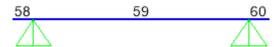
24.6 **REACCIONES MAXIMAS EN LOS APOYOS**

Reacciones Correas- Cercha Dirección Z

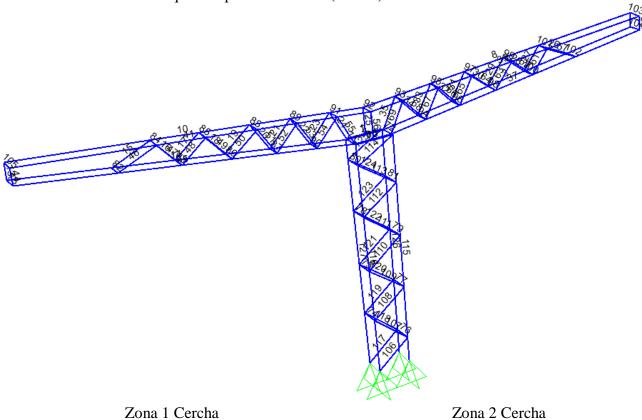
REACCIONES SOBRE		
CORREAS (KN)		
Lr 4,08		
D	2,46	
W	3,26	
G	8,16	

Reacciones Cercha-Apoyos Dirección Z

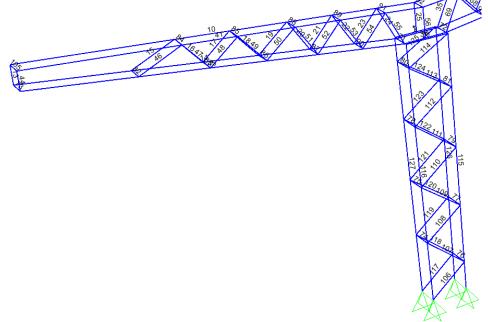
REACCIONES SOBRE		
LA CERCHA (KN)		
Lr 8,43		
D	3,56	
W	4,72	
G	11,80	


24.7 VERIFICACIÓN ESTRUCTURA EXISTENTE

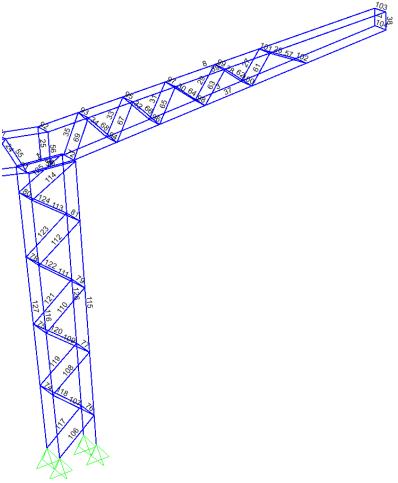
(234)



Nombres del elemento que compone la correa (frames) en SAP2000:


Nombres de los elementos que componen la cercha (frames) en SAP2000:

(235)



Zona 1 Cercha

Zona 2 Cercha

24.7.1 Valores de momentos máximos (KN-M) y cortantes máximos (KN) combinación 1.2D+1.6G+0.8W, en la correa:

TABLE: Element Forces - Frames						
Frame	OutputCase	Р	V2	M3		
Text	Text	KN	KN	KN-m		
58	1,2D+1,6G+0,8W	0,00	3,03	-0,73		
59	1,2D+1,6G+0,8W	0,00	15,79	19,01		
60	1,2D+1,6G+0,8W	0,00	-3,03	-0,73		

24.7.2 Valores de momentos máximos (KN-M) y cortantes máximos (KN) combinación 1.2D+1.6G+0.8W, en el marco:

(237)

	TABLE: Element Forces - Frames				
Frame	OutputCase	Р	V2	M3	
Text	Text	KN	KN	KN-m	
1	1,2D+1,6G+0,8W	-119,97	1,40	0,35	
2	1,2D+1,6G+0,8W	-245,74	26,77	-2,57	
3	1,2D+1,6G+0,8W	-357,78	34,66	-15,09	
7	1,2D+1,6G+0,8W	-29,86	-43,58	-3,43	
8	1,2D+1,6G+0,8W	373,68	-25,82	-9,76	
10	1,2D+1,6G+0,8W	372,23	27,07	-10,09	
13	1,2D+1,6G+0,8W	-23,83	-32,39	2,66	
14	1,2D+1,6G+0,8W	-349,56	-28,47	-12,39	
15	1,2D+1,6G+0,8W	89,12	-1,58	-0,31	
16	1,2D+1,6G+0,8W	-122,13	-0,65	-0,16	
17	1,2D+1,6G+0,8W	61,40	0,48	0,07	
18	1,2D+1,6G+0,8W	-16,66	0,05	0,02	
19	1,2D+1,6G+0,8W	31,42	-0,14	-0,03	
20	1,2D+1,6G+0,8W	-34,70	-0,08	-0,02	
21	1,2D+1,6G+0,8W	26,58	-0,03	-0,01	
22	1,2D+1,6G+0,8W	-28,52	0,01	-0,01	
23	1,2D+1,6G+0,8W	41,13	-0,08	0,01	
24	1,2D+1,6G+0,8W	-50,46	-0,33	0,06	
25	1,2D+1,6G+0,8W	27,87	-0,79	0,11	
26	1,2D+1,6G+0,8W	108,67	-1,75	-0,36	
27	1,2D+1,6G+0,8W	-127,06	-0,53	-0,15	
28	1,2D+1,6G+0,8W	55,69	0,53	0,08	
29	1,2D+1,6G+0,8W	-13,20	0,02	0,01	
30	1,2D+1,6G+0,8W	29,84	-0,14	-0,03	
31	1,2D+1,6G+0,8W	-34,12	-0,04	-0,01	
32	1,2D+1,6G+0,8W	30,17	-0,03	-0,01	
33	1,2D+1,6G+0,8W	-23,38	-0,09	-0,02	
34	1,2D+1,6G+0,8W	13,87	0,00	-0,01	
35	1,2D+1,6G+0,8W	-39,51	0,18	-0,03	
36	1,2D+1,6G+0,8W	-245,74	26,77	-2,57	
37	1,2D+1,6G+0,8W	-357,78	34,66	-15,09	
38	1,2D+1,6G+0,8W	-29,86	-43,58	-3,43	
39	1,2D+1,6G+0,8W	373,68	-25,82	-9,76	
41	1,2D+1,6G+0,8W	372,23	27,07	-10,09	
44	1,2D+1,6G+0,8W	-23,83	-32,39	2,66	

(238)

r		1	1	1
45	1,2D+1,6G+0,8W	-349,56	-28,47	-12,39
46	1,2D+1,6G+0,8W	89,12	-1,58	-0,31
47	1,2D+1,6G+0,8W	-122,13	-0,65	-0,16
48	1,2D+1,6G+0,8W	61,40	0,48	0,07
49	1,2D+1,6G+0,8W	-16,66	0,05	0,02
50	1,2D+1,6G+0,8W	31,42	-0,14	-0,03
51	1,2D+1,6G+0,8W	-34,70	-0,08	-0,02
52	1,2D+1,6G+0,8W	26,58	-0,03	-0,01
53	1,2D+1,6G+0,8W	-28,52	0,01	-0,01
54	1,2D+1,6G+0,8W	41,13	-0,08	0,01
55	1,2D+1,6G+0,8W	-50,46	-0,33	0,06
56	1,2D+1,6G+0,8W	27,87	-0,79	0,11
57	1,2D+1,6G+0,8W	108,67	-1,75	-0,36
61	1,2D+1,6G+0,8W	-127,06	-0,53	-0,15
62	1,2D+1,6G+0,8W	55,69	0,53	0,08
63	1,2D+1,6G+0,8W	-13,20	0,02	0,01
64	1,2D+1,6G+0,8W	29,84	-0,14	-0,03
65	1,2D+1,6G+0,8W	-34,12	-0,04	-0,01
66	1,2D+1,6G+0,8W	30,17	-0,03	-0,01
67	1,2D+1,6G+0,8W	-23,38	-0,09	-0,02
68	1,2D+1,6G+0,8W	13,87	0,00	-0,01
69	1,2D+1,6G+0,8W	-39,51	0,18	-0,03
70	1,2D+1,6G+0,8W	-119,97	1,40	0,35
71	1,2D+1,6G+0,8W	-3,86	58,50	0,77
72	1,2D+1,6G+0,8W	-2,26	91,09	1,45
73	1,2D+1,6G+0,8W	0,00	0,00	0,00
74	1,2D+1,6G+0,8W	-0,01	0,00	0,00
75	1,2D+1,6G+0,8W	0,06	0,00	0,00
76	1,2D+1,6G+0,8W	-0,03	0,00	0,00
77	1,2D+1,6G+0,8W	0,11	0,00	0,00
78	1,2D+1,6G+0,8W	-0,27	0,00	0,00
79	1,2D+1,6G+0,8W	-0,49	0,00	0,00
80	1,2D+1,6G+0,8W	4,23	0,00	-0,01
81	1,2D+1,6G+0,8W	2,51	0,00	-0,02
82	1,2D+1,6G+0,8W	0,00	0,00	0,00
83	1,2D+1,6G+0,8W	0,03	0,00	0,00
84	1,2D+1,6G+0,8W	0,00	0,00	0,00
85	1,2D+1,6G+0,8W	0,00	0,00	0,00

(239)

86	1,2D+1,6G+0,8W	-0,16	0,00	0,00
87	1,2D+1,6G+0,8W	0,79	0,00	0,00
88	1,2D+1,6G+0,8W	0,00	0,00	0,00
89	1,2D+1,6G+0,8W	0,01	0,00	0,00
90	1,2D+1,6G+0,8W	-3,63	0,00	0,00
91	1,2D+1,6G+0,8W	-0,05	0,00	0,00
92	1,2D+1,6G+0,8W	0,00	0,00	0,00
93	1,2D+1,6G+0,8W	-0,08	0,00	0,00
94	1,2D+1,6G+0,8W	-3,79	0,00	0,00
95	1,2D+1,6G+0,8W	0,01	0,00	0,00
96	1,2D+1,6G+0,8W	0,82	0,00	0,00
97	1,2D+1,6G+0,8W	0,00	0,00	0,00
98	1,2D+1,6G+0,8W	-0,16	0,00	0,00
99	1,2D+1,6G+0,8W	0,00	0,00	0,00
100	1,2D+1,6G+0,8W	0,03	0,00	0,00
101	1,2D+1,6G+0,8W	0,00	0,00	0,00
102	1,2D+1,6G+0,8W	-0,01	0,00	0,00
103	1,2D+1,6G+0,8W	0,00	0,00	0,00
104	1,2D+1,6G+0,8W	0,00	0,00	0,00
105	1,2D+1,6G+0,8W	0,00	0,00	0,00
106	1,2D+1,6G+0,8W	0,50	-0,05	-0,01
107	1,2D+1,6G+0,8W	-1,09	-0,10	-0,02
108	1,2D+1,6G+0,8W	0,70	-0,10	-0,02
109	1,2D+1,6G+0,8W	-0,60	-0,08	0,02
110	1,2D+1,6G+0,8W	0,32	-0,07	-0,02
111	1,2D+1,6G+0,8W	-0,42	-0,06	-0,01
112	1,2D+1,6G+0,8W	1,24	-0,11	-0,03
113	1,2D+1,6G+0,8W	-1,57	-0,16	0,04
114	1,2D+1,6G+0,8W	-3,65	0,07	0,02
115	1,2D+1,6G+0,8W	-94,86	-0,18	-0,05
116	1,2D+1,6G+0,8W	-57,86	3,72	-0,41
117	1,2D+1,6G+0,8W	0,50	-0,05	-0,01
118	1,2D+1,6G+0,8W	-1,09	-0,10	-0,02
119	1,2D+1,6G+0,8W	0,70	-0,10	-0,02
120	1,2D+1,6G+0,8W	-0,60	-0,08	0,02
121	1,2D+1,6G+0,8W	0,32	-0,07	-0,02
122	1,2D+1,6G+0,8W	-0,42	-0,06	-0,01
123	1,2D+1,6G+0,8W	1,24	-0,11	-0,03

(240)

124	1,2D+1,6G+0,8W	-1,57	-0,16	0,04
125	1,2D+1,6G+0,8W	-3,65	0,07	0,02
126	1,2D+1,6G+0,8W	-94,86	-0,18	-0,05
127	1,2D+1,6G+0,8W	-57,86	3,72	-0,41

24.7.3 Verificación solicitaciones correa existente

AISC360-05/IBC200 Units : KN, m, C		CHECK (Su	mmary for	Combo and Stati	on)	
Frame : 59	X Mid: 2,980	Combo:	1,2D+1,6G+	0,8W Design T	ype: Beam	
Length: 5,000	Y Mid: 3,000		4L 1x1/8 -			Moment Frame
Loc : 2,500	Z Mid: 0,000	Class:	Non-Compac	t Princpl	Rot: 0,000	degrees
Provision: LRFD	Analysis: Direc					
D/C Limit=0,950	2nd Order: Gene			Reduction: Tau		
AlphaPr/Py=0,000	AlphaPr/Pe=0,00	0 Tau_b=1	,000	EA factor=0,80	0 EI fact	or=0,800
PhiB=0,900	PhiC=0,900	PhiTY=0		PhiTF=0,750		
PhiS=0,900	PhiS-RI=1,000	PhiST=0	,900			
A=6,048E-04	I33=2,791E-06	r33=0,0	68	S33=3,721E-05	Av3=6,0	48E-04
J=0,000	I22=1,128E-06	r22=0,0		S22=2,256E-05	AU2=6,0	48E-04
E=199947978,8	fy=230000,000	Ry=1,00	0	z33=4,082E-05		
RLLF=1,000	Fu=360000,000			z22=2,570E-05		
DESIGN MESSAGES						
Error: Section	on overstressed					
STRESS CHECK FORC	CES & MOMENTS (Co	mbo 1.2D+1	.6G+0.8W)			
Location	Pu	Mu33	Mu22	Vu2	Vu3	Tu
2,500	0,000	19,009	0,000	0,000	0,000	0,000
PMM DEMAND/CAPACI		7.30				
D/C Ratio:	2,468 = 0,000 + 3					
	= (1/2)(Pr)	/Pc) + (Mr	33/Mc33) +	(Mr22/Mc22)		
AXIAL FORCE & BIG	XIAL MOMENT DESI	GN (H1-1				
Factor	L	K1	K2	B1	B2	Cm
Major Bending		1,000	1,000	1,000	1,000	1,000
Minor Bending	1,000	1,000	1,000	1,000	1,000	1,000
	Lltb	Kltb	СЬ			
LTB	1,000	1,000	1,149			

	Pu	phi*Pnc	phi*Pnt	
	Force	Capacity	Capacity	
Axial	0,000	65,102	125,201	
	Mu	phi∗Mn	phi∗Mn	
	Moment	Capacity	No LTB	
Major Moment	19,009	7,703	7,703	
Minor Moment	0,000	4,670	£.	
SHEAR CHECK				
	Vu	phi*Vn	Stress	Status
	Force	Capacity	Ratio	Check
Major Shear	0,000	75,121	0,000	ОК
Minor Shear	0,000	75,121	0,000	OK
CONNECTION SHEAR	FORCES FOR BE	AMS		
	VMajor	VMajor		
	Left	Right		
Major (V2)	15,790	15,790		

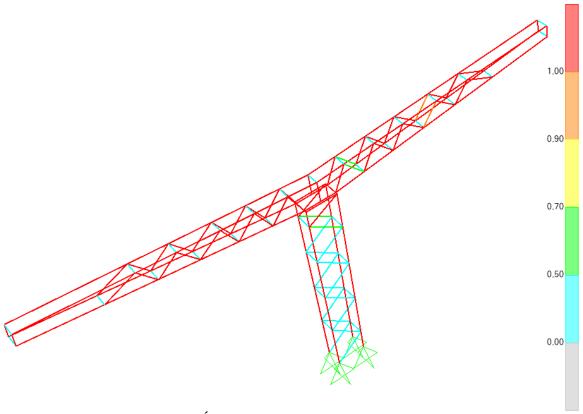
24.7.4 Verificación solicitaciones marco existente

AISC360-05/IBC20		H CHECK (Su	ummary for (Combo and Statio	n)	
Units : KN, m,	L					
Frame : 37	X Mid: 1,591	Combo:	1,2D+1,6G+	9,8W Design Ty	pe: Brace	
Length: 2,847	Y Mid: -0,075	Shape:	L 2x3/16 -	19 Frame Typ	e: Special	Moment Fram
Loc : 2,057	Z Mid: 2,500	Class:	Compact	Princpl R	ot: 0,000 (degrees
Provision: LRFD	Analysis: Dire	ect Analysis	5			
D/C Limit=0,950	2nd Order: Ger	neral 2nd Or	rder	Reduction: Tau-	b Fixed	
AlphaPr/Py=1,312	AlphaPr/Pe=0,9	953 Tau_b=-	-1,638	EA factor=0,800	EI facto	or=0,800
PhiB=0,900	PhiC=0,900	PhiTY=0	3.988	PhiTF=0,750		
PhiS=0,900	Phis-RI=1,000	PhiST=0				
A=4,612E-04	133=0,000	r33=0,0	316	S33=3,120E-06	Av3=2,4	19E-04
J=0,000	122=0,000	r22=0,6	316	S22=3,120E-06	Au2=2,4	19E-04
alpha=45,000	5000000 000	D. 4 00	20	-00 5 (045 0)		
E=199947978,8 RLLF=1,000	fy=230000,000 Fu=360000,000	Ry=1,00	36	z33=5,621E-06 z22=5,621E-06		
DESIGN MESSAGES						
Error: Secti	on overstressed					
STRESS CHECK FOR						
Location 2,057	Pu -139,174	Mu33 -14,737 -	Mu22 -4,000E-04	Vu2 34,664	Vu3 0,005	0,000
PMM DEMAND/CAPAC	ITY RATIO (H2-	-1)				
D/C Ratio:	25,805 = 1,976 = = fa/Fa =	+ 8,957 + 14 + fbw/Fbw +				
AXIAL FORCE & BI	AXIAL MOMENT DES	SIGN (H2-1	D			
Factor	L	K1	K2	B1	B2	Cm
Major Bendin		1,000	1,000	1,000	1,000	1,000
Minor Bendin	A	1,000	1,000	1,000	1,000	1,000
	Lltb	Kltb	СЬ			
LTB	0,277	1,000	1,000			
	Pu	phi*Pnc	phi*Pnt			
2 8 8	Force	Capacity	Capacity			
Axial	-139,174	70,433	95,466			
	Mu	phi*Mn	phi*Mn			
	Moment	Capacity	No LTB			
Major Moment Minor Moment		1,163 0,701	1,163			
CHEAD CHECK	9 N1110 T 1 10 10 10 1					
SHEAR CHECK	Vu	phi*Vn	Stress	Status		
	Force	Capacity	Ratio	Check		
Major Shear	34,664	30,048	1,154	Overstress		
Minor Shear	0,005	30,048	0,000	ОК		

24.7.5 Índices de sobre-esfuerzos correa existente

94 2,468

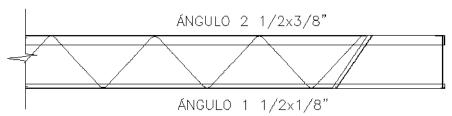
0,094


Índice de sobre-esfuerzos correa

(243)

Índice de sobre-esfuerzos marco

24.8 ALTERNATIVA DE REFORZAMIENTO PROPUESTO


El marco principal y las correas presentan un índice de sobreesfuerzo muy elevado, debido a que las correas tienen una gran separación entre sí, los perfiles de los cordones inferior, superior y la columna en celosía del marco no cuentan con la sección transversal apropiada para la luz máxima y las cargas requeridas, principalmente el granizo y el viento. Por lo tanto, se recomienda desmontar todos los elementos estructurales que componen esta cubierta (marco y correas), para ser reemplazados según un nuevo diseño acorde a las exigencias del reglamento NSR-10.

25. ANÁLISISCUBIERTA BLOQUE 20

25.1 CONFIGURACION EXISTENTE

Configuración de correas existentes

25.2 EVALUACIONES DE CARGA

Inclinación de la cubierta 2,60° = 4,5%
Separación máxima entre correas 2,93 m

CARGA MUERTA: Según tabla B.3.4.1-1 y B.3.4.1-4 del título B de la NSR-10

Teja Eternit

Teja de asbesto cemento

Cielo raso Lámparas

Estructura metálica Total Carga Muerta (D)

	KN/m²
	KN/m²
	KN/m²
	KN/m²
	KN/m²
0,30	KN/m²

CARGA VIVA: Según tabla B.4.2.1-2 del título B de la NSR-10

Inclinación de la cubierta de 2,60 º

Lr = 0,50 KN/m²

CARGA DE GRANIZO: Según B.4.8.3 del titulo B de la NSR-10, la carga de granizo, G:

G = 1,00 KN/m²

CARGA DE VIENTO:

W= 0,40 KN/m² (Presión)

(245)

25.3 CASOS DE CARGA

CASOS DE CARGA	DESCRIPCIÓN
PP	Peso Propio de la estructura
D	Carga muerta
Lr	Carga viva de cubierta
W	Viento
G	Granizo

25.4 COMBINACIONES DE DISEÑO

Según lo estipulado en B.2.4.2 del título B de la NSR-10:

Combinaciones de carga para ser utilizadas con el método de resistencia

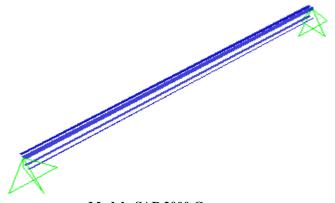
COMBINACION	CARGA TOTAL	
	MAYORADA KN/m²	
1,4D	0,42	
1,2D+0,5Lr	0,61	
1.2D+0.5G	0,86	
1,2D+1,6Lr+0,8W	1,16	
1.2D+1.6G+0.8W	2,28	
1,2D+1,6W+0,5Lr	1,25	
1,2D+1,0E	0,36	
0,9D+1,6W	0,91	
0,9D+1,0E	0,27	

Gobierna la combinación 1,2D+1,6G+0,8W

MUERTA	GRANIZO	VIENTO		
1,2D	1,6G	0,8W	Wtotal	
0,36	1,60	0,32	2,28	KN/m²

Se calcula la resultante carga muerta, según la inclinación de cubierta de 2,60º

KN/m²


Wu muerta = 0,36 KN/m² Wu resultante = 2,28 KN/m²

Con una separacion maxima entre correas de 2,93 m, se calculan las cargas totales SIN MAYORAR:

W D = 0.88 KN/m W Lr = 1.47 KN/m W G = 2.93 KN/m W W = 1.17 KN/m

W T = 6,68 KN/m

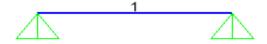
25.5 RESULTADOS DEL ANÁLISIS

Modelo SAP 2000 Correas

25.6 REACCIONES MAXIMAS EN LOS APOYOS

Reacciones Correas-Apoyos Dirección Z

(247)



REACCIO	NES SOBRE				
CORREAS (KN)					
Lr	4,81				
D	2,89				
W	3,85				
G	9,62				

25.7 VERIFICACIÓN ESTRUCTURA EXISTENTE

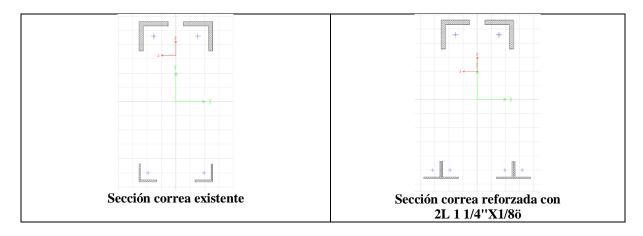
Nombres del elemento que compone la correa (frames) en SAP2000:

25.7.1 Valores de momentos máximos (KN-M) y cortantes máximos (KN) combinación 1.2D+1.6G+0.8W, en la correa:

TABLE: Element Forces - Frames							
Frame OutputCase P V2							
Text	Text	KN	KN	KN-m			
2	1,2D+1,6G+0,8W	0,00	7,93	-6,90			
3	1,2D+1,6G+0,8W	0,00	-6,91	-6,90			
4	1,2D+1,6G+0,8W	0,00	-6,53	-5,15			
5	1,2D+1,6G+0,8W	0,00	6,92	-6,91			
6	1,2D+1,6G+0,8W	0,00	-7,95	-6,91			

25.7.2 Verificación solicitaciones correa existente

AISC360-05/IBC20 Units : KN, m,	06 STEEL SECTION	CHECK (Summa	ary for Com	oo and Statio	1)	
Frame : 1	X Mid: 3,270	Combo: 1.3	2D+1,6G+0,8U	/ Design Typ	ne: Beam	
Length: 6,540	Y Mid: 0,000			L 1Frame Type		Moment Frame
Loc : 3,270	Z Mid: 0,000	Class: No			ot: 0,000	
. 0,210	L 11111 0,000	010331 1101	. oonpace	TT THOP I	. 0,000	acg. ccs
Provision: LRFD	Analysis: Direc					
D/C Limit=0,950	2nd Order: Gene			duction: Tau-		
AlphaPr/Py=0,000	AlphaPr/Pe=0,00	io lau_b=1,0	BB EA	factor=0,800	El facto	or=0,800
PhiB=0,900	PhiC=0,900	PhiTY=0,9	00 Phi	LTF=0,750		
PhiS=0,900	PhiS-RI=1,000	PhiST=0,9	99			
A=0,003	133=4,020E-05	r33=0,122	634	3=1,458E-04	Av3=0,0	82
	I22=1,134E-05			2=1,418E-04	Au2=0,0	
J=0,000	[10] [10] [10] [10] [10] [10] [10] [10]	r22=0,065		어딘 내 전 주시아들이들이 전에 그렇게 되었다.	HUZ-0, 0	ยง
E=199947978,8	fy=230000,000	Ry=1,000		3=1,854E-04		
RLLF=1,000	Fu=360000,000		222	2=1,679E-04		
DESIGN MESSAGES	on overstressed					
Ellor. Secti	on overstressed					
	CES & MOMENTS (Co	10 ASS STAND 15				
Location	Pu	Mu33	Mu22	Vu2	Vu3	Tu
3,270	0,000	37,048	0,000	0,000	0,000	0,000
PMM DEMAND/CAPAC D/C Ratio:	1,227 = 0,000 +	1,227 + 0,000 /Pc) + (Mr33,		·22/Mc22)		
Factor	L L	K1	К2	B1	B2	Cm
Major Bendin		1,000	1,000	1,000	1,000	1,000
Minor Bendin	g 1,000	1,000	1,000	1,000	1,000	1,000
	L1tb	Kltb	СР			
LTB	1,000	1,000	1,140			
			1 - 4 1			
	Pu	phi*Pnc	phi*Pnt			
A	Force	Capacity	Capacity			
Axial	0,000	340,215	559,210	,		
	Mu	phi∗Mn	phi*Mr	1		
	Moment	Capacity	No LTE			
Major Mome		30,183	30,183			
Minor Mome		29,349	00,100	5 7).		
CHEAD OHEOR						
SHEAR CHECK	Vu	phi∗Vn	Stress	Status		
	Force	Capacity	Ratio			
Majou Chas		335,526	0,000			
Major Shea						
Minor Shea	r 0,000	286,897	0,000	3 01	•	
CONNECTION SHE	AR FORCES FOR BE	AMS				
	VMajor	VMajor				
	Left	Right				
Major (V2)		22,660				


25.7.3 Índices de sobre-esfuerzos correa existente

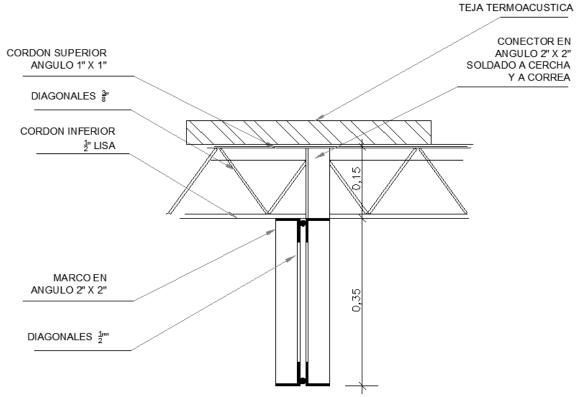
Índice de sobre-esfuerzos correa

25.8 ALTERNATIVA DE REFORZAMIENTO PROPUESTO

Reforzamiento correa

25.8.1 Verificación solicitaciones correa reforzada

AISC Unit		5/IBC20 KN, m,		EL SEC	TION C	HECK (Summa	ry for	Combo	and S	Station	n)			
OHILL	5 .	NI1, III,													
Fram	e : 2		X Mi	d: 13,	270			D+1,6G+			ign Typ				
Leng	th: 6	,540	Y Mi	d: 0,0	100	Shape	: 2L	2-1/2x3	/8+4L						ment Fra
Loc	: 3	,270	Z Mi	d: 0,0	100	Class	: Non	-Compac	t	Pri	ncp1 Re	ot:	0,000	deg	rees
Prov	ision	: LRFD	Anal	ysis:	Direct	Analys	is								
D/C	Limit	=0,950	2nd	Order:	Gener	al 2nd	Order		Redu	ction	: Tau-l	b Fi	xed		
A1ph	aPr/P	y=0,000	Alph	naPr/Pe	=0,000	Tau_b	=1,00	0	EA f	actor	-0,800	E	I fact	or=	0,800
	=0,90		PhiC	=0,900		PhiTY	=0,90	0	PhiT	F=0,7	50				
Phis	=0,90	9	Phis	S-RI=1,	000	PhiST	=0,90	0							
A=0,	003		133=	6,807E	-05	r33=0	.147		233=	2,873	E-04	A	v3=0,0	03	
J=0.				1,522E		r22=0				1,289			v2=0.0		
E=19	99479	78,8		230000,		Ry=1,	000		z33=	3,320	- 04				
RLLF	=1,00	0	Fu=3	360000,	000				z22=	2,0991	E-04				
			CES &			bo 1,2D	+1,6G								-
	Locat			Pu		Mu33		Mu22		Vu			Vu3		Tu
	3,270			0,000	-	37,277		0,000		0,00	3	θ,	000		0,000
		D/CAPAC			(H1-1b										
	D/C R	atio:	0,627			7,627 + Pc) + ((Mr2	2/Mc2	2)				
AXIA	L FOR	CE & BI	AXIAL	MOMENT	DESIG	N (H1	-1b)								
	Facto			L		K1		K2		B.	1		B2		Cm
	Major	Bendin	q	1,000	i	1,000		1,000		1,00	3	1,	000		1,000
	Minor	Bendin	ğ	1,000		1,000		1,000		1,00	3	1,	000		1,000
				Litb		Kltb		СЬ							
	LTB			1,000		1,000		1,140							
					Pu	phi*Pn	C	phi*P	nt						
				For	ce	Capacit	:y	Capaci	ty						
	Axial			0,0	00	424,56	9	655,1	98						
					Mu	phi*M	In	phi*	Mn						
				Monei		Capacit		No L							
	Major	Momen	t	37,2		59,47	-	59,4							
		Momen		0,0		26,68									
SHEA	R CHE	СК													
		TOTATION .			Vu	phi*V	ln .	Stre	SS	St	atus				
				For		Capacit		Rat			heck				
	Major	Shear		0.0		393,11	-	0.0		-	ОК				
		Shear		0,0		311,75		0,0			ОК				
CONF	ECTIO	IN SHEA	R FNR	CES FNI	R BFAM	S									
		onen													
				yman	or	ymano	ır								
				VMajo Let		VMajo Righ									



25.8.2 Índices de sobre-esfuerzos máximos correa reforzada

26. ANÁLISISCUBIERTA BLOQUE 23

26.1 CONFIGURACION EXISTENTE

Configuración de correa y cercha existente

26.2 EVALUACIONES DE CARGA

Inclinación de la cubierta Separación máxima entre correas 7,56 = 13,3% 1,49 m

(252)

SERVICIO NACIONAL DE APRENDIZAJE - SENA

0,15 KN/m²

CARGA MUERTA: Según tabla B.3.4.1-1 y B.3.4.1-4 del título B de la NSR-10

 Teja Eternit
 0,00 KN/m²

 Teja termoacustica
 0,05 KN/m²

 Cielo raso
 0,00 KN/m²

 Lámparas
 0,05 KN/m²

 Estructura metálica
 0,05 KN/m²

CARGA VIVA: Según tabla B.4.2.1-2 del título B de la NSR-10

Total Carga Muerta (D)

Inclinación de la cubierta de 7,56

Lr = 0,50 KN/m²

CARGA DE GRANIZO: Según B.4.8.3 del titulo B de la NSR-10, la carga de granizo, G:

G = 1,00 KN/m²

CARGA DE VIENTO:

W= 0,40 KN/m² (Presión)

26.3 CASOS DE CARGA

CASOS DE CARGA	DESCRIPCIÓN
PP	Peso Propio de la estructura
D	Carga muerta
Lr	Carga viva de cubierta
W	Viento
G	Granizo

26.4 COMBINACIONES DE DISEÑO

Según lo estipulado en B.2.4.2 del título B de la NSR-10:

Combinaciones de carga para ser utilizadas con el método de resistencia

COMBINACION	CARGA TOTAL				
	MAYORADA KN/m²				
1,4D	0,21				
1,2D+0,5Lr	0,43				
1.2D+0.5G	0,68				
1,2D+1,6Lr+0,8W	0,98				
1.2D+1.6G+0.8W	2,10				
1,2D+1,6W+0,5Lr	1,07				
1,2D+1,0E	0,18				
0,9D+1,6W	0,78				
0,9D+1,0E	0,14				

Gobierna la combinación 1,2D+1,6G+0,8W

MUERTA	GRANIZO	VIENTO		
1,2D	1,6G	0,8W	Wtotal	
0,18	1,60	0,32	2,10	KN/m²

Se calcula la resultante carga muerta, según la inclinación de cubierta de 7,56

Wu muerta = 0.18 KN/m² Wu resultante = 2.10 KN/m²

Con una separacion maxima entre correas de 1,49 m, se calculan las cargas totales SIN MAYORAR:

W D = 0,23 KN/m **W** Lr = 0,75 KN/m **W** G = 1,49 KN/m **W** w = 0,60 KN/m

W T = 3,13 KN/m

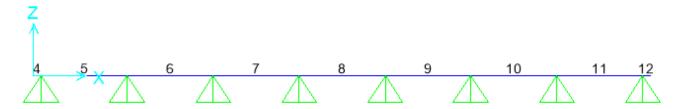
26.5 RESULTADOS DEL ANÁLISIS

Modelo SAP 2000 Correa

(254)

26.6 REACCIONES MAXIMAS EN LOS APOYOS

Reacciones Correas- Cercha Dirección Z

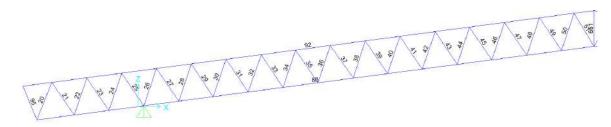

REACCIONES				
CORREAS (KN)				
Lr	4,24			
D	1,46			
W	3,39			
G	8,48			

Reacciones Cercha- Apoyos Dirección Z

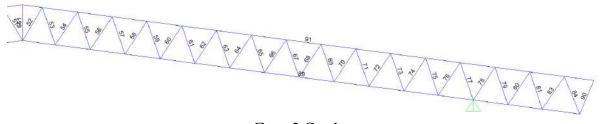
REACCIONES				
CERCHA (KN)				
Lr 19,96				
D 6,42				
W	13,56			
G	33,92			

26.7 VERIFICACIÓN ESTRUCTURA EXISTENTE

Nombres del elemento que compone la correa (frames) en SAP2000:


Nombres de los elementos que componen la cercha (frames) en SAP2000:

Zona 1 Cercha Zona 2 Cercha


(255)

Zona 1 Cercha

Zona 2 Cercha

26.7.1 Valores de momentos máximos (KN-M) y cortantes máximos (KN) combinación 1.2D+1.6G+0.8W, en la correa:

	TABLE: Element Forces - Frames								
Frame	OutputCase P V2 M3								
Text	Text	KN	KN	KN-m					
4	1,2D+1,6G+0,8W	0,00	1,40	-0,31					
5	1,2D+1,6G+0,8W	0,00	9,55	-8,32					
6	1,2D+1,6G+0,8W	0,00	-8,38	-8,32					
7	1,2D+1,6G+0,8W	0,00	8,05	-6,73					
8	1,2D+1,6G+0,8W	0,00	-7,97	-6,73					
9	1,2D+1,6G+0,8W	0,00	-8,02	-6,69					
10	1,2D+1,6G+0,8W	0,00	8,38	-8,34					
11	1,2D+1,6G+0,8W	0,00	-9,56	-8,34					
12	1,2D+1,6G+0,8W	0,00	-1,40	-0,31					

26.7.2 Valores de momentos máximos (KN-M) y cortantes máximos (KN) combinación 1.2D+1.6G+0.8W, en la cercha:

TABLE: Element Forces - Frames						
Frame	OutputCase	Р	V2	M3		
Text	Text	KN	KN	KN-m		
4	1,2D+1,6G+0,8W	0,00	1,40	-0,31		

(256)

5	1,2D+1,6G+0,8W	0,00	9,55	-8,32
6	1,2D+1,6G+0,8W	0,00	-8,38	-8,32
7	1,2D+1,6G+0,8W	0,00	8,05	-6,73
8	1,2D+1,6G+0,8W	0,00	-7,97	-6,73
9	1,2D+1,6G+0,8W	0,00	-8,02	-6,69
10	1,2D+1,6G+0,8W	0,00	8,38	-8,34
11	1,2D+1,6G+0,8W	0,00	-9,56	-8,34
12	1,2D+1,6G+0,8W	0,00	-1,40	-0,31
20	1,2D+1,6G+0,8W	19,97	0,00	0,00
21	1,2D+1,6G+0,8W	-20,02	0,00	0,00
22	1,2D+1,6G+0,8W	20,59	0,00	0,00
23	1,2D+1,6G+0,8W	-19,17	0,00	0,00
24	1,2D+1,6G+0,8W	14,61	0,00	0,00
25	1,2D+1,6G+0,8W	-15,68	0,00	0,00
26	1,2D+1,6G+0,8W	-37,76	0,00	0,00
27	1,2D+1,6G+0,8W	36,98	0,00	0,00
28	1,2D+1,6G+0,8W	-40,58	0,00	0,00
29	1,2D+1,6G+0,8W	29,63	0,00	0,00
30	1,2D+1,6G+0,8W	-29,56	0,00	0,00
31	1,2D+1,6G+0,8W	20,23	0,00	0,00
32	1,2D+1,6G+0,8W	-20,22	0,00	0,00
33	1,2D+1,6G+0,8W	21,34	0,00	0,00
34	1,2D+1,6G+0,8W	-20,99	0,00	0,00
35	1,2D+1,6G+0,8W	20,75	0,00	0,00
36	1,2D+1,6G+0,8W	-20,52	0,00	0,00
37	1,2D+1,6G+0,8W	21,84	0,00	0,00
38	1,2D+1,6G+0,8W	-20,98	0,00	0,00
39	1,2D+1,6G+0,8W	15,33	0,00	0,00
40	1,2D+1,6G+0,8W	-15,90	0,00	0,00
41	1,2D+1,6G+0,8W	0,50	0,00	0,00
42	1,2D+1,6G+0,8W	-0,70	0,00	0,00
43	1,2D+1,6G+0,8W	1,42	0,00	0,00
44	1,2D+1,6G+0,8W	-0,93	0,00	0,00
45	1,2D+1,6G+0,8W	0,75	0,00	0,00
46	1,2D+1,6G+0,8W	-0,83	0,00	0,00
47	1,2D+1,6G+0,8W	1,18	0,00	0,00
48	1,2D+1,6G+0,8W	-0,69	0,00	0,00
49	1,2D+1,6G+0,8W	-1,37	0,00	0,00

(257)

50	1,2D+1,6G+0,8W	-0,17	0,00	0,00
51	1,2D+1,6G+0,8W	-9,80	0,00	0,00
52	1,2D+1,6G+0,8W	-9,58	0,00	0,00
53	1,2D+1,6G+0,8W	-0,17	0,00	0,00
54	1,2D+1,6G+0,8W	-1,37	0,00	0,00
55	1,2D+1,6G+0,8W	-0,67	0,00	0,00
56	1,2D+1,6G+0,8W	1,15	0,00	0,00
57	1,2D+1,6G+0,8W	-0,80	0,00	0,00
58	1,2D+1,6G+0,8W	0,73	0,00	0,00
59	1,2D+1,6G+0,8W	-0,96	0,00	0,00
60	1,2D+1,6G+0,8W	1,41	0,00	0,00
61	1,2D+1,6G+0,8W	-0,58	0,00	0,00
62	1,2D+1,6G+0,8W	0,38	0,00	0,00
63	1,2D+1,6G+0,8W	-15,85	0,00	0,00
64	1,2D+1,6G+0,8W	15,03	0,00	0,00
65	1,2D+1,6G+0,8W	-21,21	0,00	0,00
66	1,2D+1,6G+0,8W	21,54	0,00	0,00
67	1,2D+1,6G+0,8W	-20,67	0,00	0,00
68	1,2D+1,6G+0,8W	20,65	0,00	0,00
69	1,2D+1,6G+0,8W	-21,10	0,00	0,00
70	1,2D+1,6G+0,8W	21,28	0,00	0,00
71	1,2D+1,6G+0,8W	-20,16	0,00	0,00
72	1,2D+1,6G+0,8W	20,01	0,00	0,00
73	1,2D+1,6G+0,8W	-29,63	0,00	0,00
74	1,2D+1,6G+0,8W	29,43	0,00	0,00
75	1,2D+1,6G+0,8W	-40,70	0,00	0,00
76	1,2D+1,6G+0,8W	36,71	0,00	0,00
77	1,2D+1,6G+0,8W	-37,80	0,00	0,00
78	1,2D+1,6G+0,8W	-15,69	0,00	0,00
79	1,2D+1,6G+0,8W	14,61	0,00	0,00
80	1,2D+1,6G+0,8W	-19,06	0,00	0,00
81	1,2D+1,6G+0,8W	20,57	0,00	0,00
83	1,2D+1,6G+0,8W	-19,91	0,00	0,00
84	1,2D+1,6G+0,8W	20,20	0,00	0,00
88	1,2D+1,6G+0,8W	-177,90	3,63	-1,02
89	1,2D+1,6G+0,8W	-177,66	-3,63	-1,02
90	1,2D+1,6G+0,8W	-18,28	0,00	0,00
91	1,2D+1,6G+0,8W	-106,69	13,11	0,95

(258)

92	1,2D+1,6G+0,8W	-106,90	-13,25	0,95
95	1,2D+1,6G+0,8W	-18,25	0,00	0,00
661	1,2D+1,6G+0,8W	11,81	0,00	0,00

26.7.3 Verificación solicitaciones correa existente

AISC360-05/IBC200 Units : KN, m, C	06 STEEL SECTION C	HECK (Su	mmary for	Combo and Stat	ion)	
Frame : 10 Length: 5,000	X Mid: 27,940 Y Mid: 3,000	Shape:		B 1/2 -Frame T		
Loc : 5,000	Z Mid: 0,000	Class:	Non-Compac	t Princpl	Rot: 0,000	degrees
Provision: LRFD D/C Limit=0,950	Analysis: Direct 2nd Order: Gener			Reduction: Ta	J−b Fixed	
AlphaPr/Py=0,000	AlphaPr/Pe=0,000	Tau_b=1	,000	EA factor=0,8	90 EI facto	or=0,800
PhiB=0,900 PhiS=0,900	PhiC=0,900 PhiS-RI=1,000	PhiTY=0 PhiST=0		PhiTF=0,750		
A=4,029E-04	I33=1,593E-06	r33=0,0	63	S33=1,604E-05	Au3=2,99	94E-04
J=0,000	122=0,000	r22=0,0		S22=0,000	Av2=4,02	29E-04
E=199947978,8 RLLF=1,000	fy=230000,000 Fu=360000,000	Ry=1,00	9	z33=1,823E-05 z22=1,895E-06		
Warning: kl/r	on overstressed >> 200 (AISC E2)					
STRESS CHECK FORC	ES & MOMENTS (Com Pu	bo 1,2D+1 Mu33	,6G+0,8W) Mu22	Vu2	Uu3	Tu
5,000	0.000 0.000	-8,335	0,000	8,384	0,000	0,000
PMM DEMAND/CAPACI D/C Ratio:	2,510 = 0,000 + 2	,510 + 0,		(Mr22/Mc22)		
AXIAL FORCE & BIA	XIAL MOMENT DESIG	N (H1-1	b)			
Factor Major Bending	1,000	K1 1,000	K2 1,000	B1 1,000	B2 1,000	Cm 1,000
Minor Bending	1,000	1,000	1,000	1,000	1,000	1,000
LTB	L1tb 1,000	Kltb 1,000	Cb 2,984			

	Pu	phi*Pnc	phi*Pnt	
Axial	Force 0,000	Capacity 0,836	Capacity 83,408	
	Mu	phi*Mn	phi*Mn	
Major Moment	Moment -8,335	Capacity 3,321	No LTB 3,321	
Minor Moment	0,000	0,179		
HEAR CHECK	Vu	phi*Vn	Stress	Status
	Force	Capacity	Ratio	Check
Major Shear Minor Shear	8,384 0,000	50,045 37,188	0,168 0,000	OK OK
CONNECTION SHEAR				
	VMajor	VMajor		
Major (V2)	Left 7,503	Right 8,384		

26.7.4 Verificación solicitaciones cercha existente

AISC360-05/IBC2006 STEEL SECTION CHECK (Summary for Combo and Station) Units : KN, m, C

Frame : 89 Length: 4,801 Loc : 3,881		3+0,8W Design Type: Brace inf -18 Frame Type: Special Moment Frame act Princpl Rot: 0,000 degrees
Provision: LRFD D/C Limit=0,950 AlphaPr/Py=1,227	Analysis: Direct Analysis 2nd Order: General 2nd Order AlphaPr/Pe=4,974 Tau_b=-1,112	Reduction: Tau-b Fixed EA factor=0,800 EI factor=0,800

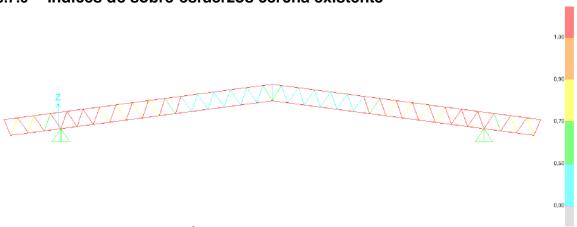
PhiB=0,900	PhiC=0,900	PhiTY=0,900	PhiTF=0,750	
PhiS=0,900	PhiS-RI=1,000	PhiST=0,900		
A=6,298E-04	133=0,000	r33=0,016	S33=4,315E-06	Au3=4,799E-04
J=0,000 alpha=90,000	122=0,000	r22=0,026	S22=7,300E-06	AU2=2,876E-04
E=199947978,8	fy=230000,000	Ry=1,000	z33=7,770E-06	
RLLF=1,000	Fu=360000,000		z22=1,274E-05	

DESIGN MESSAGES

Error: Section overstressed

```
STRESS CHECK FORCES & MOMENTS (Combo 1,2D+1,6G+0,8W)
Location Pu Mu33 Mu22 Uu2 Uu3 Tu
3,881 -177,663 -1,022 0,000 3,528 0,000 0,000
```

PMM DEMAND/CAPACITY RATIO (H1-1a) D/C Ratio: 7,320 = 6,302 + 1,017 + 0,000 = (Pr/Pc) + (8/9)(Mr33/Mc33) + (8/9)(Mr22/Mc22)


AXIAL FORCE & BIAXI	AL MOMENT	DESIGN (H1-	1a)			
Factor	L	K1	К2	B1	B2	Cm
Major Bending	0,067	1,000	1,000	1,000	1,000	1,000
Minor Bending	1,000	1,000	1,000	1,000	1,000	1,000
	Lltb	Kltb	Cb			
LTB	1,000	1,000	2,232			
	Pu	phi*Pnc	phi∗Pnt			
	Force	Capacity	Capacity			
Axial	-177,663	28,191	130,360			
	Mu	phi*Mn	phi∗Mn			
	Moment	Capacity	No LTB			
Major Moment	-1,022	0,893	0,893			
Minor Moment	0,000	1,511				
SHEAR CHECK						
	Vu	phi*Un	Stress	Status		
	Force	Capacity	Ratio	Check		
Major Shear	3,528	35,717	0,099	OK		
Minor Shear	0,000	59,607	0,000	ОК		

26.7.5 Índices de sobre-esfuerzos correa existente

Índice de sobre-esfuerzos correa

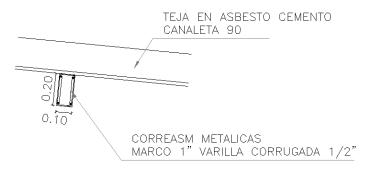
26.7.6 Índices de sobre-esfuerzos cercha existente

Índice de sobre-esfuerzos cercha

26.8 ALTERNATIVA DE REFORZAMIENTO PROPUESTO

La cercha principal presenta un índice de sobreesfuerzo muy elevado, debido a que las correas tienen una gran separación entre sí, las cargas no se están transmitiendo en los nodos, los perfiles de los cordones inferior y superior no cuentan con la sección transversal

(261)



apropiada para la luz máxima y las cargas requeridas, principalmente el granizo y el viento. Por lo tanto, se recomienda desmontar todos los elementos estructurales que componen esta cubierta (cercha y correas), para ser reemplazados según un nuevo diseño acorde a las exigencias del reglamento NSR-10.

27. ANÁLISISCUBIERTA BLOQUE 24

27.1 CONFIGURACION EXISTENTE

Configuración de correa existente

27.2 EVALUACIONES DE CARGA

(262)

SERVICIO NACIONAL DE APRENDIZAJE - SENA

Inclinación de la cubierta Separación máxima entre correas

4,95	=	8,7%
1,89	m	

CARGA MUERTA: Según tabla B.3.4.1-1 y B.3.4.1-4 del título B de la NSR-10

 Teja Eternit
 0,00 KN/m²

 Teja Asbesto Cemento
 0,20 KN/m²

 Cielo raso
 0,00 KN/m²

 Lámparas
 0,00 KN/m²

 Estructura metálica
 0,00 KN/m²

 Total Carga Muerta (D)
 0,20 KN/m²

CARGA VIVA: Según tabla B.4.2.1-2 del título B de la NSR-10

Inclinación de la cubierta de 4,95

Lr = 0,50 KN/m²

CARGA DE GRANIZO: Según B.4.8.3 del titulo B de la NSR-10, la carga de granizo, G:

G = **1,00** KN/m²

CARGA DE VIENTO:

W= 0,40 KN/m² (Presión)

27.3 CASOS DE CARGA

CASOS DE CARGA	DESCRIPCIÓN
PP	Peso Propio de la estructura
D	Carga muerta
Lr	Carga viva de cubierta
W	Viento
G	Granizo

27.4 COMBINACIONES DE DISEÑO

Según lo estipulado en B.2.4.2 del título B de la NSR-10:

(263)

Combinaciones de carga para ser utilizadas con el método de resistencia

COMBINACION	CARGA TOTAL
	MAYORADA KN/m²
1,4D	0,28
1,2D+0,5Lr	0,49
1.2D+0.5G	0,74
1,2D+1,6Lr+0,8W	1,04
1.2D+1.6G+0.8W	2,16
1,2D+1,6W+0,5Lr	1,13
1,2D+1,0E	0,24
0,9D+1,6W	0,82
0,9D+1,0E	0,18

Gobierna la combinación 1,2D+1,6G+0,8W

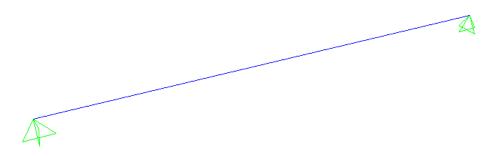
MUERTA	GRANIZO	VIENTO		
1,2D	1,6G	0,8W	Wtotal	
0,24	1,60	0,32	2,16	KN/m²

Se calcula la resultante carga muerta, según la inclinación de cubierta de

4,95

Wu muerta = 0.24 KN/m² Wu resultante = 2.16 KN/m²

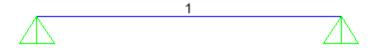
Con una separacion maxima entre correas de 1,89 m, se calculan las cargas totales SIN MAYORAR:


W D = 0,38 KN/m W Lr = 0,95 KN/m W G = 1,89 KN/m W W = 0,76 KN/m

W T = 4,08 KN/m

27.5 RESULTADOS DEL ANÁLISIS

Modelo SAP 2000 Correa


27.6 REACCIONES MAXIMAS EN LOS APOYOS

Reacciones Correas- Apoyos Dirección Z

REACCIONES		
CORREAS (KN)		
Lr	7,39	
D	3,33	
W	5,91	
G	14,78	

27.7 VERIFICACIÓN ESTRUCTURA EXISTENTE

Nombres del elemento que compone la correa (frames) en SAP2000:

27.7.1 Valores de momentos máximos (KN-M) y cortantes máximos (KN) combinación 1.2D+1.6G+0.8W, en la correa:

	TABLE: Element Ford	es - Fra	mes	
Frame	OutputCase	Р	V2	M3
Text	Text	KN	KN	KN-m
1	1,2D+1,6G+0,8W	0,00	32,24	125,41

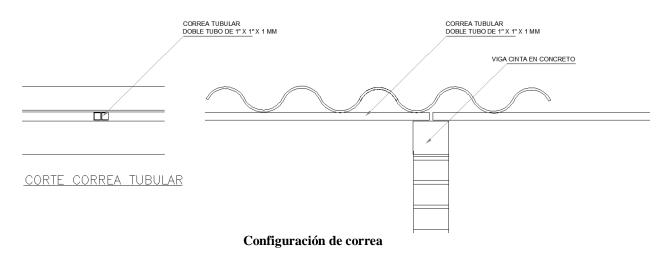
27.7.2 Verificación solicitaciones correa existente

Units : KN, m, C	O STEEL SECTION	H CHECK (SI	ummary for	Combo and Statio	on)	
	V Hid. 7 700	0	4 00 4 40	a ou		
rame: 1	X Mid: 7,780		1,2D+1,6G+		pe: Beam	
ength: 15,560	Y Mid: 0,000		4L 1x1/8 -			Moment Fram
oc : 7,780	Z Mid: 0,000	Class:	Non-Compac	t Princpl F	Rot: 0,000	degrees
Provision: LRFD	Analysis: Dire			20 20 2024 202		
)/C Limit=0,950	2nd Order: Ger			Reduction: Tau-		
AlphaPr/Py=0,000	AlphaPr/Pe=0,	000 Tau_b=	1,000	EA factor=0,800	B EI fact	or=0,800
PhiB=0,900	PhiC=0,900	PhiTY=	9 0 9 9	PhiTF=0,750		
		PhiST=		LIITIL-0,730		
PhiS=0,900	Phis-RI=1,000	hii121=	0,700			
A 4 81-05 81-	100 F 040F 04		000	COO_F 040F 0F	AO	LOT 01.
A=6,048E-04	133=5,210E-06	r33=0,		S33=5,210E-05	Av3=6,8	
J=0,000	I22=1,128E-06	r22=0,		S22=2,256E-05	Av2=6,0	48E-04
=199947978,8	fy=230000,000	Ry=1,0	88	z33=5,594E-05		
RLLF=1,000	Fu=360000,000			z22=2,570E-05		
DESIGN MESSAGES						
	n overstressed					
Warning: kl/r	> 200 (AISC E	2)				
TRESS CHECK FORCE	ES & MOMENTS ()	Combo 1 2D+	1 6C+0 8W)			
Location	Pu	Mu33	Mu22	Vu2	Vu3	Tu
	0,000	125,411	0,000	0,000	0,000	0,000
7,780	0,000	125,411	0,000	0,000	0,000	0,000
D/C Ratio: 1	1,629 = 0,000			(Mr22/Mc22)		
AXIAL FORCE & BIA	XIAL MOMENT DES	SIGN (H1-	1b)			
Factor	L	K1	K2	B1	B2	Cm
Major Bending	1,000	1,000	1,000	1,000	1,000	1,000
Minor Bending		1,000	1,000	1,000	1,000	1,000
namer baneang	1.4.4.4	.,	.,	.,000	,,,,,,,	.,000
	Lltb	Kltb	СЬ			
LTB	1,000	1,000	1,136			
-10	1,000	1,000	1,100			
	Pu	phi*Pnc	phi*Pnt			
	Force	Capacity	Capacity			
Axial	0,000	7,256	125,201			
	Mu	phi*Mn	phi*Mn			
	Moment	Capacity	No LTB			
Major Moment	125,411	10,784	10,784			
Minor Moment	0,000	4,670	10,704			
LITHOL HOMEHIC	0,000	4,070				
SHEAR CHECK		phi*Vn	Stress	Status		
SHEAR CHECK	Un	Drive vit				
SHEAR CHECK	Vu	Canacitu	Ratio			
	Force	Capacity 75 121	Ratio			
Major Shear	Force 0,000	75,121	0,000	OK		
	Force			OK		
Major Shear Minor Shear	Force 0,000 0,000 FORCES FOR BEA	75,121 75,121 MS	0,000	OK		
Major Shear Minor Shear	Force 0,000 0,000 FORCES FOR BEA VMajor	75,121 75,121 MS UMajor	0,000	OK		
	Force 0,000 0,000 FORCES FOR BEA	75,121 75,121 MS	0,000	OK		

27.7.3 Índices de sobre-esfuerzos correa existente

Índice de sobre-esfuerzos correa

27.8 ALTERNATIVA DE REFORZAMIENTO PROPUESTO


La correa presenta un índice de sobreesfuerzo muy elevado, debido a que no cuenta con la sección transversal apropiada para la luz máxima y las cargas requeridas, principalmente el granizo y el viento. Por lo tanto, se recomienda desmontar todos los elementos estructurales que componen esta cubierta (correas), para ser reemplazados según un nuevo diseño acorde a las exigencias del reglamento NSR-10.

28. ANÁLISISCUBIERTA BLOQUE 25

28.1 CONFIGURACION EXISTENTE

28.2 EVALUACIONES DE CARGA

Inclinación de la cubierta Separación máxima entre correas

11,30	=	20,0%
1,23	m	

SERVICIO NACIONAL DE APRENDIZAJE - SENA

CARGA MUERTA: Según tabla B.3.4.1-1 y B.3.4.1-4 del título B de la NSR-10

Teja Eternit

Teja Asbesto Cemento

Cielo raso Lámparas

Estructura metálica

Total Carga Muerta (D)

0,00 KN/m²
0,20 KN/m²
0,00 KN/m²
0,05 KN/m²
0,05 KN/m²
0,05 KN/m²

CARGA VIVA: Según tabla B.4.2.1-2 del título B de la NSR-10

Inclinación de la cubierta de 11,30

Lr = 0,50 KN/m²

CARGA DE GRANIZO: Según B.4.8.3 del titulo B de la NSR-10, la carga de granizo, G:

G = **1,00** KN/m²

CARGA DE VIENTO:

W= 0,40 KN/m² (Presión)

28.3 CASOS DE CARGA

CASOS DE CARGA	DESCRIPCIÓN
PP	Peso Propio de la estructura
D	Carga muerta
Lr	Carga viva de cubierta
W	Viento
G	Granizo

28.4 COMBINACIONES DE DISEÑO

Según lo estipulado en B.2.4.2 del título B de la NSR-10:

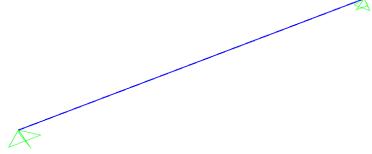
Combinaciones de carga para ser utilizadas con el método de resistencia

COMBINACION	CARGA TOTAL
	MAYORADA KN/m²
1,4D	0,42
1,2D+0,5Lr	0,61
1.2D+0.5G	0,86
1,2D+1,6Lr+0,8W	1,16
1.2D+1.6G+0.8W	2,28
1,2D+1,6W+0,5Lr	1,25
1,2D+1,0E	0,36
0,9D+1,6W	0,91
0,9D+1,0E	0,27

Gobierna la combinación 1,2D+1,6G+0,8W

MUERTA	GRANIZO	VIENTO		
1,2D	1,6G	0,8W	Wtotal	
0,36	1,60	0,32	2,28	KN/m²

Se calcula la resultante carga muerta, según la inclinación de cubierta de 11,30


Wu muerta = 0.37 KN/m² Wu resultante = 2.29 KN/m²

Con una separacion maxima entre correas de 1,23 m, se calculan las cargas totales SIN MAYORAR:

W D = 0.38 KN/m W Lr = 0.62 KN/m W G = 1.23 KN/m W W = 0.49 KN/m

W T = 2,81 KN/m

28.5 RESULTADOS DEL ANÁLISIS

Modelo SAP 2000 Correa

28.6 REACCIONES MAXIMAS EN LOS APOYOS

(270)

Reacciones Correas- Apoyos Dirección Z

REACCIONES		
CORREAS (KN)		
Lr	1,57	
D	1,00	
W	1,26	
G	3,14	

28.7 VERIFICACIÓN ESTRUCTURA EXISTENTE

Nombres del elemento que compone la correa (frames) en SAP2000:

28.7.1 Valores de momentos máximos (KN-M) y cortantes máximos (KN) combinación 1.2D+1.6G+0.8W, en la correa:

TABLE: Element Forces - Frames				
Frame	OutputCase	Р	V2	M3
Text	Text	KN	KN	KN-m
4	1,2D+1,6G+0,8W	0,00	7,18	9,03

28.7.2 Verificación solicitaciones correa existente

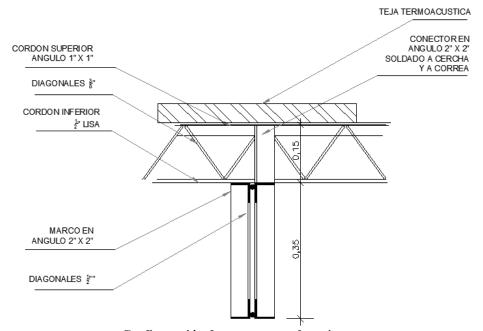
SERVICIO NACIONAL DE APRENDIZAJE - SENA

ength: 5,070 Y M oc : 2,765 Z M rovision: LRFD Ana //C Limit=0,950 2nd /lphaPr/Py=0,000 Alp his=0,900 Phi his=0,900 Phi =1,952E-04 I33 =0,000 I22 /lpha=90,000 =199947978,8 fy=	d Order: GephaPr/Pe=0, iC=0,900 iS-RI=1,000 3=0,000 2=0,000 =230000,000 =360000,000	Shape: Class: rect Analysis eneral 2nd Or ,000 Tau_b=* PhiTY=0 PhiST=0 r33=0, r22=0,0	Non-Compac s rder 1,000 8,900 8,900 810	Reduce EA fa PhiTF	Princpl Roction: Tau-toctor=0,800	e: Special ot: 0,000 o Fixed EI facto	Moment Frame degrees or=0,800
oc : 2,765	Mid: 0,000 alysis: Dir d Order: Ge phaPr/Pe=0, iC=0,900 iS-RI=1,000 3=0,000 2=0,000 =230000,000	Class: rect Analysis rect Analysis rect Analysis rect Analysis rect Analysis rect Analysis rhity=1 rhity=1 r33=0, r22=0,1	Non-Compac s rder 1,000 8,900 8,900 810	Reduce EA fa PhiTF S33=1	Princpl Roction: Tau-toctor=0,800	ot: 0,000 o Fixed EI facto	degrees
rovision: LRFD Ana/C Limit=0,950 2nd lphaPr/Py=0,000 Alp hiB=0,900 Phi hiS=0,900 Phi =1,952E-04 I33 =0,000 I22 lpha=90,000 =199947978,8 fy= LLF=1,000 Fu= ESIGN MESSAGES Error: Section ov Warning: kl/r > 2 TRESS CHECK FORCES & Location 2,765 MM DEMAND/CAPACITY R D/C Ratio: 28,55 XIAL FORCE & BIAXIAL Factor Major Bending Minor Bending LTB Axial Major Moment Minor Moment HEAR CHECK	alysis: Dir d Order: Ge phaPr/Pe=0, iC=0,900 iS-RI=1,000 3=0,000 2=0,000 =230000,000	rect Analysis eneral 2nd 0, ,000 Tau_b=' PhiTY=0 PhiST=0 r33=0, r22=0,0	of rder 1,000 9,900 9,900 910	Reduce EA fa PhiTF	tion: Tau-t ctor=0,800 =0,750) Fixed EI facto	
/C Limit=0,950 2nd 1phaPr/Py=0,000 Alp hiB=0,900 Phi hiS=0,900 Phi =1,952E-04 I33 =0,000 I22 1pha=90,000 =199947978,8 fy= tLF=1,000 Fu= ESIGN MESSAGES Error: Section ov Warning: k1/r > 2 TRESS CHECK FORCES & Location 2,765 MM DEMAND/CAPACITY R D/C Ratio: 28,55 XIAL FORCE & BIAXIAL Factor Major Bending Minor Bending LTB Axial Major Moment Minor Moment SHEAR CHECK Major Shear	d Order: GephaPr/Pe=0, iC=0,900 iS-RI=1,000 3=0,000 2=0,000 =230000,000 =360000,000	eneral 2nd 0n ,000 Tau_b= PhiTY= PhiST= r33=0, r22=0,	rder 1,000 8,900 9,900 810	EA fa	=0,750 -,528E-06	EI facto	or=8,889
1phaPr/Py=0,000 Alp hiB=0,900 Phi hiS=0,900 Phi e1,952E-04 I33 =0,000 I22 lpha=90,000 =199947978,8 fy= LLF=1,000 Fu= ESIGN MESSAGES Error: Section ov Warning: k1/r > 2 TRESS CHECK FORCES & Location 2,765 MM DEMAND/CAPACITY R D/C Ratio: 28,55 XIAL FORCE & BIAXIAL Factor Major Bending Minor Bending LTB Axial Major Moment Minor Moment HEAR CHECK Major Shear	phaPr/Pe=0, iC=0,900 iS-RI=1,000 3=0,000 2=0,000 =230000,000 =360000,000	,000 Tau_b= PhiTY= 0 PhiST= r33=0, r22=0,	1,666 9,966 9,966 916 916	EA fa	=0,750 -,528E-06	EI facto	or=0,800
1phaPr/Py=0,000 Alp hiB=0,900 Phi hiS=0,900 Phi e1,952E-04 I33 e0,000 I22 lpha=90,000 e199947978,8 fy= LLF=1,000 Fu= ESIGN MESSAGES Error: Section ov Warning: k1/r > 2 TRESS CHECK FORCES & Location 2,765 MM DEMAND/CAPACITY R D/C Ratio: 28,55 XIAL FORCE & BIAXIAL Factor Major Bending Minor Bending Minor Bending LTB Axial Major Moment Minor Moment HEAR CHECK	phaPr/Pe=0, iC=0,900 iS-RI=1,000 3=0,000 2=0,000 =230000,000 =360000,000	,000 Tau_b= PhiTY= 0 PhiST= r33=0, r22=0,	1,666 9,966 9,966 916 916	PhiTF	=0,750 ,528E-06		or=0,800
his-0,900 Phi =1,952E-04 I33 =0,000 I22 lpha-90,000 =199947978,8 fy= LLF=1,000 Fu= ESIGN MESSAGES Error: Section ov Warning: k1/r > 2 TRESS CHECK FORCES & Location 2,765 MM DEMAND/CAPACITY R D/C Ratio: 28,55 XIAL FORCE & BIAXIAL Factor Major Bending Minor Bending LTB Axial Major Moment Minor Moment HEAR CHECK Major Shear	iS-RÍ=1,000 3=0,000 2=0,000 =230000,000 =360000,000	9 PhiST=0 r33=0,0 r22=0,0 8 Ry=1,00	9,988 918 916	S33=1	,528E-06	ggrap etwane.	
=1,952E-04	3=0,000 2=0,000 =230000,000 =360000,000	r33=0,0 r22=0,0	910 916			na respensa a serrouna.	
= 0,000	2=0,000 =230000,000 =360000,000	r22=0,0 9 Ry=1,00	916			person e secona	
= 0,000	2=0,000 =230000,000 =360000,000	r22=0,0 9 Ry=1,00	916			AU3=1,03	31E-04
1pha=90,000 =199947978,8 fy= LLF=1,000 Fu= ESIGN MESSAGES Error: Section ov Warning: k1/r > 2 TRESS CHECK FORCES & Location 2,765 MM DEMAND/CAPACITY R D/C Ratio: 28,55 XIAL FORCE & BIAXIAL Factor Major Bending Minor Bending LTB Axial Major Moment Minor Moment HEAR CHECK	=230000,000 =360000,000	9 Ry=1,0			.003E-06	Av2=9,93	
=199947978,8 fy= LLF=1,000 Fu= ESIGN MESSAGES Error: Section ov Warning: k1/r > 2 TRESS CHECK FORCES & Location 2,765 MM DEMAND/CAPACITY R D/C Ratio: 28,55 XIAL FORCE & BIAXIAL Factor Major Bending Minor Bending LTB Axial Major Moment Minor Moment HEAR CHECK	=360000,000		90		,,000		, IL 03
ELLF=1,000 Fu= ESIGN MESSAGES Error: Section ov Warning: k1/r > 2 ETRESS CHECK FORCES & Location 2,765 PMM DEMAND/CAPACITY R D/C Ratio: 28,55 EXIAL FORCE & BIAXIAL Factor Major Bending Minor Bending LTB Axial Major Moment Minor Moment SHEAR CHECK Major Shear	=360000,000			733=1	,787E-06		
Error: Section ov Warning: k1/r > 2 TRESS CHECK FORCES & Location 2,765 MM DEMAND/CAPACITY R D/C Ratio: 28,55 XIAL FORCE & BIAXIAL Factor Major Bending Minor Bending LTB Axial Major Moment Minor Moment Minor Moment SHEAR CHECK					479E-06		
Error: Section ov Warning: k1/r > 2 TRESS CHECK FORCES & Location 2,765 MM DEMAND/CAPACITY R D/C Ratio: 28,55 XIAL FORCE & BIAXIAL Factor Major Bending Minor Bending LTB Axial Major Moment Minor Moment HEAR CHECK							
Warning: k1/r > 2 TRESS CHECK FORCES & Location 2,765 MM DEMAND/CAPACITY R D/C Ratio: 28,55 XIAL FORCE & BIAXIAL Factor Major Bending Minor Bending LTB Axial Major Moment Minor Moment Minor Moment SHEAR CHECK							
TRESS CHECK FORCES & Location 2,765 MM DEMAND/CAPACITY R D/C Ratio: 28,55 XIAL FORCE & BIAXIAL Factor Major Bending Minor Bending LTB Axial Major Moment Minor Moment Minor Moment	200 (AISC E	1					
Location 2,765 MM DEMAND/CAPACITY R D/C Ratio: 28,55 XIAL FORCE & BIAXIAL Factor Major Bending Minor Bending LTB Axial Major Moment Minor Moment Minor Moment	1	2)					
Location 2,765 MM DEMAND/CAPACITY R D/C Ratio: 28,55 XIAL FORCE & BIAXIAL Factor Major Bending Minor Bending LTB Axial Major Moment Minor Moment Minor Moment Minor Shear	& MOMENTS ((Combo 1,2D+1	1,6G+0,8W)				
2,765 MM DEMAND/CAPACITY R D/C Ratio: 28,55 XIAL FORCE & BIAXIAL Factor Major Bending Minor Bending LTB Axial Major Moment Minor Moment HEAR CHECK	Pu	Mu33	Mu22		Vu2	Vu3	Tu
MM DEMAND/CAPACITY R D/C Ratio: 28,55 XIAL FORCE & BIAXIAL Factor Major Bending Minor Bending LTB Axial Major Moment Minor Moment HEAR CHECK	0,000	9,031	0,000		0,653	0,000	0,000
Major Bending Minor Bending LTB Axial Major Moment Minor Moment HEAR CHECK Major Shear	L MOMENT DE L	ESIGN (H1-1	1b) K2		B1	B2	Cm
Minor Bending LTB Axial Major Moment Minor Moment HEAR CHECK	1,000	1,000	1,000		1,000	1,000	1,000
Axial Major Moment Minor Moment HEAR CHECK Major Shear	1,000	1,000	1,000		1,000	1,000	1,000
Axial Major Moment Minor Moment HEAR CHECK Major Shear	Lltb	Kltb	Сь				
Major Moment Minor Moment HEAR CHECK Major Shear	1,000	1,000	1,136				
Major Moment Minor Moment HEAR CHECK Major Shear		- b / - D	-64-0-6				
Major Moment Minor Moment HEAR CHECK Major Shear	Pu	phi*Pnc	phi*Pnt				
Major Moment Minor Moment HEAR CHECK Major Shear	Force	Capacity	Capacity				
Minor Moment HEAR CHECK Major Shear	0,000	1,176	40,406				
Minor Moment HEAR CHECK Major Shear	Mu	phi*Mn	phi*Mn				
Minor Moment HEAR CHECK Major Shear	Moment	Capacity	No LTB				
Major Shear	9,031	0,316 0,415	0,316				
Major Shear							
	Vu	phi*Vn	Stress		Status		
	Force	Capacity	Ratio		Check		
	0,653	12,334	0,053		OK		
		12,802	0,000		OK		
ONNECTION SHEAR FORC	0,000	AMS					
	0,000	VMajor					
	0,000 CES FOR BEI	Right					
Major (V2)	0,000	7,184					

28.7.3 Índices de sobre-esfuerzos correa existente

Índice de sobre-esfuerzos correa

28.8 ALTERNATIVA DE REFORZAMIENTO PROPUESTO


La correa presenta un índice de sobreesfuerzo muy elevado, debido a que no cuenta con la sección transversal apropiada para la luz máxima y las cargas requeridas, principalmente el granizo y el viento. Por lo tanto, se recomienda desmontar todos los elementos estructurales que componen esta cubierta (correas), para ser reemplazados según un nuevo diseño acorde a las exigencias del reglamento NSR-10.

29. ANÁLISISCUBIERTA BLOQUE 26

29.1 CONFIGURACION EXISTENTE

Configuración de correa y cercha existente

29.2 EVALUACIONES DE CARGA

Inclinación de la cubierta Separación máxima entre correas

7,56	=	13,3%
1,63	m	

SERVICIO NACIONAL DE APRENDIZAJE - SENA

CARGA MUERTA: Según tabla B.3.4.1-1 y B.3.4.1-4 del título B de la NSR-10

 Teja Eternit
 0,00 KN/m²

 Teja termoacustica
 0,05 KN/m²

 Cielo raso
 0,00 KN/m²

 Lámparas
 0,05 KN/m²

 Estructura metálica
 0,05 KN/m²

 Total Carga Muerta (D)
 0,15 KN/m²

CARGA VIVA: Según tabla B.4.2.1-2 del título B de la NSR-10

Inclinación de la cubierta de 7,56

Lr = 0,50 KN/m²

CARGA DE GRANIZO: Según B.4.8.3 del titulo B de la NSR-10, la carga de granizo, G:

G = 1,00 KN/m²

CARGA DE VIENTO:

W= 0,40 KN/m² (Presión)

29.3 CASOS DE CARGA

CASOS DE CARGA	DESCRIPCIÓN
PP	Peso Propio de la estructura
D	Carga muerta
Lr	Carga viva de cubierta
W	Viento
G	Granizo

29.4 COMBINACIONES DE DISEÑO

Según lo estipulado en B.2.4.2 del título B de la NSR-10:

Combinaciones de carga para ser utilizadas con el método de resistencia

COMBINACION	CARGA TOTAL
	MAYORADA KN/m²
1,4D	0,21
1,2D+0,5Lr	0,43
1.2D+0.5G	0,68
1,2D+1,6Lr+0,8W	0,98
1.2D+1.6G+0.8W	2,10
1,2D+1,6W+0,5Lr	1,07
1,2D+1,0E	0,18
0,9D+1,6W	0,78
0,9D+1,0E	0,14

Gobierna la combinación 1,2D+1,6G+0,8W

MUERTA	GRANIZO	VIENTO		
1,2D	1,6G	0,8W	Wtotal	
0,18	1,60	0,32	2,10	KN/m ²

Se calcula la resultante carga muerta, según la inclinación de cubierta de 7,56

Wu muerta = 0.18 KN/m² Wu resultante = 2.10 KN/m²

Con una separacion maxima entre correas de 1,63 m, se calculan las cargas totales SIN MAYORAR:

W D =	0,25	KN/m	W Lr =	0,82	KN/m
W G =	1.63	KN/m	W w =	0.65	KN/m

W T = 3,43 KN/m

29.5 RESULTADOS DEL ANÁLISIS

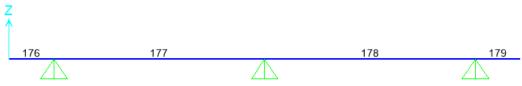
Modelo SAP 2000 Correa

(276)

Modelo SAP 2000 Cercha

29.6 REACCIONES MAXIMAS EN LOS APOYOS

Reacciones Correas- Cercha Dirección Z

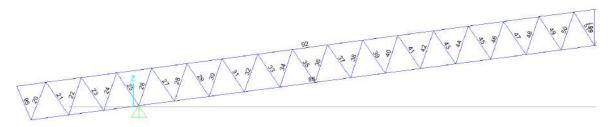

REACCIONES				
CORREAS (KN)				
Lr 4,85				
D 1,60				
W 3,88				
G	9,70			

Reacciones Cercha- Apoyos Dirección Z

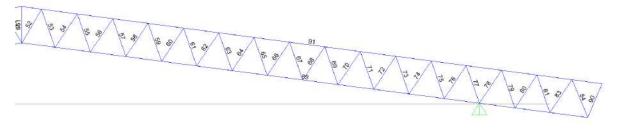
REACCIONES				
CERCHA (KN)				
Lr 19,40				
D 6,98				
W 15,52				
G 38,81				

29.7 VERIFICACIÓN ESTRUCTURA EXISTENTE

Nombres del elemento que compone la correa (frames) en SAP2000:


Nombres de los elementos que componen la cercha (frames) en SAP2000:

Zona 1 Cercha Zona 2 Cercha


(277)

Zona 1 Cercha

Zona 2 Cercha

29.7.1 Valores de momentos máximos (KN-M) y cortantes máximos (KN) combinación 1.2D+1.6G+0.8W, en la correa:

TABLE: Element Forces - Frames						
Frame	OutputCase	Р	V2	M3		
Text	Text	KN	KN	KN-m		
176	1,2D+1,6G+0,8W	0,00	3,70	-1,98		
177	1,2D+1,6G+0,8W	0,00	10,22	-9,83		
178	1,2D+1,6G+0,8W	0,00	-10,21	-9,83		
179	1,2D+1,6G+0,8W	0,00	-3,73	-2,01		

29.7.2 Valores de momentos máximos (KN-M) y cortantes máximos (KN) combinación 1.2D+1.6G+0.8W, en la cercha:

TABLE: Element Forces - Frames						
Frame	OutputCase	V2	M3			
Text	Text	KN	KN	KN-m		
20	1,2D+1,6G+0,8W	22,75	0,00	0,00		
21	1,2D+1,6G+0,8W	-22,80	0,00	0,00		
22	1,2D+1,6G+0,8W	23,45	0,00	0,00		
23	1,2D+1,6G+0,8W	-21,82	0,00	0,00		
24	1,2D+1,6G+0,8W	16,63	0,00	0,00		
25	1,2D+1,6G+0,8W	-17,85	0,00	0,00		

(278)

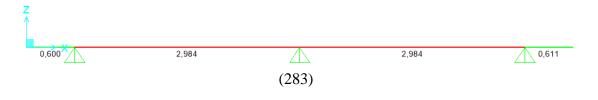
26	1,2D+1,6G+0,8W	-42,97	0,00	0,00
27	1,2D+1,6G+0,8W	42,09	0,00	0,00
28	1,2D+1,6G+0,8W	-46,18	0,00	0,00
29	1,2D+1,6G+0,8W	33,72	0,00	0,00
30	1,2D+1,6G+0,8W	-33,63	0,00	0,00
31	1,2D+1,6G+0,8W	23,01	0,00	0,00
32	1,2D+1,6G+0,8W	-23,00	0,00	0,00
33	1,2D+1,6G+0,8W	24,28	0,00	0,00
34	1,2D+1,6G+0,8W	-23,89	0,00	0,00
35	1,2D+1,6G+0,8W	23,61	0,00	0,00
36	1,2D+1,6G+0,8W	-23,36	0,00	0,00
37	1,2D+1,6G+0,8W	24,86	0,00	0,00
38	1,2D+1,6G+0,8W	-23,89	0,00	0,00
39	1,2D+1,6G+0,8W	17,45	0,00	0,00
40	1,2D+1,6G+0,8W	-18,10	0,00	0,00
41	1,2D+1,6G+0,8W	0,56	0,00	0,00
42	1,2D+1,6G+0,8W	-0,79	0,00	0,00
43	1,2D+1,6G+0,8W	1,62	0,00	0,00
44	1,2D+1,6G+0,8W	-1,06	0,00	0,00
45	1,2D+1,6G+0,8W	0,87	0,00	0,00
46	1,2D+1,6G+0,8W	-0,96	0,00	0,00
47	1,2D+1,6G+0,8W	1,35	0,00	0,00
48	1,2D+1,6G+0,8W	-0,80	0,00	0,00
49	1,2D+1,6G+0,8W	-1,53	0,00	0,00
50	1,2D+1,6G+0,8W	-0,22	0,00	0,00
51	1,2D+1,6G+0,8W	-11,14	0,00	0,00
52	1,2D+1,6G+0,8W	-10,90	0,00	0,00
53	1,2D+1,6G+0,8W	-0,22	0,00	0,00
54	1,2D+1,6G+0,8W	-1,54	0,00	0,00
55	1,2D+1,6G+0,8W	-0,78	0,00	0,00
56	1,2D+1,6G+0,8W	1,33	0,00	0,00
57	1,2D+1,6G+0,8W	-0,92	0,00	0,00
58	1,2D+1,6G+0,8W	0,84	0,00	0,00
59	1,2D+1,6G+0,8W	-1,10	0,00	0,00
60	1,2D+1,6G+0,8W	1,61	0,00	0,00
61	1,2D+1,6G+0,8W	-0,66	0,00	0,00
62	1,2D+1,6G+0,8W	0,43	0,00	0,00
63	1,2D+1,6G+0,8W	-18,05	0,00	0,00

64	1,2D+1,6G+0,8W	17,11	0,00	0,00
65	1,2D+1,6G+0,8W	-24,16	0,00	0,00
66	1,2D+1,6G+0,8W	24,52	0,00	0,00
67	1,2D+1,6G+0,8W	-23,52	0,00	0,00
68	1,2D+1,6G+0,8W	23,50	0,00	0,00
69	1,2D+1,6G+0,8W	-24,01	0,00	0,00
70	1,2D+1,6G+0,8W	24,22	0,00	0,00
71	1,2D+1,6G+0,8W	-22,93	0,00	0,00
72	1,2D+1,6G+0,8W	22,77	0,00	0,00
73	1,2D+1,6G+0,8W	-33,71	0,00	0,00
74	1,2D+1,6G+0,8W	33,48	0,00	0,00
75	1,2D+1,6G+0,8W	-46,33	0,00	0,00
76	1,2D+1,6G+0,8W	41,78	0,00	0,00
77	1,2D+1,6G+0,8W	-43,01	0,00	0,00
78	1,2D+1,6G+0,8W	-17,86	0,00	0,00
79	1,2D+1,6G+0,8W	16,63	0,00	0,00
80	1,2D+1,6G+0,8W	-21,70	0,00	0,00
81	1,2D+1,6G+0,8W	23,42	0,00	0,00
83	1,2D+1,6G+0,8W	-22,68	0,00	0,00
84	1,2D+1,6G+0,8W	23,01	0,00	0,00
88	1,2D+1,6G+0,8W	-202,46	4,13	-1,16
89	1,2D+1,6G+0,8W	-202,19	-4,13	-1,16
90	1,2D+1,6G+0,8W	-20,82	0,00	0,00
91	1,2D+1,6G+0,8W	-121,41	14,93	1,09
92	1,2D+1,6G+0,8W	-121,64	-15,10	1,09
95	1,2D+1,6G+0,8W	-20,80	0,00	0,00
661	1,2D+1,6G+0,8W	13,44	0,00	0,00

29.7.3 Verificación solicitaciones correa existente

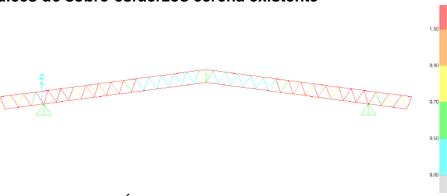
AISC360-05/IBC20		ON CHECK (Sum	mary for Co	mbo and Statio	n)	
Units : KN, m, (•					
Frame : 177	X Mid: 3,575	Combo: 1	,2D+1,6G+0,	8W Design Typ	pe: Beam	
Length: 5,010	Y Mid: 3,000	Shape: 1	L 1x1/8 + 1	B 1/2Frame Type	e: Special	Moment Frame
Loc : 5,810	Z Mid: 0,000	Class: N	on-Compact	Princpl R	ot: 0,000	degrees
Provision: LRFD		rect Analysis				
D/C Limit=0,950		eneral 2nd Ord		eduction: Tau-		
AlphaPr/Py=0,000	AlphaPr/Pe=0	,000 Tau_b=1,	000 E	A factor=0,800	EI fact	or=0,800
PhiB=0,900	PhiC=0,900	PhiTY=0,		hiTF=0,750		
PhiS=0,900	Phis-RI=1,000	9 PhiST=0,	900			
A=2,771E-04	I33=1,283E-06	5 r33=0,06	8 8	33=1,591E-05	Av3=1,5	14E-04
J=0,000	122=0,000	r22=0,00	7 S	22=0,000	AU2=2,7	71E-04
E=199947978,8	fy=230000,000	8 Ry=1,000	l z	33=1,754E-05		
RLLF=1,000	Fu=360000,000	3	z	22=1,555E-06		
DESIGN MESSAGES						
	on overstressed	1				
Warning: kl/m	> 200 (AISC E	E2)				
STRESS CHECK FOR	CES & MOMENTS ((Combo 1,2D+1,	6G+0,8W)			
Location	Pu	Mu33	Mu22	Vu2	Vu3	Tu
5,010	0,000	-9,829	0,000	10,218	0,000	0,000
PMM DEMAND/CAPAC	ITY RATIO (H	1-1b)				
D/C Ratio:	2,984 = 0,000 = (1/2)	+ 2,984 + 0,0 (Pr/Pc) + (Mr3		Mr22/Mc22)		
AXIAL FORCE & BI	AXIAL MOMENT DE	ESIGN (H1-1b)			
Factor	L	K1	K2	B1	B2	Cm
Major Bending		1,000	1,000	1,000	1,000	1,000
	4 000	1,000	1,000	1,000	1,000	1,000
Minor Bending	1,000	1,000	21912322	0.6555	124 (125 7 17 12 1	
	j 1,000 Lltb	Kltb	СЬ		28.6 2.77%	

	Pu	phi*Pnc	phi*Pnt	
	Force	Capacity	Capacity	
Axial	0,000	0,754	57,354	
	Mu	phi∗Mn	phi∗Mn	
	Moment	Capacity	No LTB	
Major Moment	-9.829	3,294	3,294	
Minor Moment	0,000	0,162	369. 4 99.5779	
SHEAR CHECK				
	Vu	phi*Un	Stress	Status
	Force	Capacity	Ratio	Check
Major Shear	10,218	34,413	0,297	OK
Minor Shear	0,000	18,800	0,000	OK
CONNECTION SHEAR F	ORCES FOR BE	AMS		
	VMajor	VMajor		
	Left	Right		
Major (V2)	7,084	10,218		


29.7.4 Verificación solicitaciones cercha existente

rame: 88	X Mid: 1,515		1,2D+1,6G+		Design Typ		
ength: 4,801	Y Mid: 0,000		2L 2x1/8 i				
oc : 0,920	Z Mid: 0,200	Class	: Non-Compac	t	Princpl Ro	t: 0,000	degrees
rovision: LRFD	Analysis: Di						
/C Limit=0,950	2nd Order: G			and the second of the second	ion: Tau-b		
1phaPr/Py=1,398	AlphaPr/Pe=5	,669 Tau_b=	-2,224	EA fac	tor=0,800	EI fact	or=0,800
hiB=0,900	PhiC=0,900	PhiTY=		PhiTF=	0,750		
hiS=0,900	Phis-RI=1,00	0 PhisT=	0,900				
=6,298E-04	133=0,000	r33=0,	, 016	S33=4,	315E-06	Av3=4,7	99E-04
=0,000	122=0,000	r22=0,	026	S22=7,	300E-06	AU2=2,8	76E-04
1pha=90,000							
E=199947978,8 RLLF=1,000	fy=230000,00 Fu=360000,00		100		770E-06 274E-05		
ESIGN MESSAGES							
Error: Section	on overstresse	d					
TRESS CHECK FORC							
Location	Pu	Mu33	Mu22	10000	Vu2	Vu3	Tu
0,920	-202,460	-1,162	0,000	-3	,979	0,000	0,000
MM DEMAND/CAPACI	TY RATIO (H	1-1a)					
	8,338 = 7,182	+ 1,157 + 6					
	8,338 = 7,182			(8/9)(Mr22/Mc22)		
D/C Ratio:	8,338 = 7,182 = (Pr/P	+ 1,157 + (c) + (8/9)(h	1r33/Mc33) +	(8/9)(Mr22/Mc22)		
D/C Ratio: XIAL FORCE & BIA Factor	8,338 = 7,182 = (Pr/P	+ 1,157 + (c) + (8/9)(h ESIGN (H1- K1	1r33/Mc33) + -1a) K2		B1	B2	Cm
D/C Ratio: XIAL FORCE & BIA Factor Major Bending	8,338 = 7,182 = (Pr/PoxIAL MOMENT DI L 0,967	+ 1,157 + (c) + (8/9)(h ESIGN (H1- K1 1,000	1r33/Mc33) + -1a) K2 1,000	1	B1 ,000	1,000	1,000
D/C Ratio: XIAL FORCE & BIA Factor	8,338 = 7,182 = (Pr/PoxIAL MOMENT DI L 0,967	+ 1,157 + (c) + (8/9)(h ESIGN (H1- K1	1r33/Mc33) + -1a) K2	1	B1		
D/C Ratio: XIAL FORCE & BIA Factor Major Bending	8,338 = 7,182 = (Pr/PrixIAL MOMENT DI L g	+ 1,157 + (c) + (8/9)(h ESIGN (H1- K1 1,000	1r33/Mc33) + -1a) K2 1,000	1	B1 ,000	1,000	1,000
D/C Ratio: XIAL FORCE & BIA Factor Major Bending	8,338 = 7,182 = (Pr/PenXIAL MOMENT DE L J 8,967 J 1,888	+ 1,157 + (c) + (8/9)(h ESIGN (H1- K1 1,000 1,000	1r33/Mc33) + -1a) K2 1,000 1,000	1	B1 ,000	1,000	1,000
D/C Ratio: XIAL FORCE & BIA Factor Major Bending Minor Bending	8,338 = 7,182 = (Pr/PrixIAL MOMENT DI L g	+ 1,157 + (c) + (8/9)(N ESIGN (H1- K1 1,000 1,000 Kltb	1 (133/Mc33) + (1a) K2 1,000 1,000 Cb	1	B1 ,000	1,000	1,000
D/C Ratio: XIAL FORCE & BIA Factor Major Bending Minor Bending	8,338 = 7,182 = (Pr/PoxIAL MOMENT DI L 0,867 1,989 L1tb 1,888	+ 1,157 + (c) + (8/9)(N ESIGN (H1- K1 1,000 1,000 Kltb 1,000	1733/Mc33) + 1a) K2 1,000 1,000 Cb 2,121	1	B1 ,000	1,000	1,000
D/C Ratio: XIAL FORCE & BIA Factor Major Bending Minor Bending	8,338 = 7,182 = (Pr/Prinking Prinking P	+ 1,157 + (c) + (8/9)(N ESIGN (H1- K1 1,000 1,000 Kltb 1,000 phi*Pnc	1733/Mc33) + 1a) K2 1,000 1,000 Cb 2,121 phi*Pnt	1	B1 ,000	1,000	1,000
D/C Ratio: XIAL FORCE & BIA Factor Major Bending Minor Bending	8,338 = 7,182 = (Pr/PrixIAL MOMENT Display 1,967 1,967 1,999 Lith 1,999 Pu Force -292,460	+ 1,157 + (c) + (8/9)(N c) + (8/9)(N ESIGN (H1- 1,000 1,000 Kltb 1,000 phi*Pnc Capacity 28,191 phi*Mn	1733/Mc33) + 1a) K2 1,000 1,000 Cb 2,121 phi*Pnt Capacity 130,360 phi*Mn	1	B1 ,000	1,000	1,000
D/C Ratio: XIAL FORCE & BIA Factor Major Bending Minor Bending LTB Axial	8,338 = 7,182 = (Pr/Prixial Moment Dixial Mo	+ 1,157 + (c) + (8/9)(N ESIGN (H1- K1 1,000 1,000 Kltb 1,000 phi*Pnc Capacity 28,191 phi*Mn Capacity	1733/Mc33) + 1a) K2 1,000 1,000 Cb 2,121 phi*Pnt Capacity 130,360 phi*Mn No LTB	1	B1 ,000	1,000	1,000
D/C Ratio: XIAL FORCE & BIA Factor Major Bending Minor Bending LTB Axial	8,338 = 7,182 = (Pr/Pixial Moment Di L g	+ 1,157 + 6 c) + (8/9)(N ESIGN (H1- K1 1,000 1,000 Kltb 1,000 phi*Pnc Capacity 28,191 phi*Mn Capacity 0,893	1733/Mc33) + 1a) K2 1,000 1,000 Cb 2,121 phi*Pnt Capacity 130,360 phi*Mn	1	B1 ,000	1,000	1,000
D/C Ratio: XIAL FORCE & BIA Factor Major Bending Minor Bending LTB	8,338 = 7,182 = (Pr/Prixial Moment Dixial Mo	+ 1,157 + (c) + (8/9)(N ESIGN (H1- K1 1,000 1,000 Kltb 1,000 phi*Pnc Capacity 28,191 phi*Mn Capacity	1733/Mc33) + 1a) K2 1,000 1,000 Cb 2,121 phi*Pnt Capacity 130,360 phi*Mn No LTB	1	B1 ,000	1,000	1,000
D/C Ratio: XIAL FORCE & BIA Factor Major Bending Minor Bending LTB Axial Major Moment Minor Moment	8,338 = 7,182 = (Pr/Pixial Moment Dixial Mo	+ 1,157 + (c) + (8/9)(N c) + (8/9)(N ESIGN (H1- 1,000 1,000 Kltb 1,000 phi*Pnc Capacity 28,191 phi*Mn Capacity 0,893 1,511	1733/Mc33) + 1a) K2 1,000 1,000 Cb 2,121 phi*Pnt Capacity 130,360 phi*Mn No LTB 0,893	1 1	, 899 , 999	1,000	1,000
D/C Ratio: XIAL FORCE & BIA Factor Major Bending Minor Bending LTB Axial Major Moment Minor Moment	8,338 = 7,182 = (Pr/PrixIAL MOMENT Display	+ 1,157 + (c) + (8/9)(N c) + (8/9)(N ESIGN (H1- K1 1,000 1,000 Kltb 1,000 phi*Pnc Capacity 28,191 phi*Mn Capacity 0,893 1,511	r33/Mc33) + -1a) K2 1,000 1,000 Cb 2,121 phi*Pnt Capacity 130,360 phi*Mn No LTB 0,893	1 1 1 Sta	81 , 888 , 888	1,000	1,000
D/C Ratio: EXIAL FORCE & BIA Factor Major Bending Minor Bending LTB Axial Major Moment	8,338 = 7,182 = (Pr/Pixial Moment Dixial Mo	+ 1,157 + (c) + (8/9)(N c) + (8/9)(N ESIGN (H1- 1,000 1,000 Kltb 1,000 phi*Pnc Capacity 28,191 phi*Mn Capacity 0,893 1,511	1733/Mc33) + 1a) K2 1,000 1,000 Cb 2,121 phi*Pnt Capacity 130,360 phi*Mn No LTB 0,893	1 1 1 Sta	, 899 , 999	1,000	1,000

29.7.5 Índices de sobre-esfuerzos correa existente

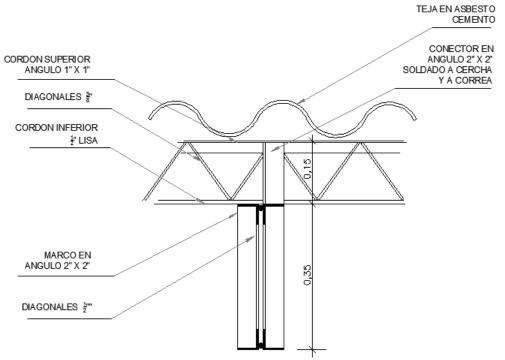


Índice de sobre-esfuerzos correa

29.7.6 Índices de sobre-esfuerzos cercha existente

Índice de sobre-esfuerzos cercha

29.8 ALTERNATIVA DE REFORZAMIENTO PROPUESTO


La cercha principal presenta un índice de sobreesfuerzo muy elevado, debido a que las correas tienen una gran separación entre sí, las cargas no se están transmitiendo en los nodos, los perfiles de los cordones inferior y superior no cuentan con la sección transversal apropiada para la luz máxima y las cargas requeridas, principalmente el granizo y el viento. Por lo tanto, se recomienda desmontar todos los elementos estructurales que componen esta cubierta (cercha y correas), para ser reemplazados según un nuevo diseño acorde a las exigencias del reglamento NSR-10.

30. ANÁLISIS CUBIERTA BLOQUE 27

30.1 CONFIGURACION EXISTENTE

Configuración de correa y cercha existente

30.2 EVALUACIONES DE CARGA

Inclinación de la cubierta Separación máxima entre correas

7,56°		=	13,3%
1.67	m		

SERVICIO NACIONAL DE APRENDIZAJE - SENA

CARGA MUERTA: Según tabla B.3.4.1-1 y B.3.4.1-4 del título B de la NSR-10

 Teja eternit
 0,00 KN/m²

 Teja Asbesto cemento
 0,20 KN/m²

 Cielo raso
 0,07 KN/m²

 Lámparas
 0,03 KN/m²

 Estructura metálica
 0,03 KN/m²

 Total Carga Muerta (D)
 0,33 KN/m²

CARGA VIVA: Según tabla B.4.2.1-2 del título B de la NSR-10

Inclinación de la cubierta de 7,56 °

Lr = 0,50 KN/m²

CARGA DE GRANIZO: Según B.4.8.3 del titulo B de la NSR-10, la carga de granizo, G:

G = 1,00 KN/m²

CARGA DE VIENTO:

W= 0,40 KN/m² (Presión)

30.3 CASOS DE CARGA

CASOS DE CARGA	DESCRIPCIÓN
PP	Peso Propio de la estructura
D	Carga muerta
Lr	Carga viva de cubierta
W	Viento
G	Granizo

30.4 COMBINACIONES DE DISEÑO

Según lo estipulado en B.2.4.2 del título B de la NSR-10:

Combinaciones de carga para ser utilizadas con el método de resistencia

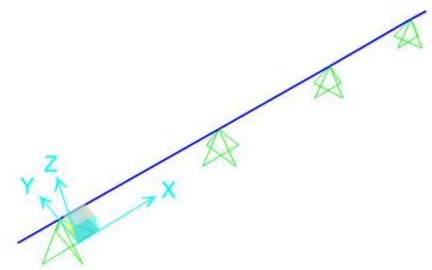
COMBINACION	CARGA TOTAL
	MAYORADA KN/m²
1,4D	0,46
1,2D+0,5Lr	0,65
1.2D+0.5G	0,90
1,2D+1,6Lr+0,8W	1,20
1.2D+1.6G+0.8W	2,32
1,2D+1,6W+0,5Lr	1,29
1,2D+1,0E	0,40
0,9D+1,6W	0,94
0,9D+1,0E	0,30

Gobierna la combinación 1,2D+1,6G+0,8W

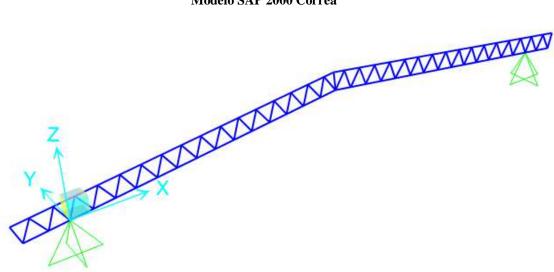
MUERTA	GRANIZO	VIENTO		
1,2D	1,6G	0,8W	Wtotal	
0.40	1.60	0.32	2.32	KN/m ²

Se calcula la resultante carga muerta, según la inclinación de cubi 7,56º

Wu muerta 0,40 KN/m² Wu resulta 2,32 KN/m²


Con una separacion maxima entre correas de 1,67 m, se calculan las cargas totales SIN MAYORAR:

W D =	0,56	*KN/m	W Lr =	0,84	KN/m
W G =	1,67	KN/m	W w =	0,67	KN/m
W T =	3,87	KN/m			


30.5 RESULTADOS DEL ANÁLISIS

Modelo SAP 2000 Correa

Modelo SAP 2000 Cercha

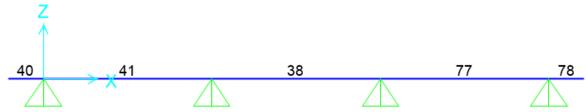
30.6 REACCIONES MAXIMAS EN LOS APOYOS

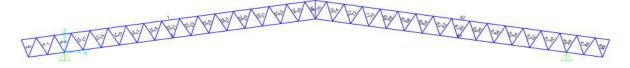
Reacciones máximas Correas- Cercha Dirección Z

REACCIONES				
CORREAS (KN)				
Lr	4,50			
D 3,00				
W 3,60				
G	9,00			

Reacciones máximas Cercha- Apoyos Dirección Z

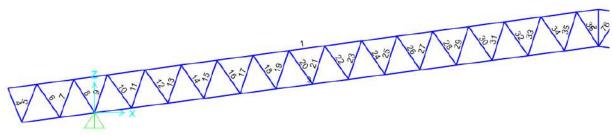
(288)




REACCIONES					
CER	CERCHA (KN)				
Lr	18,00				
D	12,68				
W	14,40				
G	36,00				

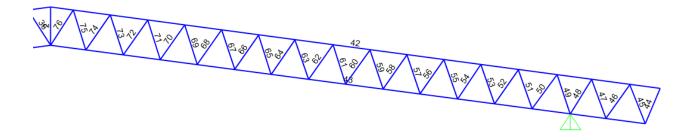
30.7 VERIFICACIÓN ESTRUCTURA EXISTENTE

Nombres de los elementos que componen la correa (frames) en SAP2000:



Nombres de los elementos que componen la cercha (frames) en SAP2000:

Zona 1 Cercha


Zona 2 Cercha

Zona 1 Cercha

Zona 2 Cercha

30.7.1 Valores de momentos máximos (KN-M) y cortantes máximos (KN) combinación 1.2D+1.6G+0.8W, en la correa:

TABLE: Element Forces - Frames							
Frame	OutputCase	Р	V2	M3			
Text	Text	KN	KN	KN-m			
38	1.2D+1.6G+0.8W	0,00	9,84	-9,41			
40	1.2D+1.6G+0.8W	0,00	4,09	-2,13			
41	1.2D+1.6G+0.8W	0,00	11,30	-9,41			
77	1.2D+1.6G+0.8W	0,00	-11,30	-9,41			
78	1.2D+1.6G+0.8W	0,00	-4,09	-2,13			

30.7.2 Valores de momentos máximos (KN-M) y cortantes máximos (KN) combinación 1.2D+1.6G+0.8W, en la cercha:

TABLE: Element Forces - Frames						
Frame	OutputCase	Р	V2	M3		
Text	Text	KN	KN	KN-m		
1	1.2D+1.6G+0.8W	-153,90	15,41	1,05		
2	1.2D+1.6G+0.8W	20,59	0,00	0,00		
3	1.2D+1.6G+0.8W	-221,17	-2,56	-0,68		
4	1.2D+1.6G+0.8W	-21,58	0,01	0,00		

(290)

5	1.2D+1.6G+0.8W	24,03	0,00	0,00
6	1.2D+1.6G+0.8W	-22,71	0,00	0,00
7	1.2D+1.6G+0.8W	19,53	0,00	0,00
8	1.2D+1.6G+0.8W	-19,32	0,00	0,00
9	1.2D+1.6G+0.8W	-42,72	0,00	0,00
10	1.2D+1.6G+0.8W	41,05	0,00	0,00
11	1.2D+1.6G+0.8W	-42,60	0,00	0,00
12	1.2D+1.6G+0.8W	45,73	0,00	0,00
13	1.2D+1.6G+0.8W	-44,84	0,00	0,00
14	1.2D+1.6G+0.8W	28,94	0,00	0,00
15	1.2D+1.6G+0.8W	-29,59	0,00	0,00
16	1.2D+1.6G+0.8W	18,84	0,00	0,00
17	1.2D+1.6G+0.8W	-18,37	0,00	0,00
18	1.2D+1.6G+0.8W	20,40	0,00	0,00
19	1.2D+1.6G+0.8W	-20,09	0,00	0,00
20	1.2D+1.6G+0.8W	19,59	0,00	0,00
21	1.2D+1.6G+0.8W	-19,13	0,00	0,00
22	1.2D+1.6G+0.8W	20,88	0,00	0,00
23	1.2D+1.6G+0.8W	-20,38	0,00	0,00
24	1.2D+1.6G+0.8W	13,38	0,00	0,00
25	1.2D+1.6G+0.8W	-13,64	0,00	0,00
26	1.2D+1.6G+0.8W	-4,84	0,00	0,00
27	1.2D+1.6G+0.8W	4,69	0,00	0,00
28	1.2D+1.6G+0.8W	-3,27	0,00	0,00
29	1.2D+1.6G+0.8W	3,56	0,00	0,00
30	1.2D+1.6G+0.8W	-3,96	0,00	0,00
31	1.2D+1.6G+0.8W	3,76	0,00	0,00
32	1.2D+1.6G+0.8W	-3,76	0,00	0,00
33	1.2D+1.6G+0.8W	4,29	0,00	0,00
34	1.2D+1.6G+0.8W	-4,67	0,00	0,00
35	1.2D+1.6G+0.8W	3,12	0,00	0,00
36	1.2D+1.6G+0.8W	-18,62	0,00	0,00
38	1.2D+1.6G+0.8W	0,00	9,84	-9,41
40	1.2D+1.6G+0.8W	0,00	4,09	-2,13
41	1.2D+1.6G+0.8W	0,00	11,30	-9,41
42	1.2D+1.6G+0.8W	-153,90	15,41	1,05
43	1.2D+1.6G+0.8W	-221,17	-2,56	-0,68
44	1.2D+1.6G+0.8W	-21,58	0,01	0,00

45	1.2D+1.6G+0.8W	24,03	0,00	0,00
46	1.2D+1.6G+0.8W	-22,71	0,00	0,00
47	1.2D+1.6G+0.8W	19,53	0,00	0,00
48	1.2D+1.6G+0.8W	-19,32	0,00	0,00
49	1.2D+1.6G+0.8W	-42,72	0,00	0,00
50	1.2D+1.6G+0.8W	41,05	0,00	0,00
51	1.2D+1.6G+0.8W	-42,60	0,00	0,00
52	1.2D+1.6G+0.8W	45,73	0,00	0,00
53	1.2D+1.6G+0.8W	-44,84	0,00	0,00
54	1.2D+1.6G+0.8W	28,94	0,00	0,00
55	1.2D+1.6G+0.8W	-29,59	0,00	0,00
56	1.2D+1.6G+0.8W	18,84	0,00	0,00
57	1.2D+1.6G+0.8W	-18,37	0,00	0,00
58	1.2D+1.6G+0.8W	20,40	0,00	0,00
59	1.2D+1.6G+0.8W	-20,09	0,00	0,00
60	1.2D+1.6G+0.8W	19,59	0,00	0,00
61	1.2D+1.6G+0.8W	-19,13	0,00	0,00
62	1.2D+1.6G+0.8W	20,88	0,00	0,00
63	1.2D+1.6G+0.8W	-20,38	0,00	0,00
64	1.2D+1.6G+0.8W	13,38	0,00	0,00
65	1.2D+1.6G+0.8W	-13,64	0,00	0,00
66	1.2D+1.6G+0.8W	-4,84	0,00	0,00
67	1.2D+1.6G+0.8W	4,69	0,00	0,00
68	1.2D+1.6G+0.8W	-3,27	0,00	0,00
69	1.2D+1.6G+0.8W	3,56	0,00	0,00
70	1.2D+1.6G+0.8W	-3,96	0,00	0,00
71	1.2D+1.6G+0.8W	3,76	0,00	0,00
72	1.2D+1.6G+0.8W	-3,76	0,00	0,00
73	1.2D+1.6G+0.8W	4,29	0,00	0,00
74	1.2D+1.6G+0.8W	-4,67	0,00	0,00
75	1.2D+1.6G+0.8W	3,12	0,00	0,00
76	1.2D+1.6G+0.8W	-18,62	0,00	0,00
78	1.2D+1.6G+0.8W	0,00	-4,09	-2,13

30.7.3 Verificación solicitaciones correa existente

AISC360-05/IBC2006 STEEL SECTION CHECK (Summary for Combo and Station) Units : KN, m, C

Frame : 38 X Mid: 7,500 Combo: 1.2D+1.6G+0.8W Design Type: Beam

Length: 5,000 Y Mid: 1,000 Shape: 2L 1x1/8 Frame Type: Special Moment Frame

Loc : 5,000 Z Mid: 0,000 Class: Non-Compact Princpl Rot: 0,000 degrees

Provision: LRFD Analysis: Direct Analysis

D/C Limit=1,000 2nd Order: General 2nd Order Reduction: Tau-b Fixed

AlphaPr/Py=0,000 AlphaPr/Pe=0,000 Tau_b=1,000 EA factor=0,800 EI factor=0,800

PhiB=0,900 PhiC=0,900 PhiTY=0,900 PhiTF=0,750

PhiS=0,900 PhiS-RI=1,000 PhiST=0,900

E=199947978,8 fy=227527,010 Ry=1,000 z33=2,056E-05 RLLF=1,000 Fu=351632,652 z22=1,835E-06

DESIGN MESSAGES

Error: Section overstressed Warning: kl/r > 200 (AISC E2)

STRESS CHECK FORCES & MOMENTS (Combo 1.2D+1.6G+0.8W)

Location Pu Mu33 Mu22 Vu2 Vu3 Tu 5,000 0,000 -9,412 0,000 9,841 0,000 0,000

PMM DEMAND/CAPACITY RATIO (H1-1b)

D/C Ratio: 2,453 = 0,000 + 2,453 + 0,000

= (1/2)(Pr/Pc) + (Mr33/Mc33) + (Mr22/Mc22)

AXIAL FORCE & BIAXIAL MOMENT DESIGN (H1-1b)

Factor **K1** K2 **B1 B2** Cm Major Bending 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 Minor Bending 1,000 1,000 1,000

L1tb K1tb Cb LTB 1,000 1,000 3,000

Pu phi*Pnc phi*Pnt Force Capacity Capacity Axial 0,000 1,134 62,382

Mu phi*Mn phi*Mn Moment Capacity No LTB Major Moment -9,412 3,837 3,837

0,000

Minor Moment SHEAR CHECK

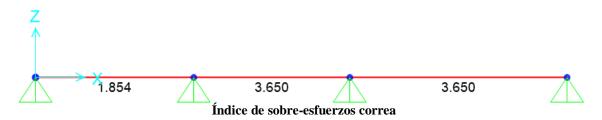
> Vu phi*Vn Stress Status Capacity Ratio Force Check Major Shear 9,841 37,429 0,263 OK 18,100 Minor Shear 0,000 0,000 OK

0,209

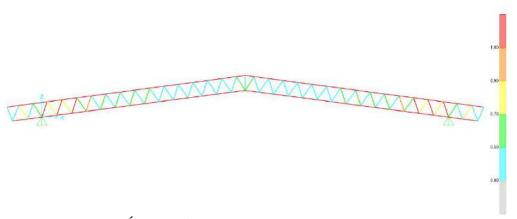
CONNECTION SHEAR FORCES FOR BEAMS

UMajor UMajor Left Right Major (U2) 9,841 9,841

(293)


30.7.4 Verificación solicitaciones cercha existente

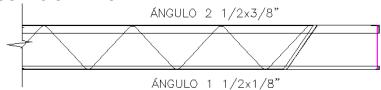
AISC360-05/IBC200 Units : KN, m, C		CHECK (Summa	ary for Co	mbo and Stati	on)	
Frame: 3 Length: 4,810 Loc: 4,205	X Mid: 1,784 Y Mid: 0,000 Z Mid: 0,235	Combo: 1.2 Shape: 2L Class: Nor	2x1/8 Inf	B37 Frame Ty	ype: Brace pe: Special Rot: 0,000	
Provision: LRFD D/C Limit=1,000 AlphaPr/Py=1,550	Analysis: Direc 2nd Order: Gene AlphaPr/Pe=6,82	ral 2nd Order		eduction: Tau A factor=0,80	N. 1974 - 1981 - 1982 - 1983 - 1984 - 1984 - 1984 - 1984 - 1984 - 1984 - 1984 - 1984 - 1984 - 1984 - 1984 - 19	or=0,800
PhiB=0,900 PhiS=0,900	PhiC=0,900 PhiS-RI=1,000	PhiTY=0,90 PhiST=0,90		hiTF=0,750		
A=6,272E-04 J=0,000 alpha=90,000	133=0,000 122=0,000	r33=0,016 r22=0,025		33=4,280E-06 22=6,832E-06	Au2=2,80	
E=199947978,8 RLLF=1,000	fy=227527,010 Fu=351632,652	Ry=1,000		33=7,707E-06 22=1,181E-05		
DESIGN MESSAGES Error: Sectio	n overstressed					
STRESS CHECK FORC	The same of the sa				W0	
Location 4,205	Pu -221,169	Mu33 -0,676	Mu22 0,000	Vu2 1,889	Vu3 0,000	Tu 0,000
PMM DEMAND/CAPACI D/C Ratio:	9,333 = 8,648 +	0,686 + 0,000		8/9)(Mr22/Mc2	2)	
AXIAL FORCE & BIA	XIAL MOMENT DESI	GN (H1-1a)				
Factor	L	K1	K2	B1	B2	Cm
Major Bending		1,000	1,000	1,000	1,000	1,000
Minor Bending	1,000	1,000	1,000	1,000	1,000	1,000
	Lltb	Kltb	Ср			
LTB	1,000	1,000	1,438			
	Pu	phi*Pnc	phi*Pr			
(100000 Normalist	Force	Capacity	Capaci			
Axial	-221,169	25,576	128,43	34		
	Mu	phi∗Mn	phi*l	Mn		
	Moment	Capacity	No L			
Major Momen		0.876	0.87			
Minor Momen		1,399	.,			
SHEAR CHECK						
	Vu	phi*Vn	Stres		ıs	
	F	Cananitu	Rati	io Chec	· b	
	Force	Capacity	nat.	ro onec	- N	
Major Shear Minor Shear	1,889	35,197	0,05 0,05	54 (OK OK	


30.7.5 Índices de sobre-esfuerzos correa existente

30.7.6 Índices de sobre-esfuerzos cercha existente

Índices máximos de sobre- esfuerzos cercha

30.8 ALTERNATIVA DE REFORZAMIENTO PROPUESTO


La cercha principal presenta un índice de sobreesfuerzo muy elevado, debido a que las correas tienen una gran separación entre sí, las cargas no se están transmitiendo en los nodos, los perfiles de los cordones inferior y superior no cuentan con la sección transversal apropiada para la luz máxima y las cargas requeridas, principalmente el granizo y el viento. Por lo tanto, se recomienda desmontar todos los elementos estructurales que componen esta cubierta (cercha y correas), para ser reemplazados según un nuevo diseño acorde a las exigencias del reglamento NSR-10.

31. ANÁLISIS CUBIERTA BLOQUE 28

31.1 CONFIGURACION EXISTENTE

Configuración existente correa

31.2 EVALUACIONES DE CARGA

Inclinación de la cubierta Separación máxima entre correas

2,60	=	4,5%
2,93	m	

CARGA MUERTA: Según tabla B.3.4.1-1 y B.3.4.1-4 del título B de la NSR-10

 Teja de barro
 0,00
 KN/m²

 Teja FibroCemento
 0,25
 KN/m²

 Cielo raso
 0,00
 KN/m²

 Lámparas
 0,05
 KN/m²

 Estructura metálica
 0,05
 KN/m²

 Total Carga Muerta (D)
 0,35
 KN/m²

CARGA VIVA: Según tabla B.4.2.1-2 del título B de la NSR-10

Inclinación de la cubierta de 2,60

Lr = 0,50 KN/m²

CARGA DE GRANIZO: Según B.4.8.3 del titulo B de la NSR-10, la carga de granizo, G:

G = **1,00** KN/m²

CARGA DE VIENTO:

(296)

31.3 CASOS DE CARGA

CASOS DE CARGA	DESCRIPCIÓN
PP	Peso Propio de la estructura
D	Carga muerta
Lr	Carga viva de cubierta
W	Viento
Granizo	G

31.4 COMBINACIONES DE DISEÑO

Según lo estipulado en B.2.4.2 del título B de la NSR-10:

Combinaciones de carga para ser utilizadas con el método de resistencia

COMBINACION	CARGA TOTAL
	MAYORADA KN/m²
1,4D	0,49
1,2D+0,5Lr	0,67
1.2D+0.5G	0,92
1,2D+1,6Lr+0,8W	1,22
1.2D+1.6G+0.8W	2,34
1,2D+1,6W+0,5Lr	1,31
1,2D+1,0E	0,42
0,9D+1,6W	0,96
0,9D+1,0E	0,32

Gobierna la combinación 1,2D+1,6G+0,8W

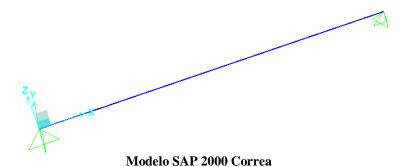
MUERTA	GRANIZO	VIENTO		
1,2D	1,6G	0,8W	Wtotal	
0,42	1,60	0,32	2,34	KN/m²

Se calcula la resultante carga muerta, según la inclinación de cubierta de 2,60

Wu muerta = 0.42 KN/m² Wu resultante = 2.34 KN/m²

Con una separacion maxima entre correas de 2,93 m, se calculan las cargas totales SIN MAYORAR:

WD =	1,03	KN/m	W Lr =	1,47	KN/m
W G =	2,93	KN/m	W w =	1,17	KN/m


W T = 6,86 KN/m

31.5 RESULTADOS DEL ANÁLISIS

(297)


31.6 REACCIONES MAXIMAS EN LOS APOYOS

Reacciones máximas Correas- Cercha Dirección Z

REAC	CCIONES			
CORREAS (KN)				
Lr	4,81			
D	4,13			
W	3,85			
G	9,62			

31.7 VERIFICACIÓN ESTRUCTURA EXISTENTE

Nombres de los elementos que componen la correa (frames) en SAP2000:

31.7.1 Valores de momentos máximos (KN-M) y cortantes máximos (KN) combinación 1.2D+1.6G+0.8W, en la correa:

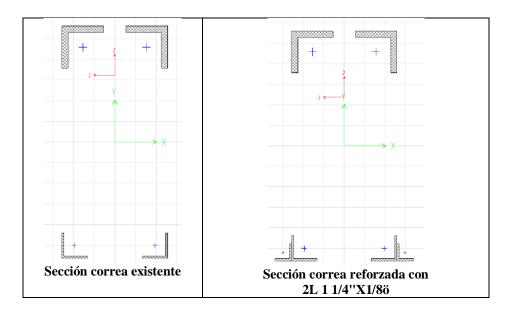
	TABLE: Element Force	s - Fram	es	
Frame	OutputCase	Р	V2	M3
Text	Text	KN	KN	KN-m
1	1,2D+1,6G+0,8W	0,00	23,25	38,01

31.7.2 Verificación solicitaciones correa existente

AISC360-05/IBC200 Units : KN, m, C		CHECK (Sum	mary for	Combo and Statio	on)	
Frame : 1	X Mid: 3,270	Combo: 1	,2D+1,6G+	0,8W Design Ty	pe: Beam	
Length: 6,540	Y Mid: 0,000			/8+2L 1Frame Typ		
Loc : 3,270	Z Mid: 0,000	Class: N	on-Compac	t Princpl F	Rot: 0,000	degrees
Provision: LRFD D/C Limit=0,950	Analysis: Dire		or	Reduction: Tau-	h Fived	
AlphaPr/Py=0,000	AlphaPr/Pe=0,0	about a more facilities are made and are a facilities.		EA factor=0,800		or=0,800
PhiB=0,900	PhiC=0,900	PhiTY=0,	988	PhiTF=0,750		
PhiS=0,900	PhiS-RI=1,000	PhiST=0,				
A=0,003	133=4,020E-05	r33=0,12	2	S33=1,458E-04	Au3=0,0	92
J=0,000	I22=1,134E-05	r22=0,06		S22=1,418E-04	Av2=0,0	03
E=199947978,8 RLLF=1,000	fy=230000,000 Fu=360000,000	Ry=1,000		z33=1,854E-04 z22=1,679E-04		
	1 4 40400,000			222 1,0172 01		
DESIGN MESSAGES						
Error: Sectio	n overstressed					
STRESS CHECK FORC						
Location	Pu	Mu33	Mu22	Vu2	Vu3	Tu
3,270	0,000	38,011	0,000	0,000	0,000	0,000
PMM DEMAND/CAPACI D/C Ratio:	TY RATIO (H1- 1,259 = 0,000 +		00			
Dyo Hacio:				(Mr22/Mc22)		
AXIAL FORCE & BIA	XIAL MOMENT DES	IGN (H1-1b)			
Factor	L	K1	K2	B1	B2	Cm
Major Bending		1,000	1,000	1,000	1,000	1,000
Minor Bending	1,000	1,000	1,000	1,000	1,000	1,000
	L1tb	Kltb	Cb			
LTB	1,000	1,000	1,140			

(299)

	Pu	phi*Pnc	phi*Pnt	
	Force	Capacity	Capacity	
Axial	0,000	340,215	559,210	
	Mu	phi*Mn	phi∗Mn	
	Moment	Capacity	No LTB	
Major Mome	ent 38,011	30,183	30,183	
Minor Mome	ent 0,000	29,349		
SHEAR CHECK				
	Vu	phi*Un	Stress	Status
	Force	Capacity	Ratio	Check
Major Shea	er 0,000	335,526	0,000	ОК
Minor Shea	er 9,999	286,897	0,000	OK
CONNECTION SHE	AR FORCES FOR BE	AMS		
	VMajor	UMajor		
	Left	Right		
Major (U2)	23,248	23,248		


31.7.3 Índices de sobre-esfuerzos correa existente

Índice de sobre-esfuerzos correa

31.8 ALTERNATIVA DE REFORZAMIENTO PROPUESTO

Reforzamiento correa

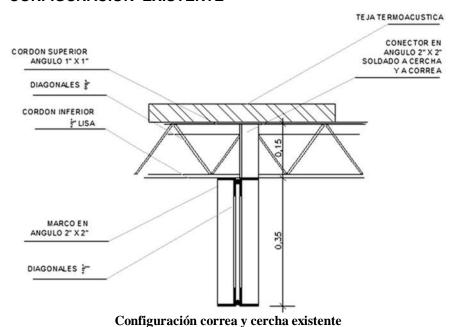
(300)

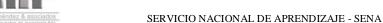
21 2 1	Varificación	solicitaciones	corres re	forzada

SERVICIO NACIONAL DE APRENDIZAJE - SENA

	KH, m, C						
		v u.a. o ozo	Combos	1 00.4 40.0	OU Dasies Tus	as Dann	
Frame : 2 Length: 6		X Mid: 3,270 Y Mid: 3,000		1,2D+1,6G+0	,8W Design Typ 1/2x3/Frame Type		Moment Evan
	,270	Z Mid: 0,000		Non-Compact	Princpl Ro		
	,210	Z 1114. 0,000	01033.	non compact	11 Incpi no	0,000 (acgi ces
Provision	: LRFD	Analysis: Dire	ct Analusis				
C Limit		2nd Order: Gen			Reduction: Tau-b	Fixed	
AlphaPr/P		AlphaPr/Pe=0,0	100 Tau b=1	,000	EA factor=0,800	EI facto	or=0,800
hiB=0,90		PhiC=0,900	PhiTY=0		PhiTF=0,750		
his=0,90	0	PhiS-RI=1,000	PhiST=0	,900			
-0 000		100-F 000F 0F	r33=0,1		200-0 1445 01	Av3=0.00	90
1=0,003 J=0,000		133=5,992E-05 122=1,369E-05	r22=0,00		S33=2,411E-04 S22=1,299E-04	Av2=0,00	
=1999479	78.8	fy=230000,000	Ry=1,00		233=2,833E-04	HVZ-0,00	
RLLF=1.00		Fu=360000,000	y .,00		z22=1,945E-04		
.,,50					.,		
		ES & MOMENTS (C					
Locat		Pu	Mu33	Mu22	Vu2	Vu3	Tu
3,270		0,000	38,161	0,000	0,000	0,000	0,000
NH DEHAN		TII DATTO (II4	463				
PMM DEMANI D/C R		TY RATIO (H1- 0,765 = 0,000 +		000			
D/C K	acio.		r/Pc) + (Mr		(Mr.22 /Mc.22)		
		(1/2/(1	17107 . (111	30/11000/	(111 22/11022)		
XIAL FOR	CE & BIA	XIAL MOMENT DES	IGN (H1-1	b)			
Factor			K1	K2			Cm
ractu	r o	L		NZ.	B1	B2	UPI
Major	Bending	1,000	1,000	1,000	1,000	1,000	1,000
Major		1,000					07/05
Major	Bending	1,000 1,000	1,000 1,000	1,000 1,000	1,000	1,000	1,000
Major Minor	Bending	1,000 1,000 Lltb	1,000 1,000 Kltb	1,000 1,000 Cb	1,000	1,000	1,000
Major	Bending	1,000 1,000	1,000 1,000	1,000 1,000	1,000	1,000	1,000
Major Minor	Bending	1,000 1,000 Lltb	1,000 1,000 Kltb	1,000 1,000 Cb	1,000	1,000	1,000
Major Minor	Bending	1,000 1,000 Litb 1,000	1,000 1,000 Kltb 1,000 phi*Pnc Capacity	1,000 1,000 Cb 1,140	1,000	1,000	1,000
Major Minor	Bending Bending	1,000 1,000 Litb 1,000	1,000 1,000 Kltb 1,000 phi*Pnc	1,000 1,000 Cb 1,140 phi*Pnt	1,000	1,000	1,000
Major Minor LTB	Bending Bending	1,000 1,000 Lltb 1,000 Pu Force 0,000	1,000 1,000 Kltb 1,000 phi*Pnc Capacity 393,608	1,000 1,000 Cb 1,140 phi*Pnt Capacity 622,271	1,000	1,000	1,000
Major Minor LTB	Bending Bending	1,000 1,000 Lltb 1,000 Pu Force 0,000	1,000 1,000 Kltb 1,000 phi*Pnc Capacity 393,608 phi*Mn	1,000 1,000 Cb 1,140 phi*Pnt Capacity 622,271	1,000	1,000	1,000
Major Minor LTB Axial	Bending Bending	1,000 1,000 Litb 1,000 Pu Force 0,000 Mu	1,000 1,000 Kltb 1,000 phi*Pnc Capacity 393,608 phi*Mn Capacity	1,000 1,000 Cb 1,140 phi*Pnt Capacity 622,271 phi*Mn No LTB	1,000	1,000	1,000
Major Minor LTB Axial	Bending Bending Moment	1,000 1,000 Lltb 1,000 Pu Force 0,000 Mu Moment 38,161	1,000 1,000 Kltb 1,000 phi*Pnc Capacity 393,608 phi*Mn Capacity 49,900	1,000 1,000 Cb 1,140 phi*Pnt Capacity 622,271	1,000	1,000	1,000
Major Minor LTB Axial	Bending Bending	1,000 1,000 Litb 1,000 Pu Force 0,000 Mu	1,000 1,000 Kltb 1,000 phi*Pnc Capacity 393,608 phi*Mn Capacity	1,000 1,000 Cb 1,140 phi*Pnt Capacity 622,271 phi*Mn No LTB	1,000	1,000	1,000
Major Minor LTB Axial Major Minor	Bending Bending Moment Moment	1,000 1,000 Lltb 1,000 Pu Force 0,000 Mu Moment 38,161	1,000 1,000 Kltb 1,000 phi*Pnc Capacity 393,608 phi*Mn Capacity 49,900	1,000 1,000 Cb 1,140 phi*Pnt Capacity 622,271 phi*Mn No LTB	1,000	1,000	1,000
Major Minor LTB Axial Major Minor	Bending Bending Moment Moment	1,000 1,000 Litb 1,000 Pu Force 0,000 Mu Moment 38,161 0,000	1,000 1,000 Kltb 1,000 phi*Pnc Capacity 393,608 phi*Mn Capacity 49,900 26,895	1,000 1,000 Cb 1,140 phi*Pnt Capacity 622,271 phi*Mn No LTB 49,900	1,000	1,000	1,000
Major Minor LTB Axial Major Minor	Bending Bending Moment Moment	1,000 1,000 Litb 1,000 Pu Force 0,000 Mu Moment 38,161 0,000	1,000 1,000 Kltb 1,000 phi*Pnc Capacity 393,608 phi*Mn Capacity 49,900 26,895	1,000 1,000 Cb 1,140 phi*Pnt Capacity 622,271 phi*Mn No LTB 49,900	1,000 1,000 Status	1,000	1,000
Major Minor LTB Axial Major Minor	Bending Bending Moment Moment CK	1,000 1,000 Litb 1,000 Pu Force 0,000 Mu Moment 38,161 0,000	1,000 1,000 Kltb 1,000 phi*Pnc Capacity 393,608 phi*Mn Capacity 49,960 26,895 phi*Un Capacity	1,000 1,000 Cb 1,140 phi*Pnt Capacity 622,271 phi*Mn No LTB 49,900 Stress Ratio	1,000	1,000	1,000
Major Minor LTB Axial Major Minor SHEAR CHE	Bending Bending Moment Moment	1,000 1,000 Litb 1,000 Pu Force 0,000 Mu Moment 38,161 0,000 Vu Force 0,000	1,000 1,000 Kltb 1,000 phi*Pnc Capacity 393,608 phi*Mn Capacity 49,900 26,895	1,000 1,000 Cb 1,140 phi*Pnt Capacity 622,271 phi*Mn No LTB 49,900	1,000 1,000 Status Check	1,000	1,000
Major Minor LTB Axial Major Minor HEAR CHE	Bending Bending Moment Moment CK Shear	1,000 1,000 Litb 1,000 Pu Force 0,000 Mu Moment 38,161 0,000	1,000 1,000 Kltb 1,000 phi*Pnc Capacity 393,608 phi*Mn Capacity 49,900 26,895 phi*Un Capacity 373,363	1,000 1,000 Cb 1,140 phi*Pnt Capacity 622,271 phi*Mn No LTB 49,900 Stress Ratio 0,000	1,000 1,000 Status Check OK	1,000	1,000
Major Minor LTB Axial Major Minor SHEAR CHE Major	Moment Moment CK Shear Shear	1,000 1,000 Litb 1,000 Pu Force 0,000 Mu Moment 38,161 0,000 Vu Force 0,000	1,000 1,000 Kltb 1,000 phi*Pnc Capacity 393,608 phi*Mn Capacity 49,900 26,895 phi*Un Capacity 373,363 300,665	1,000 1,000 Cb 1,140 phi*Pnt Capacity 622,271 phi*Mn No LTB 49,900 Stress Ratio 0,000	1,000 1,000 Status Check OK	1,000	1,000
Major Minor LTB Axial Major Minor SHEAR CHE Major	Moment Moment CK Shear Shear	1,888 1,898 1,898 Litb 1,898 Pu Force 8,888 Mu Moment 38,161 8,888	1,000 1,000 Kltb 1,000 phi*Pnc Capacity 393,608 phi*Mn Capacity 49,900 26,895 phi*Un Capacity 373,363 300,665	1,000 1,000 Cb 1,140 phi*Pnt Capacity 622,271 phi*Mn No LTB 49,900 Stress Ratio 0,000	1,000 1,000 Status Check OK	1,000	1,000
Major Minor LTB Axial Major Minor SHEAR CHE Major	Moment Moment CK Shear Shear	1,000 1,000 1,000 Litb 1,000 Pu Force 0,000 Mu Moment 38,161 0,000 Vu Force 0,000 9,000	1,000 1,000 Kltb 1,000 phi*Pnc Capacity 393,608 phi*Mn Capacity 49,900 26,895 phi*Un Capacity 373,363 300,665	1,000 1,000 Cb 1,140 phi*Pnt Capacity 622,271 phi*Mn No LTB 49,900 Stress Ratio 0,000	1,000 1,000 Status Check OK	1,000	1,000

31.8.2 Índices de sobre-esfuerzos máximos correa reforzada




32. ANÁLISIS CUBIERTA BLOQUE 29

32.1 CONFIGURACIÓN EXISTENTE

32.2 EVALUACIONES DE CARGA

Inclinación de la cubierta	8.53	=	15.0%
Separación máxima entre correas	1.12	m	

CARGA MUERTA: Según tabla B.3.4.1-1 y B.3.4.1-4 del título B de la NSR-10

 Teja eternit
 0.00 KN/m²

 Teja termoacustica
 0.08 KN/m²

 Cielo raso
 0.07 KN/m²

 Lámparas
 0.03 KN/m²

 Estructura metálica
 0.03 KN/m²

 Total Carga Muerta (D)
 0.21 KN/m²

CARGA VIVA: Según tabla B.4.2.1-2 del título B de la NSR-10

Inclinación de la cubierta de 8.53

Lr = 0.50 KN/m²

CARGA DE GRANIZO Según B.4.8.3 del titulo B de la NSR-10, la carga de granizo, G:

G = **1.00** KN/m²

CARGA DE VIENTO:

W= 0.40 KN/m² (Presión)

32.3 CASOS DE CARGA

CASOS DE CARGA	DESCRIPCIÓN
PP	Peso Propio de la estructura
D	Carga muerta
Lr	Carga viva de cubierta
W	Viento
G	Granizo

32.4 COMBINACIONES DE DISEÑO

Según lo estipulado en B.2.4.2 del título B de la NSR-10: Combinaciones de carga para ser utilizadas con el método de resistencia

COMBINACION	CARGA TOTAL
	MAYORADA KN/m²
1,4D	0.29
1,2D+0,5Lr	0.50
1.2D+0.5G	0.75
1,2D+1,6Lr+0,8W	1.05
1.2D+1.6G+0.8W	2.17
1,2D+1,6W+0,5Lr	1.14
1,2D+1,0E	0.25
0,9D+1,6W	0.83
0,9D+1,0E	0.19

Gobierna la combinación 1,2D+1,6G+0,8W

MUERTA	GRANIZO	VIENTO		
1,2D	1,6G	0,8W	Wtotal	
0.25	1.60	0.32	2.17	KN/m ²

Se calcula la resultante carga muerta, según la inclinación de cul 8.53

Wu muerta 0.25 KN/m² Wu resulta 2.17 KN/m²

Con una separacion maxima entre correas de 1.12 m, se calculan las cargas totales SIN MAYORAR:

W D =	0.24	KN/m	W Lr =	0.56	KN/m
W G =	1.12	KN/m	W w =	0.45	KN/m
W T =	2.44	KN/m			

32.5 RESULTADOS DEL ANÁLISIS

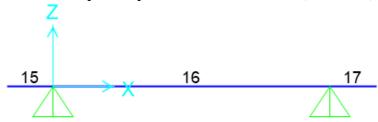
Modelo SAP 2000 Cercha

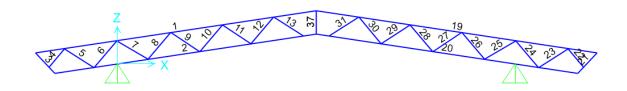
32.6 REACCIONES MÁXIMAS EN LOS APOYOS

Reacciones máximas Correas- Cercha Dirección Z

REAC	CIONES
CORRE	AS (KN)
Lr	2.24
D	0.95
W	1.79
G	4.48

Reacciones máximas Cercha- Apoyos Dirección Z




REA	CCIONES			
CERCHA (KN)				
Lr	8.96			
D	4.25			
W	7.17			
G	17.92			

32.7 VERIFICACIÓN ESTRUCTURA EXISTENTE

Nombres de los elementos que componen la correa existente (FRAMES) en SAP2000:

Nombres de los elementos que componen la cercha existente (FRAMES) en SAP2000:

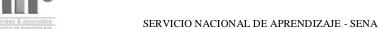
32.7.1 Valores de momentos máximos (KN-m) y cortantes máximos (KN) combinación 1.2D+1.6G+0.8W, en la correa:

	TABLE: Element Forces	s - Fram	es	
Frame	OutputCase	Р	V2	M3
Text	Text	KN	KN	KN-m
15	1.2D+1.6G+0.8W	0.00	2.49	-1.25
16	1.2D+1.6G+0.8W	0.00	7.47	9.97
17	1.2D+1.6G+0.8W	0.00	-2.49	-1.25

32.7.2 Valores de momentos máximos (KN-m) y cortantes máximos (KN) combinación 1.2D+1.6G+0.8W, en la correa:

	TABLE: E	lement For	ces - Fram	es	
Frame	OutputCase		Р	V2	M3
		(307)			

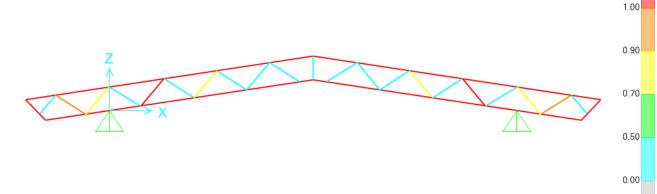
Text	Text	KN	KN	KN-m
1	1.2D+1.6G+0.8W	-32.60	8.31	-0.79
2	1.2D+1.6G+0.8W	-72.02	18.57	-3.86
3	1.2D+1.6G+0.8W	-8.12	-13.85	-1.29
4	1.2D+1.6G+0.8W	19.75	0.00	0.00
5	1.2D+1.6G+0.8W	-18.48	0.01	0.00
6	1.2D+1.6G+0.8W	-14.38	0.01	0.00
7	1.2D+1.6G+0.8W	1.38	0.01	0.00
8	1.2D+1.6G+0.8W	-26.54	0.01	0.00
9	1.2D+1.6G+0.8W	20.74	0.01	0.00
10	1.2D+1.6G+0.8W	-15.24	0.01	0.00
11	1.2D+1.6G+0.8W	2.66	0.01	0.00
12	1.2D+1.6G+0.8W	-4.12	0.01	0.00
13	1.2D+1.6G+0.8W	2.08	0.01	0.00
19	1.2D+1.6G+0.8W	-32.60	8.31	-0.79
20	1.2D+1.6G+0.8W	-72.02	18.57	-3.86
21	1.2D+1.6G+0.8W	-8.12	-13.85	-1.29
22	1.2D+1.6G+0.8W	19.75	0.00	0.00
23	1.2D+1.6G+0.8W	-18.48	0.01	0.00
24	1.2D+1.6G+0.8W	-14.38	0.01	0.00
25	1.2D+1.6G+0.8W	1.38	0.01	0.00
26	1.2D+1.6G+0.8W	-26.54	0.01	0.00
27	1.2D+1.6G+0.8W	20.74	0.01	0.00
28	1.2D+1.6G+0.8W	-15.24	0.01	0.00
29	1.2D+1.6G+0.8W	2.66	0.01	0.00
30	1.2D+1.6G+0.8W	-4.12	0.01	0.00
31	1.2D+1.6G+0.8W	2.08	0.01	0.00
37	1.2D+1.6G+0.8W	-7.18	0.00	0.00


32.7.3 Verificación solicitaciones correa existente

Units : KN,	11, 0						
rame : 16	200 (2	tid: 3.000		2D+1.6G+0.8W	Design Typ		
ength: 6.00	71	tid: 2.000					al Moment Fram
oc : 3.00	0 Z N	1id: 0.000	Class: No	n-Compact	Princpl Ro	t: 0.000	0 degrees
rovision: L		lysis: Direc			ana ann a saona		
D/C Limit=1.		l Order: Gene			ıction: Tau-b		
AlphaPr/Py=0	.000 Alp	haPr/Pe=0.00	0 Tau_b=1.0	88 EA 6	actor=0.800	EI fac	ctor=0.800
PhiB=0.900	Phi	C-0.900	PhiTY=8.9	00 Phil	F=0.750		
Phis=0.900		S-RI=1.000	PhiST=0.9		7. 300.50		
A=2.782E-04		3=1.287E-06	r33=0.068		1.591E-05		.694E-04
J=0.000		2=0.000	r22=0.006		0.000	AU2=2	.782E-04
E=199947978.		227527.010	Ry=1.000		1.755E-05		
RLLF=1.000	Fu=	351632.652		z22=	-1.510E-06		
DESIGN MESSA							
		erstressed					
Warning:	K1/r > 2	200 (AISC E2)					
STRESS CHECK	FORCES 8	MOMENTS (Co	mbo 1.2D+1.6	G+0.8W)			
Location		Pu	Mu33	Mu22	Uu2	Vu3	Tu
3.000		0.000	9.966	0.000	0.000	0.000	0.000
PMM DEMAND/C D/C Ratio		8 = 0.000 +			22/Mc22)		
D/C Ratio	0: 3.89	8 = 0.000 +	3.058 + 0.00 /Pc) + (Mr33,	/Mc33) + (Mr2 K2	22/Mc22) B1	B2	Cm
D/C Ration	o: 3.05 & BIAXIAL	58 = 0.000 + = (1/2)(Pr . MOMENT DESI	3.058 + 0.00 /Pc) + (Mr33, GN (H1-1b)	/Mc33) + (Mr2		B2 1.000	Cm 1.999
D/C Ration	o: 3.09 & BIAXIAL nding	58 = 0.000 + = (1/2)(Pr . MOMENT DESI L	3.058 + 0.00 /Pc) + (Mr33, GN (H1-1b) K1	/Mc33) + (Mr2 K2	B1		53 12703
D/C Ration AXIAL FORCE Factor Major Be	o: 3.09 & BIAXIAL nding	58 = 0.000 + = (1/2)(Pr . MOMENT DESI L 1.000 1.000	3.058 + 0.00 /Pc) + (Mr33, GN (H1-1b) K1 1.000 1.000	/Mc33) + (Mr2 K2 1.888 1.888	B1 1.000	1.000	1.000
D/C Ration AXIAL FORCE (Factor Major Beo Minor Beo	o: 3.09 & BIAXIAL nding	58 = 0.000 + = (1/2)(Pr . MOMENT DESI L 1.000 1.000	3.058 + 0.00 /Pc) + (Mr33, GN (H1-1b) K1 1.000 1.000 Kltb	/Mc33) + (Mr2 K2 1.888 1.888	B1 1.000	1.000	1.000
D/C Ration AXIAL FORCE Factor Major Be	o: 3.09 & BIAXIAL nding	58 = 0.000 + = (1/2)(Pr . MOMENT DESI L 1.000 1.000	3.058 + 0.00 /Pc) + (Mr33, GN (H1-1b) K1 1.000 1.000	/Mc33) + (Mr2 K2 1.888 1.888	B1 1.000	1.000	1.000
AXIAL FORCE (Factor Major Be Minor Be	o: 3.09 & BIAXIAL nding	88 = 0.000 + = (1/2)(Pr . MOMENT DESI L 1.000 1.000 L1tb 1.000	3.058 + 0.00 /Pc) + (Mr33, GN (H1-1b) K1 1.000 1.000 Kltb 1.000	/Mc33) + (Mr2 K2 1.000 1.000 Cb 1.156	B1 1.000	1.000	1.000
D/C Ration AXIAL FORCE : Factor Major Ben Minor Ben	o: 3.09 & BIAXIAL nding	8 = 0.000 + = (1/2)(Pr . MOMENT DESI 1.000 1.000 Lltb 1.000	3.058 + 0.00 /Pc) + (Mr33, GN (H1-1b) K1 1.000 1.000 Kltb 1.000 phi*Pnc	/Mc33) + (Mr2 K2 1.808 1.808 Cb 1.156	B1 1.000	1.000	1.000
D/C Ration AXIAL FORCE Factor Major Ben Minor Ben LTB	o: 3.09 & BIAXIAL nding	88 = 0.000 + = (1/2)(Pr . MOMENT DESI L 1.000 1.000 Lltb 1.000	3.058 + 0.00 /Pc) + (Mr33, GN (H1-1b) K1 1.000 1.000 Kltb 1.000 phi*Pnc Capacity	/Mc33) + (Mr2 K2 1.000 1.000 Cb 1.156 phi*Pnt Capacity	B1 1.000	1.000	1.000
D/C Ration AXIAL FORCE (Factor Major Beo Minor Beo	o: 3.09 & BIAXIAL nding	8 = 0.000 + = (1/2)(Pr . MOMENT DESI 1.000 1.000 Lltb 1.000	3.058 + 0.00 /Pc) + (Mr33, GN (H1-1b) K1 1.000 1.000 Kltb 1.000 phi*Pnc	/Mc33) + (Mr2 K2 1.808 1.808 Cb 1.156	B1 1.000	1.000	1.000
D/C Ration AXIAL FORCE Factor Major Ben Minor Ben LTB	o: 3.09 & BIAXIAL nding	88 = 0.000 + = (1/2)(Pr . MOMENT DESI L 1.000 1.000 Lltb 1.000 Pu Force 0.000	3.058 + 0.00 /Pc) + (Mr33, GN (H1-1b) K1 1.000 1.000 Kitb 1.000 phi*Pnc Capacity 0.501	/Mc33) + (Mr2 1.808 1.808 1.808 Cb 1.156 phi*Pnt Capacity 56.965	B1 1.000	1.000	1.000
D/C Ration AXIAL FORCE Factor Major Ben Minor Ben LTB	o: 3.09 & BIAXIAL nding	88 = 0.000 + = (1/2)(Pr . MOMENT DESI L 1.000 1.000 Lltb 1.000 Pu Force 0.000	3.058 + 0.00 /Pc) + (Mr33, GN (H1-1b) K1 1.000 1.000 Kltb 1.000 phi*Pnc Capacity 0.501 phi*Mn	K2 1.000 1.000 Cb 1.156 phi*Pnt Capacity 56.965 phi*Mn	B1 1.000	1.000	1.000
D/C Ration AXIAL FORCE of Factor Major Benefit Minor Bene	o: 3.05 & BIAXIAL nding nding	88 = 0.000 + = (1/2)(Pr MOMENT DESI 1.000 1.000 Lith 1.000 Pu Force 0.000 Mu Moment	3.058 + 0.00 /Pc) + (Mr33, GN (H1-1b) K1 1.000 K1tb 1.000 Kitb 1.000 phi*Pnc Capacity 0.501 phi*Mn Capacity	K2 1.000 1.000 Cb 1.156 phi*Pnt Capacity 56.965 phi*Mn No LTB	B1 1.000	1.000	1.000
D/C Ration AXIAL FORCE of Factor Major Bendered Minor Bendered Minor Bendered Minor Major	o: 3.05 & BIAXIAL nding nding	88 = 0.000 + = (1/2)(Pr MOMENT DESI 1.000 1.000 Lith 1.000 Pu Force 0.000 Mu Moment 9.966	3.058 + 0.00 /Pc) + (Mr33, GN (H1-1b) K1 1.000 1.000 Kltb 1.000 phi*Pnc Capacity 0.501 phi*Mn Capacity 3.259	K2 1.000 1.000 Cb 1.156 phi*Pnt Capacity 56.965 phi*Mn	B1 1.000	1.000	1.000
D/C Ration AXIAL FORCE Factor Major Ben Minor Ben LTB Axial	o: 3.05 & BIAXIAL nding nding	88 = 0.000 + = (1/2)(Pr MOMENT DESI 1.000 1.000 Lith 1.000 Pu Force 0.000 Mu Moment	3.058 + 0.00 /Pc) + (Mr33, GN (H1-1b) K1 1.000 K1tb 1.000 Kitb 1.000 phi*Pnc Capacity 0.501 phi*Mn Capacity	K2 1.000 1.000 Cb 1.156 phi*Pnt Capacity 56.965 phi*Mn No LTB	B1 1.000	1.000	1.000
D/C Ration AXIAL FORCE Factor Major Bendinor Bendinor Bendinor LTB Axial Major M Minor M	o: 3.05 & BIAXIAL nding nding	88 = 0.000 + = (1/2)(Pr MOMENT DESI 1.000 1.000 Lith 1.000 Pu Force 0.000 Mu Moment 9.966	3.058 + 0.00 /Pc) + (Mr33, GN (H1-1b) K1 1.000 1.000 Kltb 1.000 phi*Pnc Capacity 0.501 phi*Mn Capacity 3.259	K2 1.000 1.000 Cb 1.156 phi*Pnt Capacity 56.965 phi*Mn No LTB	B1 1.000	1.000	1.000
D/C Ration AXIAL FORCE Factor Major Bendinor Bendinor Bendinor LTB Axial Major M Minor M	o: 3.05 & BIAXIAL nding nding	88 = 0.000 + = (1/2)(Pr MOMENT DESI 1.000 1.000 Lith 1.000 Pu Force 0.000 Mu Moment 9.966	3.058 + 0.00 /Pc) + (Mr33, GN (H1-1b) K1 1.000 1.000 Kltb 1.000 phi*Pnc Capacity 0.501 phi*Mn Capacity 3.259	K2 1.000 1.000 Cb 1.156 phi*Pnt Capacity 56.965 phi*Mn No LTB	B1 1.000	1.000	1.000
D/C Ration AXIAL FORCE Factor Major Bendinor Bendinor Bendinor LTB Axial Major M Minor M	o: 3.05 & BIAXIAL nding nding	88 = 0.000 + = (1/2)(Pr MOMENT DESI 1.000 1.000 Lith 1.000 Pu Force 0.000 Mu Moment 9.966 0.000	3.058 + 0.00 /Pc) + (Mr33, GN (H1-1b) K1 1.000 1.000 Kitb 1.000 phi*Pnc Capacity 0.501 phi*Mn Capacity 3.259 0.149	K2 1.000 1.000 Cb 1.156 phi*Pnt Capacity 56.965 phi*Mn No LTB 3.259	B1 1.898 1.808	1.000 1.000	1.000
D/C Ration AXIAL FORCE of Factor Major Bendered Minor Bendered Minor Bendered Minor Mino	o: 3.05 & BIAXIAL nding nding	88 = 0.000 + = (1/2)(Pr MOMENT DESI 1.000 1.000 Lith 1.000 Pu Force 0.000 Mu Moment 9.966 0.000	3.058 + 0.00 /Pc) + (Mr33, GN (H1-1b) K1 1.000 1.000 Kitb 1.000 phi*Pnc Capacity 0.501 phi*Mn Capacity 3.259 0.149	/Mc33) + (Mr2 1.000 1.000 Cb 1.156 phi*Pnt Capacity 56.965 phi*Mn No LTB 3.259	81 1.000 1.000 Statu:	1.000 1.000	1.000
D/C Ration AXIAL FORCE Factor Major Bendinor Bendinor Bendinor LTB Axial Major M Minor M	o: 3.05 & BIAXIAL nding nding oment oment	88 = 0.000 + = (1/2)(Pr - (1/2)(P	3.058 + 0.00 /Pc) + (Mr33, GN (H1-1b) K1 1.000 1.000 Kitb 1.000 phi*Pnc Capacity 0.501 phi*Mn Capacity 3.259 0.149 phi*Un Capacity	/Mc33) + (Mr2 1.000 1.000 Cb 1.156 phi*Pnt Capacity 56.965 phi*Mn No LTB 3.259 Stress Ratio	81 1.000 1.000 Status Check	1.000 1.000	1.000
D/C Ration AXIAL FORCE of Factor Major Beneficial Major Major Major Major Major Major Major SHEAR CHECK	o: 3.05 & BIAXIAL nding nding oment oment hear hear	88 = 0.000 + = (1/2)(Pr - (1/2)(P	3.058 + 0.00 /Pc) + (Mr33, GN (H1-1b) K1 1.000 1.000 Kltb 1.000 phi*Pnc Capacity 0.501 phi*Mn Capacity 3.259 0.149 phi*Un Capacity 34.179 20.809	K2 1.800 1.800 Cb 1.156 phi*Pnt Capacity 56.965 phi*Mn No LTB 3.259 Stress Ratio 8.800	81 1.000 1.000 Status Check	1.000 1.000	1.000
D/C Ration AXIAL FORCE of Factor Major Beneficial Major Major Major Major Major Major Major SHEAR CHECK	o: 3.05 & BIAXIAL nding nding oment oment hear hear	88 = 0.000 + = (1/2)(Pr - (1/2)(P	3.058 + 0.00 /Pc) + (Mr33, GN (H1-1b) K1 1.000 1.000 Kltb 1.000 phi*Pnc Capacity 0.501 phi*Mn Capacity 3.259 0.149 phi*Un Capacity 34.179 20.809	K2 1.800 1.800 Cb 1.156 phi*Pnt Capacity 56.965 phi*Mn No LTB 3.259 Stress Ratio 8.800	81 1.000 1.000 Status Check	1.000 1.000	1.000
D/C Ration AXIAL FORCE of Factor Major Beneficial Major Major Major Minor Minor Minor Minor SHEAR CHECK	o: 3.05 & BIAXIAL nding nding oment oment hear hear	88 = 0.000 + = (1/2)(Pr - (1/2)(P	3.058 + 0.00 /Pc) + (Mr33, GN (H1-1b) K1 1.000 1.000 Kitb 1.000 phi*Pnc Capacity 0.501 phi*Mn Capacity 3.259 9.149 phi*Un Capacity 34.179 20.809 AMS UMajor	K2 1.800 1.800 Cb 1.156 phi*Pnt Capacity 56.965 phi*Mn No LTB 3.259 Stress Ratio 8.800	81 1.000 1.000 Status Check	1.000 1.000	1.000
D/C Ration AXIAL FORCE of Factor Major Beneficial Major Major Major Minor Minor Minor Minor SHEAR CHECK	o: 3.05 & BIAXIAL nding nding ment ment hear hear	88 = 0.000 + = (1/2)(Pr - (1/2)(P	3.058 + 0.00 /Pc) + (Mr33, GN (H1-1b) K1 1.000 1.000 Kltb 1.000 phi*Pnc Capacity 0.501 phi*Mn Capacity 3.259 0.149 phi*Un Capacity 34.179 20.809	K2 1.800 1.800 Cb 1.156 phi*Pnt Capacity 56.965 phi*Mn No LTB 3.259 Stress Ratio 8.800	81 1.000 1.000 Status Check	1.000 1.000	1.000

32.7.4 Verificación solicitaciones cercha existente

Units : KN, m, C						
Frame : 2	X Mid: 0.865		2D+1.6G+0.8W	Design Typ	e: Brace	
Length: 3.368	Y Mid: 0.000			9 Frame Type	: Special	Moment Fra
Loc : 0.809	Z Mid: 0.130	Class: Nor	n-Compact	Princpl Ro	t: 0.000	degrees
Provision: LRFD	Analysis: Direc	t Analysis				
D/C Limit=1.000	2nd Order: Gene	ral 2nd Order	r Redu	ction: Tau-b	Fixed	
AlphaPr/Py=0.505	AlphaPr/Pe=1.09	00 Tau_b=1.00	99 EA f	actor=0.800	EI fact	or=0.800
PhiB=0.900	PhiC=0.900	PhiTY=0.9	00 Phil	F=0.750		
PhiS=0.900	PhiS-RI=1.000	PhiST=0.9	90			
A=6.272E-04	133=0.000	r33=0.016	S33=	4.280E-06	Au3=4.3	48E-04
J=0.000	122=0.000	r22=0.025		6.832E-06	Au2=2.8	
alpha=90.000	122 01000	. LL GIGES	J.L.	OTOGEE GO	LIO	
E=199947978.8	fy=227527.010	Ry=1.000	733-	7.707E-06		
RLLF=1.000	Fu=351632.652	ny 1.000		1.181E-05		
II.L.I - 1.000	1 4-05 1002 .032		222-	1.1012 05		
DESIGN MESSAGES						
	n overstressed					
STRESS CHECK FORC	ES & MOMENTS (Co	mbo 1 20+1 60	C+8 6H7			
Location	Pu Pu	Mu33	Mu22	Uu2	Vu3	Tu
0.809	-72.022	-3.856		13.714	0.000	0.000
	5.295 = 1.384 +	3.911 + 0.000				
	5.295 = 1.384 +))(Mr22/Mc22)	i	
D/C Ratio:	5.295 = 1.384 + = (Pr/Pc)	3.911 + 0.000 + (8/9)(Mr33,))(Mr22/Mc22)		
D/C Ratio:	5.295 = 1.384 + = (Pr/Pc)	3.911 + 0.000 + (8/9)(Mr33, GN (H1-1a) K1	/Mc33) + (8/9 K2	B1	B2	Cm
D/C Ratio: AXIAL FORCE & BIA	5.295 = 1.384 + = (Pr/Pc) XIAL MOMENT DESI L	3.911 + 0.000 + (8/9)(Mr33, GN (H1-1a)	/Mc33) + (8/9			Cm 1.898
D/C Ratio: AXIAL FORCE & BIA Factor	5.295 = 1.384 + = (Pr/Pc) XIAL MOMENT DESI L 0.206	3.911 + 0.000 + (8/9)(Mr33, GN (H1-1a) K1	/Mc33) + (8/9 K2	B1	B2	2.500
D/C Ratio: AXIAL FORCE & BIA Factor Major Bending	5.295 = 1.384 + = (Pr/Pc) XIAL MOMENT DESI L 0.206	3.911 + 0.000 + (8/9)(Mr33, GN (H1-1a) K1 1.000	/Mc33) + (8/9 K2 1.000	B1 1.000	B2 1.000	1.000
D/C Ratio: AXIAL FORCE & BIA Factor Major Bending	5.295 = 1.384 + = (Pr/Pc) XIAL MOMENT DESI L 0.206 1.000	3.911 + 0.00 + (8/9)(Mr33, GN (H1-1a) K1 1.000 1.000	/Mc33) + (8/9 K2 1.000	B1 1.000	B2 1.000	1.000
D/C Ratio: AXIAL FORCE & BIA Factor Major Bending Minor Bending	5.295 = 1.384 + = (Pr/Pc) XIAL MOMENT DESI L 0.296 1.000 Lltb	3.911 + 0.00 + (8/9)(Mr33, GN (H1-1a) K1 1.000 1.000	/Mc33) + (8/9 K2 1.000 1.000	B1 1.000	B2 1.000	1.000
D/C Ratio: AXIAL FORCE & BIA Factor Major Bending Minor Bending	5.295 = 1.384 + = (Pr/Pc) XIAL MOMENT DESI L 9.206 1.000 Lltb 1.000	3.911 + 0.00 + (8/9)(Mr33, GN (H1-1a) K1 1.000 1.000 Kltb 1.000	K2 1.989 1.989 2.166	B1 1.000	B2 1.000	1.000
D/C Ratio: AXIAL FORCE & BIA Factor Major Bending Minor Bending	5.295 = 1.384 + = (Pr/Pc) XIAL MOMENT DESI L 8.206 1.888 Lltb 1.808	3.911 + 0.00 + (8/9)(Mr33, GN (H1-1a) K1 1.000 K1tb 1.000 phi*Pnc	K2 1.000 1.000 Cb 2.166 phi*Pnt	B1 1.000	B2 1.000	1.000
D/C Ratio: AXIAL FORCE & BIA Factor Major Bending Minor Bending	5.295 = 1.384 + = (Pr/Pc) XIAL MOMENT DESI L 0.206 1.000 Lltb 1.000 Pu Force -72.022	3.911 + 0.00 + (8/9)(Mr33, GN (H1-1a) K1 1.000 1.000 Kltb 1.000 phi*Pnc Capacity 52.032	K2 1.000 1.000 Cb 2.166 phi*Pnt Capacity 128.434	B1 1.000	B2 1.000	1.000
D/C Ratio: AXIAL FORCE & BIA Factor Major Bending Minor Bending	5.295 = 1.384 + = (Pr/Pc) XIAL MOMENT DESI L 0.206 1.000 L1tb 1.000 Pu Force -72.022	3.911 + 0.00 + (8/9)(Mr33, GN (H1-1a) K1 1.000 1.000 Kltb 1.000 phi*Pnc Capacity 52.032 phi*Mn	K2 1.000 1.000 Cb 2.166 phi*Pnt Capacity 128.434 phi*Mn	B1 1.000	B2 1.000	1.000
D/C Ratio: AXIAL FORCE & BIA Factor Major Bending Minor Bending LTB Axial	5.295 = 1.384 + = (Pr/Pc) XIAL MOMENT DESI	3.911 + 0.00 + (8/9)(Mr33, GN (H1-1a) K1 1.000 1.000 Kltb 1.000 phi*Pnc Capacity 52.032 phi*Mn Capacity	/Mc33) + (8/9 K2 1.000 1.000 Cb 2.166 phi*Pnt Capacity 128.434 phi*Mn No LTB	B1 1.000	B2 1.000	1.000
D/C Ratio: AXIAL FORCE & BIA Factor Major Bending Minor Bending LTB Axial Major Momen	5.295 = 1.384 + = (Pr/Pc) XIAL MOMENT DESI	3.911 + 0.00 + (8/9)(Mr33, GN (H1-1a) K1 1.000 1.000 KItb 1.000 phi*Pnc Capacity 52.032 phi*Mn Capacity 0.876	K2 1.000 1.000 Cb 2.166 phi*Pnt Capacity 128.434 phi*Mn	B1 1.000	B2 1.000	1.000
D/C Ratio: AXIAL FORCE & BIA Factor Major Bending Minor Bending LTB Axial	5.295 = 1.384 + = (Pr/Pc) XIAL MOMENT DESI	3.911 + 0.00 + (8/9)(Mr33, GN (H1-1a) K1 1.000 1.000 Kltb 1.000 phi*Pnc Capacity 52.032 phi*Mn Capacity	/Mc33) + (8/9 K2 1.000 1.000 Cb 2.166 phi*Pnt Capacity 128.434 phi*Mn No LTB	B1 1.000	B2 1.000	1.000
D/C Ratio: AXIAL FORCE & BIA Factor Major Bending Minor Bending LTB Axial Major Moment Minor Moment	5.295 = 1.384 + = (Pr/Pc) XIAL MOMENT DESI	3.911 + 0.00 + (8/9)(Mr33, GN (H1-1a) K1 1.000 Kltb 1.000 phi*Pnc Capacity 52.032 phi*Mn Capacity 0.876 1.399	/Mc33) + (8/9 K2 1.000 1.000 Cb 2.166 phi*Pnt Capacity 128.434 phi*Mn No LTB	B1 1.888 1.889	82 1.999 1.999	1.000
D/C Ratio: AXIAL FORCE & BIA Factor Major Bending Minor Bending LTB Axial Major Moment Minor Moment	5.295 = 1.384 + = (Pr/Pc) XIAL MOMENT DESI	3.911 + 0.00 + (8/9)(Mr33, GN (H1-1a) K1 1.000 Kltb 1.000 phi*Pnc Capacity 52.032 phi*Mn Capacity 9.876 1.399 phi*Un	/Mc33) + (8/9 K2 1.000 1.000 Cb 2.166 phi*Pnt Capacity 128.434 phi*Mn No LTB 0.876	81 1.000 1.000	82 1.999 1.999	1.000
D/C Ratio: AXIAL FORCE & BIA Factor Major Bending Minor Bending LTB Axial Major Moment Minor Moment	5.295 = 1.384 + = (Pr/Pc) XIAL MOMENT DESI L 0.206 1.000 L1tb 1.000 Pu Force -72.022 Mu Moment t -3.856 t 0.000 Vu Force	3.911 + 0.00 + (8/9)(Mr33, GN (H1-1a) K1 1.000 Kltb 1.000 phi*Pnc Capacity 52.032 phi*Mn Capacity 0.876 1.399	/Mc33) + (8/9 K2 1.000 1.000 Cb 2.166 phi*Pnt Capacity 128.434 phi*Mn No LTB 0.876	B1 1.888 1.889	82 1.999 1.999	1.000
D/C Ratio: AXIAL FORCE & BIA Factor Major Bending Minor Bending LTB Axial Major Moment Minor Moment	5.295 = 1.384 + = (Pr/Pc) XIAL MOMENT DESI L 0.206 1.000 L1tb 1.000 Pu Force -72.022 Mu Moment t -3.856 t 0.000 Vu Force	3.911 + 0.00 + (8/9)(Mr33, GN (H1-1a) K1 1.000 Kltb 1.000 phi*Pnc Capacity 52.032 phi*Mn Capacity 9.876 1.399 phi*Un	/Mc33) + (8/9 K2 1.000 1.000 Cb 2.166 phi*Pnt Capacity 128.434 phi*Mn No LTB 0.876	81 1.000 1.000	82 1.999 1.999	1.000
AXIAL FORCE & BIA Factor Major Bending Minor Bending LTB Axial Major Momen Minor Momen	5.295 = 1.384 + = (Pr/Pc) XIAL MOMENT DESI L 0.206 1.000 L1tb 1.000 Pu Force -72.022 Mu Moment t -3.856 t 0.000 Vu Force	3.911 + 0.000 + (8/9)(Mr33, GN (H1-1a) K1 1.000 Kltb 1.000 phi*Pnc Capacity 52.032 phi*Mn Capacity 9.876 1.399 phi*Un Capacity	/Mc33) + (8/9 K2 1.000 1.000 Cb 2.166 phi*Pnt Capacity 128.434 phi*Mn No LTB 0.876 Stress Ratio	81 1.888 1.889	82 1.999 1.999	1.6



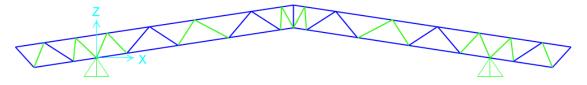
32.7.5 Índices de sobre-esfuerzos correa existente

32.7.6 Índices de sobre-esfuerzos cercha existente

Índice de sobre-esfuerzos cercha

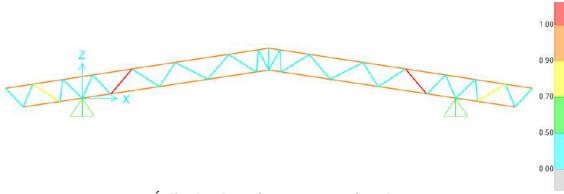
32.8 ALTERNATIVA DE REFORZAMIENTO PROPUESTO

32.8.1 Correa reforzada

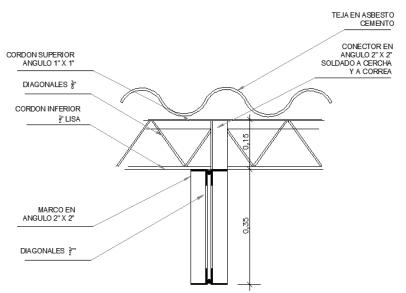

Estas correas presentan un índice de sobreesfuerzo muy elevado, debido a que las mismas tienen una gran separación entre sí, los elementos que las componen no cuentan con la sección transversal apropiada para la luz máxima y las cargas requeridas, principalmente el granizo y el viento. Por lo tanto, se recomienda desmontar estos elementos, para ser reemplazados según un nuevo diseño acorde a las exigencias del reglamento NSR-10.

32.8.2 Cercha reforzada

Elementos modificados en la configuración de la cercha (verde) se reemplazan a 2 L 1öX1/8ö, los demás perfiles barras (azules) no se reemplazan.


32.8.3 Verificación solicitaciones cercha reforzada

ATC0040 0F (TD00	and exect ecerton	OHEON 15				
	006 STEEL SECTION	CHECK (2000	lary for t	ombo and Statio	in)	
Units : KN, m,	, L					
Frame : 18	X Mid: 0.865	Combo: 1	2D+1.6G+6	. 8⊎ Design Tu	pe: Brace	
Length: 3.368	Y Mid: 1.000			Inf B2Frame Typ		Moment Frame
Loc : 0.809	Z Mid: 0.130		n-Compact		ot: 0.000 (
				100000000000000000000000000000000000000		
Provision: LRFD	Analysis: Direc	ct Analysis				
D/C Limit=1.000	2nd Order: Gene	eral 2nd Orde	r	Reduction: Tau-	b Fixed	
AlphaPr/Py=0.28	2 AlphaPr/Pe=0.5	24 Tau_b=1.0	300	EA factor=0.800	EI facto	or=0.800
PhiB=0.900	PhiC=0.900	PhiTY=0.9	000	PhiTF=0.750		
PhiS=0.900	PhiS-RI=1.000	PhiST=0.9	000			
A=0.001	133=0.000	r33=0.015		S33=5.332E-06	Av3=6.76	51E-04
J=0.000	I22=0.000	r22=0.027		S22=1.393E-05	Av2=3.4	35E-04
alpha=90.000						
E=199947978.8	fy=227527.010	Ry=1.000		z33=1.019E-05		
RLLF=1.000	Fu=351632.652			z22=2.491E-05		
SIBESS CHECK EU	RCES & MOMENTS (Co	ombo 1 20+1 6	C+0 8H)			
Location	Pu	Mu33	Mu22	Vu2	Vu3	Tu
0.809	-71.162	-0.336	0.000	-0.771	0.000	0.000
0.00		0.000	0.000		0.000	0.000
PMM DEMAND/CAPA	CITY RATIO (H1-	1a)				
D/C Ratio:	0.956 = 0.682 +	0.273 + 0.00	30			
	= (Pr/Pc)	+ (8/9)(Mr33	3/Mc33) +	(8/9) (Mr22/Mc22	2)	
	IAXIAL MOMENT DES	[1] 전화하는 [1] [1] [1] [1] [1] [1] [1] [1] [1] [1]				
Factor	L	K1	K2	B1	B2	Cm
Major Bendi		1.000	1.000	1.000	1.000	1.000
Minor Bendi	ng 1.000	1.000	1.000	1.000	1.000	1.000
	L1tb	Kltb	Ср			
LTB	1.000	1.000	2.088			
210	1.000	1.000	2.000			
	Pu	phi*Pnc	phi*Pr	nt		
	Force	Capacity	Capacit	t y		
Axial	-71.162	104.272	226.72	26		
	Mu	phi∗Mn	phi*t	1n		
	Moment	Capacity	No LT	ГВ		
Major Mom		1.092	1.09	92		
Minor Mom	ent 0.000	2.853				
CHEAD CHECK						
SHEAR CHECK	Vu	phi∗Vn	Stres	s Status		
	Force	Capacity	Rati			
Major She		41.841	0.01			
Minor She		83.074	0.0			
LITHOL 206	ar 9.000	63.0/4	0.00	UK UK		


32.8.4 Índices de sobre-esfuerzos cercha reforzada

Índice de sobre-esfuerzos correa reforzada

- 33. ANÁLISIS CUBIERTA BLOQUE 30
- 33.1 CONFIGURACION EXISTENTE

Configuración de correa y cercha existente

33.2 EVALUACIONES DE CARGA

Inclinación de la cubierta 7,56° = 13,3%
Separación máxima entre correas 1,67 m

CARGA MUERTA: Según tabla B.3.4.1-1 y B.3.4.1-4 del título B de la NSR-10

 Teja eternit
 0,00 KN/m²

 Teja Asbesto cemento
 0,20 KN/m²

 Cielo raso
 0,07 KN/m²

 Lámparas
 0,03 KN/m²

 Estructura metálica
 0,03 KN/m²

 Total Carga Muerta (D)
 0,33 KN/m²

CARGA VIVA: Según tabla B.4.2.1-2 del título B de la NSR-10

Inclinación de la cubierta de 7.56 °

Lr = 0,50 KN/m²

CARGA DE GRANIZO: Según B.4.8.3 del título B de la NSR-10, la carga de granizo, G:

G = 1,00 KN/m²

CARGA DE VIENTO:

W= 0,40 KN/m² (Presión)
(314)

33.3 CASOS DE CARGA

CASOS DE CARGA	DESCRIPCIÓN
PP	Peso Propio de la estructura
D	Carga muerta
Lr	Carga viva de cubierta
W	Viento
G	Granizo

33.4 COMBINACIONES DE DISEÑO

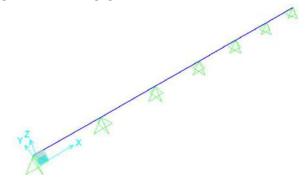
Según lo estipulado en B.2.4.2 del título B de la NSR-10:

Combinaciones de carga para ser utilizadas con el método de resistencia

COMBINACION	CARGA TOTAL		
	MAYORADA KN/m²		
1,4D	0,46		
1,2D+0,5Lr	0,65		
1.2D+0.5G	0,90		
1,2D+1,6Lr+0,8W	1,20		
1.2D+1.6G+0.8W	2,32		
1,2D+1,6W+0,5Lr	1,29		
1,2D+1,0E	0,40		
0,9D+1,6W	0,94		
0,9D+1,0E	0,30		

Gobierna la combinación 1,2D+1,6G+0,8W

MUERTA	GRANIZO	VIENTO		
1,2D	1,6G	0,8W	Wtotal	
0,40	1,60	0,32	2,32	KN/m²


Se calcula la resultante carga muerta, según la inclinación de cubic7,56º

Wu muerta	0,40	KN/m²
Wu resulta	2,32	KN/m ²

Con una separacion maxima entre correas de 1,67 m, se calculan las cargas totales SIN MAYORAR:

W D =	0,56	"KN/m	W Lr =	0,84	KN/m
W G =	1,67	KN/m	W w =	0,67	KN/m
W T =	3,87	KN/m			

33.5 RESULTADOS DEL ANÁLISIS

Modelo SAP 2000 Correa

Modelo SAP 2000 Cercha

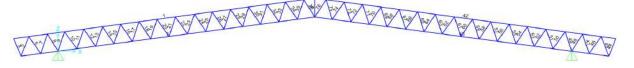
33.6 REACCIONES MAXIMAS EN LOS APOYOS

Reacciones máximas Correas- Cercha Dirección Z

(316)

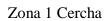
REACCIONES			
CORRE	CORREAS (KN)		
Lr	4,76		
D	3,17		
W	3,81		
G	9,52		

Reacciones máximas Cercha- Apoyos Dirección Z

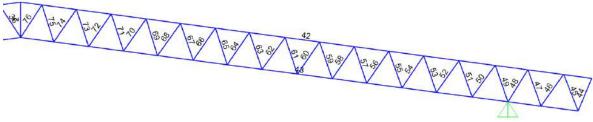

REACCIONES				
CERCHA (KN)				
Lr	19,04			
D 13,38				
W	15,23			
G	38,08			

33.7 VERIFICACIÓN ESTRUCTURA EXISTENTE

Nombres de los elementos que componen la correa (frames) en SAP2000:



Nombres de los elementos que componen la cercha (frames) en SAP2000:


Zona 1 Cercha

Zona 2 Cercha

Zona 2 Cercha

33.7.1 Valores de momentos máximos (KN-M) y cortantes máximos (KN) combinación 1.2D+1.6G+0.8W, en la correa:

TABLE: Element Forces - Frames						
Frame	ame OutputCase P V2					
Text	Text	KN	KN	KN-m		
37	1.2D+1.6G+0.8W	0,00	10,41	-10,40		
38	1.2D+1.6G+0.8W	0,00	-10,41	-10,40		
39	1.2D+1.6G+0.8W	0,00	-10,03	-8,51		
40	1.2D+1.6G+0.8W	0,00	-11,92	-10,40		
41	1.2D+1.6G+0.8W	0,00	11,92	-10,40		
77	1.2D+1.6G+0.8W	0,00	10,03	-8,51		

33.7.2 Valores de momentos máximos (KN-M) y cortantes máximos (KN) combinación 1.2D+1.6G+0.8W, en la cercha:

TABLE: Element Forces - Frames						
Frame	OutputCase	Р	V2	M3		
Text	Text	KN	KN	KN-m		
1	1.2D+1.6G+0.8W	-162,57	16,30	1,11		
2	1.2D+1.6G+0.8W	21,76	0,00	0,00		
3	1.2D+1.6G+0.8W	-233,68	-2,71	-0,71		
4	1.2D+1.6G+0.8W	-22,82	0,01	0,00		
5	1.2D+1.6G+0.8W	25,41	0,00	0,00		
6	1.2D+1.6G+0.8W	-24,01	0,00	0,00		
7	1.2D+1.6G+0.8W	20,65	0,00	0,00		

(318)

8	1.2D+1.6G+0.8W	-20,42	0,00	0,00
9	1.2D+1.6G+0.8W	-45,12	0,00	0,00
10	1.2D+1.6G+0.8W	43,37	0,00	0,00
11	1.2D+1.6G+0.8W	-45,00	0,00	0,00
12	1.2D+1.6G+0.8W	48,32	0,00	0,00
13	1.2D+1.6G+0.8W	-47,39	0,00	0,00
14	1.2D+1.6G+0.8W	30,57	0,00	0,00
15	1.2D+1.6G+0.8W	-31,26	0,00	0,00
16	1.2D+1.6G+0.8W	19,89	0,00	0,00
17	1.2D+1.6G+0.8W	-19,40	0,00	0,00
18	1.2D+1.6G+0.8W	21,55	0,00	0,00
19	1.2D+1.6G+0.8W	-21,22	0,00	0,00
20	1.2D+1.6G+0.8W	20,70	0,00	0,00
21	1.2D+1.6G+0.8W	-20,21	0,00	0,00
22	1.2D+1.6G+0.8W	22,07	0,00	0,00
23	1.2D+1.6G+0.8W	-21,54	0,00	0,00
24	1.2D+1.6G+0.8W	14,14	0,00	0,00
25	1.2D+1.6G+0.8W	-14,43	0,00	0,00
26	1.2D+1.6G+0.8W	-5,12	0,00	0,00
27	1.2D+1.6G+0.8W	4,95	0,00	0,00
28	1.2D+1.6G+0.8W	-3,46	0,00	0,00
29	1.2D+1.6G+0.8W	3,76	0,00	0,00
30	1.2D+1.6G+0.8W	-4,18	0,00	0,00
31	1.2D+1.6G+0.8W	3,96	0,00	0,00
32	1.2D+1.6G+0.8W	-3,96	0,00	0,00
33	1.2D+1.6G+0.8W	4,51	0,00	0,00
34	1.2D+1.6G+0.8W	-4,92	0,00	0,00
35	1.2D+1.6G+0.8W	3,27	0,00	0,00
36	1.2D+1.6G+0.8W	-19,67	0,00	0,00
42	1.2D+1.6G+0.8W	-162,57	16,30	1,11
43	1.2D+1.6G+0.8W	-233,68	-2,71	-0,71
44	1.2D+1.6G+0.8W	-22,82	0,01	0,00
45	1.2D+1.6G+0.8W	25,41	0,00	0,00
46	1.2D+1.6G+0.8W	-24,01	0,00	0,00
47	1.2D+1.6G+0.8W	20,65	0,00	0,00
48	1.2D+1.6G+0.8W	-20,42	0,00	0,00
49	1.2D+1.6G+0.8W	-45,12	0,00	0,00
50	1.2D+1.6G+0.8W	43,37	0,00	0,00

51	1.2D+1.6G+0.8W	-45,00	0,00	0,00
52	1.2D+1.6G+0.8W	48,32	0,00	0,00
53	1.2D+1.6G+0.8W	-47,39	0,00	0,00
54	1.2D+1.6G+0.8W	30,57	0,00	0,00
55	1.2D+1.6G+0.8W	-31,26	0,00	0,00
56	1.2D+1.6G+0.8W	19,89	0,00	0,00
57	1.2D+1.6G+0.8W	-19,40	0,00	0,00
58	1.2D+1.6G+0.8W	21,55	0,00	0,00
59	1.2D+1.6G+0.8W	-21,22	0,00	0,00
60	1.2D+1.6G+0.8W	20,70	0,00	0,00
61	1.2D+1.6G+0.8W	-20,21	0,00	0,00
62	1.2D+1.6G+0.8W	22,07	0,00	0,00
63	1.2D+1.6G+0.8W	-21,54	0,00	0,00
64	1.2D+1.6G+0.8W	14,14	0,00	0,00
65	1.2D+1.6G+0.8W	-14,43	0,00	0,00
66	1.2D+1.6G+0.8W	-5,12	0,00	0,00
67	1.2D+1.6G+0.8W	4,95	0,00	0,00
68	1.2D+1.6G+0.8W	-3,46	0,00	0,00
69	1.2D+1.6G+0.8W	3,76	0,00	0,00
70	1.2D+1.6G+0.8W	-4,18	0,00	0,00
71	1.2D+1.6G+0.8W	3,96	0,00	0,00
72	1.2D+1.6G+0.8W	-3,96	0,00	0,00
73	1.2D+1.6G+0.8W	4,51	0,00	0,00
74	1.2D+1.6G+0.8W	-4,92	0,00	0,00
75	1.2D+1.6G+0.8W	3,27	0,00	0,00
76	1.2D+1.6G+0.8W	-19,67	0,00	0,00

33.7.3 Verificación solicitaciones correa existente

AISC360-05/IBC2006	STEEL	SECTION CHECK	(Summary	for	Combo	and	Station)
Units : KN, m, C			300-500-000 0000 00 - 0				

Frame: 37	X Mid: 22,500	Combo: 1.2D+1.6G+0.8W	Design Type: Beam
Lanath. F 000	11 144 4 . 4 000	Change Of dud (O	Funna Tunas Casadal

Frame Type: Special Moment Frame Length: 5,000 Y Mid: 1,000 Shape: 2L 1x1/8 Z Mid: 0,000 Princpl Rot: 0,000 degrees Loc : 5,000 Class: Non-Compact

Provision: LRFD Analysis: Direct Analysis

D/C Limit=1,000 2nd Order: General 2nd Order Reduction: Tau-b Fixed

AlphaPr/Py=0,000 AlphaPr/Pe=0,000 Tau b=1,000 EA factor=0,800 EI factor=0,800

PhiB=0,900 PhiC=0,900 PhiTY=0,900 PhiTF=0,750

PhiS=0,900 PhiS-RI=1,000 PhiST=0,900

r33=0,068A=3,046E-04 I33=1,405E-06 S33=1,874E-05 Au3=1,473E-04 J=0,000 122=0,000 r22=0,008 S22=1,018E-06 AU2=3,046E-04

E=199947978,8 Ry=1,000 z33=2,056E-05 fy=227527,010 RLLF=1,000 Fu=351632,652 z22=1,835E-06

DESIGN MESSAGES

Error: Section overstressed Warning: k1/r > 200 (AISC E2)

STRESS CHECK FORCES & MOMENTS (Combo 1.2D+1.6G+0.8W)

Location Pu Mu33 Mu22 Vu₂ Vu3 Tu 5,000 0,000 -10,399 10,406 0,000 0,000 0,000

PMM DEMAND/CAPACITY RATIO (H1-1b)

D/C Ratio: 2,710 = 0,000 + 2,710 + 0,000

= (1/2)(Pr/Pc) + (Mr33/Mc33) + (Mr22/Mc22)

AXIAL FORCE & BIAXIAL MOMENT DESIGN (H1-1b)

Factor **K1** K2 **B1 B2** Cm Major Bending 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 Minor Bending 1,000 1,000 1,000

3,837

L1tb Kitb Cb LTB 2,989 1,000 1,000

Pu phi*Pnc phi*Pnt Force Capacity Capacity

62,382 Axial 0,000 1,134 phi*Mn phi*Mn Mu No LTB Moment Capacity

Major Moment -10,3993,837

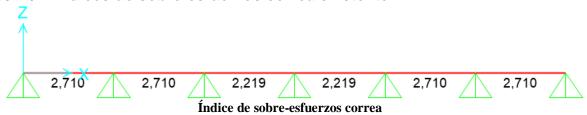
0,209 Minor Moment 0,000

SHEAR CHECK Vu phi*Vn Stress Status

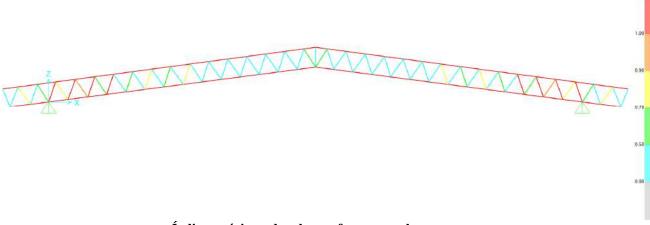
Force Capacity Ratio Check Major Shear 10,406 37,429 0,278 OK Minor Shear 0,000 18,100 0,000 OK

CONNECTION SHEAR FORCES FOR BEAMS

VMajor **VMajor** Left Right 10,406 Major (V2) 9,276


33.7.4 Verificación solicitaciones cercha existente

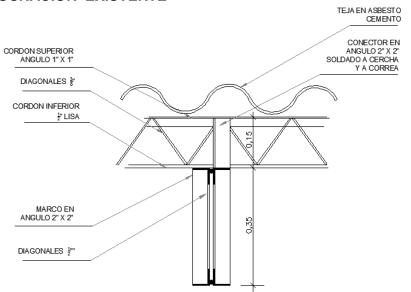
AISC360-05/IBC2006 STEEL SECTION CHECK (Summary for Combo and Station) Units : KN, m, C Frame: 43 X Mid: 6,553 Combo: 1.2D+1.6G+0.8W Design Type: Brace Length: 4,810 Y Mid: 0,000 Shape: 2L 2x1/8 Inf B37 Frame Type: Special Moment Frame Princpl Rot: 0,000 degrees : 4,205 Z Mid: 0,235 Loc Class: Non-Compact Provision: LRFD Analysis: Direct Analysis Reduction: Tau-b Fixed D/C Limit=1,000 2nd Order: General 2nd Order AlphaPr/Py=1,638 AlphaPr/Pe=7,212 Tau_b=-4,176 EA factor=0,800 EI factor=0,800 PhiTY=0,900 PhiB=0,900 PhiC=0,900 PhiTF=0,750 PhiS=0,900 PhiS-RI=1,000 PhiST=0,900 133=0,000 A=6,272E-04 r33=0,016 S33=4,280E-06 Av3=4,348E-04 J=0,000 122=0,000 r22=0,025 S22=6,832E-06 AU2=2,865E-84 alpha=90,000 E=199947978,8 fy=227527,010 Ry=1,000 z33=7,707E-06 RLLF=1,000 Fu=351632,652 z22=1,181E-05 DESIGN MESSAGES Error: Section overstressed STRESS CHECK FORCES & MOMENTS (Combo 1.2D+1.6G+0.8W) Location PII Mu33 Mu22 Uu2 Um3 Tu 4,205 -233,682 -0,7140,000 1,995 0,000 0,000 PMM DEMAND/CAPACITY RATIO (H1-1a) D/C Ratio: 9,861 = 9,137 + 0,724 + 0,000 = (Pr/Pc) + (8/9)(Mr33/Mc33) + (8/9)(Mr22/Mc22) AXIAL FORCE & BIAXIAL MOMENT DESIGN (H1-1a)Factor L K1 **K2 B1 B2** Cm Major Bending 0,066 1,000 1,000 1,000 1,000 1,000 Minor Bending 1,000 1,000 1,000 1,000 1,000 1,000 L1tb K1tb LTB 1,000 1,000 1,435 phi*Pnc phi*Pnt Force Capacity Capacity Axial -233,682 25,576 128,434 Mu phi*Mn phi*Mn Capacity Moment No LTB Major Moment -0,7140,876 0,876 0,000 Minor Moment 1,399 SHEAR CHECK Vu phi*Vn Stress Status Force Capacity Ratio Check 35,197 1,995 0.057 OK Major Shear Minor Shear 0,000 53,425 0,000 OK



33.7.6 Índices de sobre-esfuerzos cercha existente

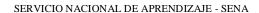
Índices máximos de sobre- esfuerzos cercha

33.8 ALTERNATIVA DE REFORZAMIENTO PROPUESTO


La cercha principal presenta un índice de sobreesfuerzo muy elevado, debido a que las correas tienen una gran separación entre sí, las cargas no se están transmitiendo en los nodos, los perfiles de los cordones inferior y superior no cuentan con la sección transversal apropiada para la luz máxima y las cargas requeridas, principalmente el granizo y el viento. Por lo tanto, se recomienda desmontar todos los elementos estructurales que componen esta cubierta (cercha y correas), para ser reemplazados según un nuevo diseño acorde a las exigencias del reglamento NSR-10.

34. ANÁLISIS CUBIERTA BLOQUE 31

34.1 CONFIGURACION EXISTENTE



Configuración de correa y cercha existente

34.2 EVALUACIONES DE CARGA

Inclinación de la cubierta Separación máxima entre correas

7,56°	=	13,3%
1.67	m	

CARGA MUERTA: Según tabla B.3.4.1-1 y B.3.4.1-4 del título B de la NSR-10

 Teja eternit
 0,00 KN/m²

 Teja Asbesto cemento
 0,20 KN/m²

 Cielo raso
 0,07 KN/m²

 Lámparas
 0,03 KN/m²

 Estructura metálica
 0,03 KN/m²

 Total Carga Muerta (D)
 0,33 KN/m²

CARGA VIVA: Según tabla B.4.2.1-2 del título B de la NSR-10

Inclinación de la cubierta de 7.56 º

Lr = 0,50 KN/m²

CARGA DE GRANIZO Según B.4.8.3 del titulo B de la NSR-10, la carga de granizo, G:

G = 1,00 KN/m²

CARGA DE VIENTO:

W= 0,40 KN/m² (Presión)

34.3 CASOS DE CARGA

CASOS DE CARGA	DESCRIPCIÓN
PP	Peso Propio de la estructura
D	Carga muerta
Lr	Carga viva de cubierta
W	Viento
G	Granizo

34.4 COMBINACIONES DE DISEÑO

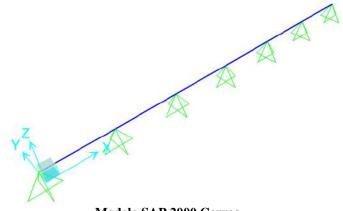
Según lo estipulado en B.2.4.2 del título B de la NSR-10:

Combinaciones de carga para ser utilizadas con el método de resistencia

COMBINACION	CARGA TOTAL
	MAYORADA KN/m²
1,4D	0,46
1,2D+0,5Lr	0,65
1.2D+0.5G	0,90
1,2D+1,6Lr+0,8W	1,20
1.2D+1.6G+0.8W	2,32
1,2D+1,6W+0,5Lr	1,29
1,2D+1,0E	0,40
0,9D+1,6W	0,94
0,9D+1,0E	0,30

Gobierna la combinación 1,2D+1,6G+0,8W

MUERTA	GRANIZO	VIENTO		
1,2D	1,6G	0,8W	Wtotal	
0.40	1.60	0.32	2.32	KN/m

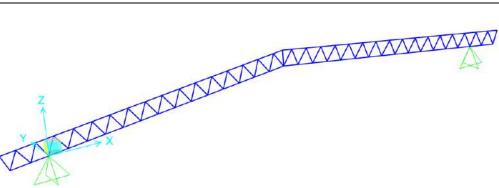

Se calcula la resultante carga muerta, según la inclinación de cul 7,56º

Wu muerta 0,40 KN/m² Wu resulta 2,32 KN/m²

Con una separacion maxima entre correas de 1,67 m, se calculan las cargas totales SIN MAYORAR:

W D =	0,56	"KN/m	W Lr =	0,84	KN/m
W G =	1,67	KN/m	W w =	0,67	KN/m
W T =	3.87	KN/m			

34.5 RESULTADOS DEL ANÁLISIS



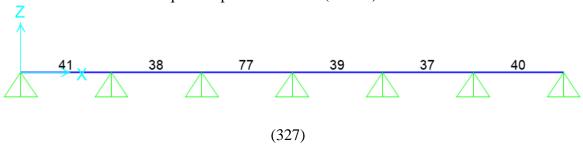
Modelo SAP 2000 Correa

(326)

Modelo SAP 2000 Cercha

34.6 REACCIONES MAXIMAS EN LOS APOYOS

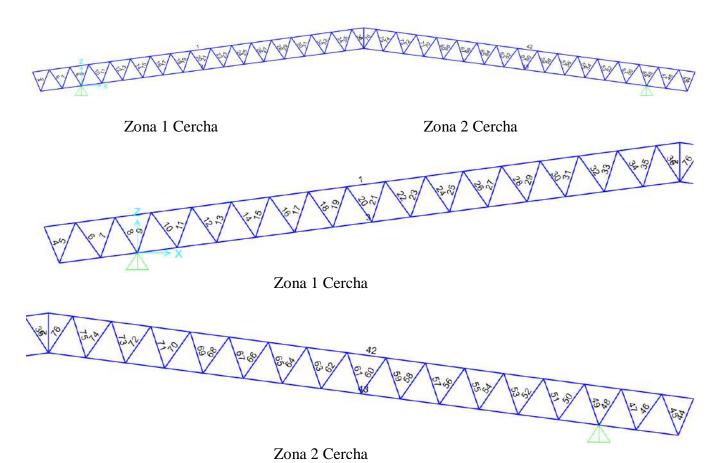
Reacciones máximas Correas- Cercha Dirección Z


REACCIONES				
CORREAS (KN)				
Lr	4,76			
D	3,17			
W	3,81			
G	9,52			

Reacciones máximas Cercha- Apoyos Dirección Z

REACCIONES				
CERCHA (KN)				
Lr	19,04			
D	13,38			
W	15,23			
G	38,08			

34.7 VERIFICACIÓN ESTRUCTURA EXISTENTE


Nombres de los elementos que componen la correa (frames) en SAP2000:

Nombres de los elementos que componen la cercha (frames) en SAP2000:

34.7.1 Valores de momentos máximos (KN-M) y cortantes máximos (KN) combinación 1.2D+1.6G+0.8W, en la correa:

TABLE: Element Forces - Frames						
Frame	OutputCase	Р	V2	M3		
Text	Text	KN	KN	KN-m		
37	1.2D+1.6G+0.8W	0,00	10,41	-10,40		
38	1.2D+1.6G+0.8W	0,00	-10,41	-10,40		
39	1.2D+1.6G+0.8W	0,00	-10,03	-8,51		
40	1.2D+1.6G+0.8W	0,00	-11,92	-10,40		
41	1.2D+1.6G+0.8W	0,00	11,92	-10,40		
77	1.2D+1.6G+0.8W	0,00	10,03	-8,51		

34.7.2 Valores de momentos máximos (KN-M) y cortantes máximos (KN) combinación 1.2D+1.6G+0.8W, en la cercha:

TABLE: Element Forces - Frames					
Frame	OutputCase	Р	V2	M3	
Text	Text	KN	KN	KN-m	
1	1.2D+1.6G+0.8W	-162,57	16,30	1,11	
2	1.2D+1.6G+0.8W	21,76	0,00	0,00	
3	1.2D+1.6G+0.8W	-233,68	-2,71	-0,71	
4	1.2D+1.6G+0.8W	-22,82	0,01	0,00	
5	1.2D+1.6G+0.8W	25,41	0,00	0,00	
6	1.2D+1.6G+0.8W	-24,01	0,00	0,00	
7	1.2D+1.6G+0.8W	20,65	0,00	0,00	
8	1.2D+1.6G+0.8W	-20,42	0,00	0,00	
9	1.2D+1.6G+0.8W	-45,12	0,00	0,00	
10	1.2D+1.6G+0.8W	43,37	0,00	0,00	
11	1.2D+1.6G+0.8W	-45,00	0,00	0,00	
12	1.2D+1.6G+0.8W	48,32	0,00	0,00	
13	1.2D+1.6G+0.8W	-47,39	0,00	0,00	
14	1.2D+1.6G+0.8W	30,57	0,00	0,00	
15	1.2D+1.6G+0.8W	-31,26	0,00	0,00	
16	1.2D+1.6G+0.8W	19,89	0,00	0,00	
17	1.2D+1.6G+0.8W	-19,40	0,00	0,00	
18	1.2D+1.6G+0.8W	21,55	0,00	0,00	
19	1.2D+1.6G+0.8W	-21,22	0,00	0,00	
20	1.2D+1.6G+0.8W	20,70	0,00	0,00	
21	1.2D+1.6G+0.8W	-20,21	0,00	0,00	
22	1.2D+1.6G+0.8W	22,07	0,00	0,00	
23	1.2D+1.6G+0.8W	-21,54	0,00	0,00	
24	1.2D+1.6G+0.8W	14,14	0,00	0,00	
25	1.2D+1.6G+0.8W	-14,43	0,00	0,00	
26	1.2D+1.6G+0.8W	-5,12	0,00	0,00	
27	1.2D+1.6G+0.8W	4,95	0,00	0,00	
28	1.2D+1.6G+0.8W	-3,46	0,00	0,00	
29	1.2D+1.6G+0.8W	3,76	0,00	0,00	
30	1.2D+1.6G+0.8W	-4,18	0,00	0,00	
31	1.2D+1.6G+0.8W	3,96	0,00	0,00	
32	1.2D+1.6G+0.8W	-3,96	0,00	0,00	

33	1.2D+1.6G+0.8W	4,51	0,00	0,00
34	1.2D+1.6G+0.8W	-4,92	0,00	0,00
35	1.2D+1.6G+0.8W	3,27	0,00	0,00
36	1.2D+1.6G+0.8W	-19,67	0,00	0,00
42	1.2D+1.6G+0.8W	-162,57	16,30	1,11
43	1.2D+1.6G+0.8W	-233,68	-2,71	-0,71
44	1.2D+1.6G+0.8W	-22,82	0,01	0,00
45	1.2D+1.6G+0.8W	25,41	0,00	0,00
46	1.2D+1.6G+0.8W	-24,01	0,00	0,00
47	1.2D+1.6G+0.8W	20,65	0,00	0,00
48	1.2D+1.6G+0.8W	-20,42	0,00	0,00
49	1.2D+1.6G+0.8W	-45,12	0,00	0,00
50	1.2D+1.6G+0.8W	43,37	0,00	0,00
51	1.2D+1.6G+0.8W	-45,00	0,00	0,00
52	1.2D+1.6G+0.8W	48,32	0,00	0,00
53	1.2D+1.6G+0.8W	-47,39	0,00	0,00
54	1.2D+1.6G+0.8W	30,57	0,00	0,00
55	1.2D+1.6G+0.8W	-31,26	0,00	0,00
56	1.2D+1.6G+0.8W	19,89	0,00	0,00
57	1.2D+1.6G+0.8W	-19,40	0,00	0,00
58	1.2D+1.6G+0.8W	21,55	0,00	0,00
59	1.2D+1.6G+0.8W	-21,22	0,00	0,00
60	1.2D+1.6G+0.8W	20,70	0,00	0,00
61	1.2D+1.6G+0.8W	-20,21	0,00	0,00
62	1.2D+1.6G+0.8W	22,07	0,00	0,00
63	1.2D+1.6G+0.8W	-21,54	0,00	0,00
64	1.2D+1.6G+0.8W	14,14	0,00	0,00
65	1.2D+1.6G+0.8W	-14,43	0,00	0,00
66	1.2D+1.6G+0.8W	-5,12	0,00	0,00
67	1.2D+1.6G+0.8W	4,95	0,00	0,00
68	1.2D+1.6G+0.8W	-3,46	0,00	0,00
69	1.2D+1.6G+0.8W	3,76	0,00	0,00
70	1.2D+1.6G+0.8W	-4,18	0,00	0,00
71	1.2D+1.6G+0.8W	3,96	0,00	0,00
72	1.2D+1.6G+0.8W	-3,96	0,00	0,00
73	1.2D+1.6G+0.8W	4,51	0,00	0,00
74	1.2D+1.6G+0.8W	-4,92	0,00	0,00
75	1.2D+1.6G+0.8W	3,27	0,00	0,00

(330)

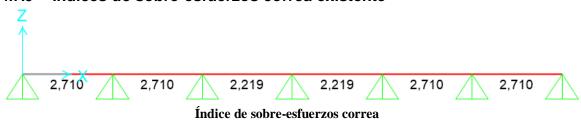
	76	1.2D+1.6G+0.8W	-19,67	0,00	0,00
--	----	----------------	--------	------	------

Verificación solicitaciones correa existente 34.7.3

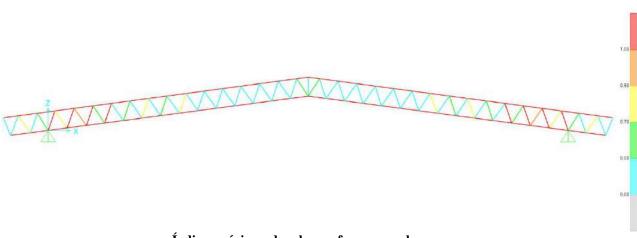

AISC360-05/IBC200 Units : KN, m, C		HECK (Summary fo	r Combo and Station)	
Frame : 37 Length: 5,000 Loc : 5,000	X Mid: 22,500 Y Mid: 1,000 Z Mid: 0,000	Combo: 1.2D+1.6 Shape: 2L 1x1/8 Class: Non-Comp	Frame Type		Moment Frame egrees
Provision: LRFD D/C Limit=1,000 AlphaPr/Py=0,000	Analysis: Direct 2nd Order: Gener AlphaPr/Pe=0,000	al 2nd Order	Reduction: Tau-b EA factor=0,800	Fixed EI Facto	r=0,800
PhiB=0,900 PhiS=0,900	PhiC=0,900 PhiS-RI=1,000	PhiTY=0,900 PhiST=0,900	PhiTF=0,750		
A=3,846E-84 J=0,888 E=199947978,8 RLLF=1,888	I33=1,405E-06 I22=0,000 fy=227527,010 Fu=351632,652	r33=0,068 r22=0,008 Ry=1,000	\$33=1,874E-05 \$22=1,018E-06 \$233=2,056E-05 \$222=1,835E-06	Av3=1,47 Av2=3,04	
	n overstressed > 200 (AISC E2)				
STRESS CHECK FORC Location 5,000	ES & MOMENTS (Com Pu 0,000 -	bo 1.2D+1.6G+0.8W Mu33 Mu2 10,399 0,00	2 Vu2	Vu3 0,000	Tu 9,000
PMM DEMAND/CAPACI D/C Ratio:	2,710 = 0,000 + 2		+ (Mr22/Mc22)		
AXIAL FORCE & BIA Factor Major Bending Minor Bending		N (H1-1b) K1 K 1,000 1,00 1,000 1,00	0 1,000	B2 1,000 1,000	Cm 1,000 1,000
LTB	Lltb 1,000	K1tb C 1,000 2,98			

	Pu	phi*Pnc	phi*Pnt	
	Force	Capacity	Capacity	
Axial	0,000	1,134	62,382	
	Mu	phi*Mn	phi∗Mn	
	Moment	Capacity	No LTB	
Major Mome	nt -10,399	3,837	3,837	
Minor Mome	nt 0,000	0,209	### # #########	
SHEAR CHECK				
	Vu	phi*Vn	Stress	Status
	Force	Capacity	Ratio	Check
Major Shea	r 10,406	37,429	0,278	ОК
Minor Shea	r 0,000	18,100	0,000	ок
CONNECTION SHE	AR FORCES FOR BE	EAMS		
	VMajor	VMajor		
	Left	Right		
Major (V2)	9,276	10,406		

34.7.4 Verificación solicitaciones cercha existente



AISC360-05/IBC2	006 STEEL SECTION	CHECK (Summ	nary for	Combo and Stati	on)	
Units : KN, m,	С					
Frame : 3	X Mid: 1,784	Combo: 1.	2D+1.6G+	0.8W Design T	upe: Brace	
Length: 4,810	Y Mid: 0,000			nf B37 Frame Ty		Moment Frame
Loc : 4,205	Z Mid: 0,235	Class: No			Rot: 0,000	
Provision: LRFD	Analysis: Dire			70 TO THE TOTAL TOTAL	N 1000	
D/C Limit=1,000	2nd Order: Gen			Reduction: Tau		
AlphaPr/Py=1,638	8 AlphaPr/Pe=7,2	12 Tau_b=-4,	,176	EA factor=0,80	00 EI fact	or=0,800
PhiB=0,900	PhiC=0,900	PhiTY=0,9	00	PhiTF=0,750		
PhiS=0,900	PhiS-RI=1,000	PhiST=0,9	900			
A=6,272E-04	133=0,000	r33=0,016	5	S33=4,280E-06	Av3=4,3	48E-04
J=0,000	122=0,000	r22=0,025		S22=6,832E-06	Av2=2,8	
alpha=90,000				i i		
E=199947978,8	fy=227527,010	Ry=1,000		z33=7,707E-06		
RLLF=1,000	Fu=351632,652			z22=1,181E-05		
DEC. 101 NECC. 101						
DESIGN MESSAGES Error: Secti	ion overstressed					
STREES OUTON FOR	DOES & HOMENTS /O	4 OD-4 4				
Location	RCES & MOMENTS (C	Mu33	Mu22	Vu2	Vu3	Tu
4,205	-233,682	-0,714	0,000	1,995	0,000	0,000
PMM DEMAND/CAPAG	CITY RATIO (H1-	12)				
D/C Ratio:	9,861 = 9,137 +	7/77	36			
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				(8/9)(Mr22/Mc2	2)	
AXIAL FORCE & B	AXIAL MOMENT DES	IGN (H1-1a)	r			
Factor	L	K1	K2	B1	B2	Cm
Major Bendi		1,000	1,000	1,000	1,000	1,000
Minor Bendi	ng 1,000	1,000	1,000	1,000	1,000	1,000
	Lltb	Kltb	Cb			
LTB	1,000	1,000	1,435			
	Pu	phi*Pnc	phi*P	nt		
	Force	Capacity	Capaci	ty		
Axial	-233,682	25,576	128,4	34		
	Mu	phi∗Mn	phi*	Mn		
	Moment	Capacity	No L			
Major Mome		0,876	0,8	76		
Minor Mome	nt 0,000	1,399				
SHEAR CHECK						
	Vu	phi∗Vn	Stre	ss Status	5	
	Force	Capacity	Rat	io Check		
Major Shea		35,197	0,0			
Minor Shea	r 0,000	53,425	0,0	00 OF	(

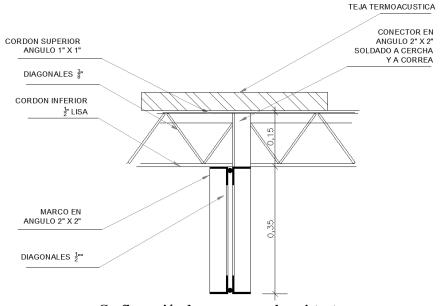


34.7.5 Índices de sobre-esfuerzos correa existente

34.7.6 Índices de sobre-esfuerzos cercha existente

Índices máximos de sobre- esfuerzos cercha

34.8 ALTERNATIVA DE REFORZAMIENTO PROPUESTO


La cercha principal presenta un índice de sobreesfuerzo muy elevado, debido a que las correas tienen una gran separación entre sí, las cargas no se están transmitiendo en los nodos, los perfiles de los cordones inferior y superior no cuentan con la sección transversal apropiada para la luz máxima y las cargas requeridas, principalmente el granizo y el viento. Por lo tanto, se recomienda desmontar todos los elementos estructurales que componen esta cubierta (cercha y correas), para ser reemplazados según un nuevo diseño acorde a las exigencias del reglamento NSR-10.

35. ANÁLISIS CUBIERTA BLOQUE 32

35.1 CONFIGURACION EXISTENTE

Configuración de correa y cercha existente

35.2 EVALUACIONES DE CARGA

Inclinación de la cubierta	7,56°	=	13,3%
Separación máxima entre correas	1,67	m	

CARGA MUERTA: Según tabla B.3.4.1-1 y B.3.4.1-4 del título B de la NSR-10

 Teja eternit
 0,00 KN/m²

 Teja termoacustica
 0,08 KN/m²

 Cielo raso
 0,07 KN/m²

 Lámparas
 0,03 KN/m²

 Estructura metálica
 0,03 KN/m²

 Total Carga Muerta (D)
 0,21 KN/m²

CARGA VIVA: Según tabla B.4.2.1-2 del título B de la NSR-10

Inclinación de la cubierta de 7,56 º

Lr = 0,50 KN/m²

CARGA DE GRANIZ(Según B.4.8.3 del titulo B de la NSR-10, la carga de granizo, G:

G = 1,00 KN/m²

CARGA DE VIENTO:

W= 0,40 KN/m² (Presión)

35.3 CASOS DE CARGA

CASOS DE CARGA	DESCRIPCIÓN	
PP	Peso Propio de la estructura	
D	Carga muerta	
Lr	Carga viva de cubierta	
W	Viento	
G	Granizo	

35.4 COMBINACIONES DE DISEÑO

Según lo estipulado en B.2.4.2 del título B de la NSR-10:

Combinaciones de carga para ser utilizadas con el método de resistencia

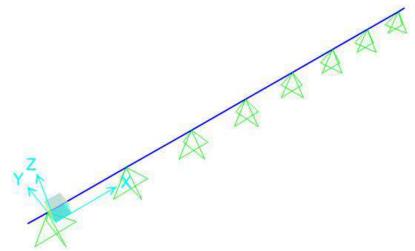
COMBINACION	CARGA TOTAL
	MAYORADA KN/m²
1,4D	0,29
1,2D+0,5Lr	0,50
1.2D+0.5G	0,75
1,2D+1,6Lr+0,8W	1,05
1.2D+1.6G+0.8W	2,17
1,2D+1,6W+0,5Lr	1,14
1,2D+1,0E	0,25
0,9D+1,6W	0,83
0,9D+1,0E	0,19

Gobierna la combinación 1,2D+1,6G+0,8W

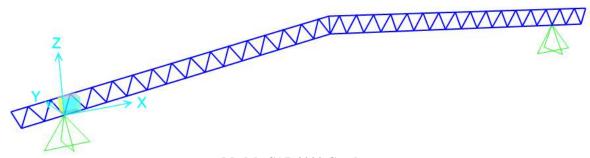
MUERTA	GRANIZO	VIENTO		
1,2D	1,6G	0,8W	Wtotal	
0.25	1.60	0.32	2.17	KN/m²

Se calcula la resultante carga muerta, según la inclinación de cul 7,56º

Wu muerta 0,25 KN/m² Wu resulta 2,17 KN/m²


Con una separacion maxima entre correas de 1,67 m, se calculan las cargas totales SIN MAYORAR:

W D =	0,35	"KN/m	W Lr =	0,84	KN/m
W G =	1,67	KN/m	W w =	0,67	KN/m
W T =	3,63	KN/m			


35.5 RESULTADOS DEL ANÁLISIS

Modelo SAP 2000 Correa

Modelo SAP 2000 Cercha

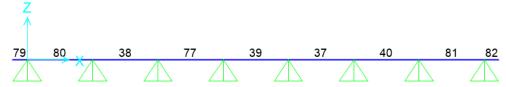
35.6 REACCIONES MAXIMAS EN LOS APOYOS

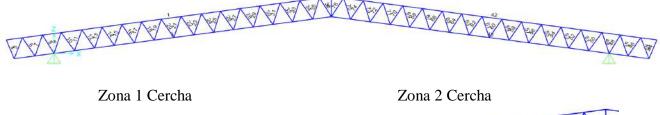
Reacciones máximas Correas- Cercha Dirección Z

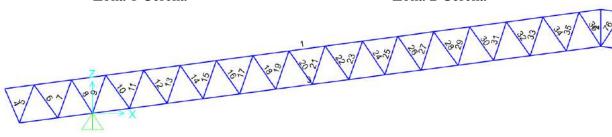
REACCIONES			
CORREAS (KN)			
Lr 4,57			
D 1,94			
W	3,66		
G	9,14		

Reacciones máximas Cercha- Apoyos Dirección Z

REACCIONES				
CERCHA (KN)				
Lr 18,28				
D	8,44			
W	14,62			
G	36,56			


(338)




35.7 VERIFICACIÓN ESTRUCTURA EXISTENTE

Nombres de los elementos que componen la correa (frames) en SAP2000:

Nombres de los elementos que componen la cercha (frames) en SAP2000:

Zona 1 Cercha

Zona 2 Cercha

35.7.1 Valores de momentos máximos (KN-M) y cortantes máximos (KN) combinación 1.2D+1.6G+0.8W, en la correa:

TABLE: Element Forces - Frames

(339)

Frame	OutputCase	Р	V2	M3
Text	Text	KN	KN	KN-m
37	1.2D+1.6G+0.8W	0,00	-9,30	-7 <i>,</i> 75
38	1.2D+1.6G+0.8W	0,00	-9,57	-9,08
39	1.2D+1.6G+0.8W	0,00	9,21	-7,75
40	1.2D+1.6G+0.8W	0,00	9,57	-9,08
77	1.2D+1.6G+0.8W	0,00	9,30	-7,75
79	1.2D+1.6G+0.8W	0,00	4,20	-2,39
80	1.2D+1.6G+0.8W		10,55	-9,08
81	1.2D+1.6G+0.8W	0,00	-10,55	-9,08
82	1.2D+1.6G+0.8W	0,00	-4,20	-2,39

35.7.2 Valores de momentos máximos (KN-M) y cortantes máximos (KN) combinación 1.2D+1.6G+0.8W, en la cercha:

	TABLE: Element Forces - Frames						
Frame	OutputCase	Р	V2	M3			
Text	Text	KN	KN	KN-m			
1	1.2D+1.6G+0.8W	-146,69	14,67	1,00			
2	1.2D+1.6G+0.8W	19,63	0,00	0,00			
3	1.2D+1.6G+0.8W	-210,78	-2,44	-0,64			
4	1.2D+1.6G+0.8W	-20,55	0,01	0,00			
5	1.2D+1.6G+0.8W	22,88	0,00	0,00			
6	1.2D+1.6G+0.8W	-21,63	0,00	0,00			
7	1.2D+1.6G+0.8W	18,60	0,00	0,00			
8	1.2D+1.6G+0.8W	-18,40	0,00	0,00			
9	1.2D+1.6G+0.8W	-40,71	0,00	0,00			
10	1.2D+1.6G+0.8W	39,13	0,00	0,00			
11	1.2D+1.6G+0.8W	-40,60	0,00	0,00			
12	1.2D+1.6G+0.8W	43,58	0,00	0,00			
13	1.2D+1.6G+0.8W	-42,73	0,00	0,00			
14	1.2D+1.6G+0.8W	27,58	0,00	0,00			
15	1.2D+1.6G+0.8W	-28,20	0,00	0,00			
16	1.2D+1.6G+0.8W	17,96	0,00	0,00			
17	1.2D+1.6G+0.8W	-17,51	0,00	0,00			
18	1.2D+1.6G+0.8W	19,44	0,00	0,00			
19	1.2D+1.6G+0.8W	-19,14	0,00	0,00			
20	1.2D+1.6G+0.8W	18,67	0,00	0,00			

(340)

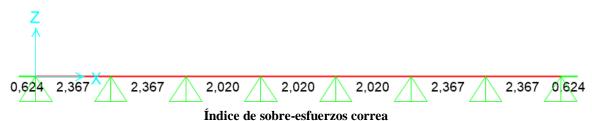
21	1.2D+1.6G+0.8W	-18,22	0,00	0,00
22	1.2D+1.6G+0.8W	19,89	0,00	0,00
23	1.2D+1.6G+0.8W	-19,41	0,00	0,00
24	1.2D+1.6G+0.8W	12,74	0,00	0,00
25	1.2D+1.6G+0.8W	-12,99	0,00	0,00
26	1.2D+1.6G+0.8W	-4,61	0,00	0,00
27	1.2D+1.6G+0.8W	4,46	0,00	0,00
28	1.2D+1.6G+0.8W	-3,12	0,00	0,00
29	1.2D+1.6G+0.8W	3,40	0,00	0,00
30	1.2D+1.6G+0.8W	-3,78	0,00	0,00
31	1.2D+1.6G+0.8W	3,59	0,00	0,00
32	1.2D+1.6G+0.8W	-3,60	0,00	0,00
33	1.2D+1.6G+0.8W	4,10	0,00	0,00
34	1.2D+1.6G+0.8W	-4,47	0,00	0,00
35	1.2D+1.6G+0.8W	2,99	0,00	0,00
36	1.2D+1.6G+0.8W	-17,75	0,00	0,00
42	1.2D+1.6G+0.8W	-146,69	14,67	1,00
43	1.2D+1.6G+0.8W	-210,78	-2,44	-0,64
44	1.2D+1.6G+0.8W	-20,55	0,01	0,00
45	1.2D+1.6G+0.8W	22,88	0,00	0,00
46	1.2D+1.6G+0.8W	-21,63	0,00	0,00
47	1.2D+1.6G+0.8W	18,60	0,00	0,00
48	1.2D+1.6G+0.8W	-18,40	0,00	0,00
49	1.2D+1.6G+0.8W	-40,71	0,00	0,00
50	1.2D+1.6G+0.8W	39,13	0,00	0,00
51	1.2D+1.6G+0.8W	-40,60	0,00	0,00
52	1.2D+1.6G+0.8W	43,58	0,00	0,00
53	1.2D+1.6G+0.8W	-42,73	0,00	0,00
54	1.2D+1.6G+0.8W	27,58	0,00	0,00
55	1.2D+1.6G+0.8W	-28,20	0,00	0,00
56	1.2D+1.6G+0.8W	17,96	0,00	0,00
57	1.2D+1.6G+0.8W	-17,51	0,00	0,00
58	1.2D+1.6G+0.8W	19,44	0,00	0,00
59	1.2D+1.6G+0.8W	-19,14	0,00	0,00
60	1.2D+1.6G+0.8W	18,67	0,00	0,00
61	1.2D+1.6G+0.8W	-18,22	0,00	0,00
62	1.2D+1.6G+0.8W	19,89	0,00	0,00
63	1.2D+1.6G+0.8W	-19,41	0,00	0,00

(341)

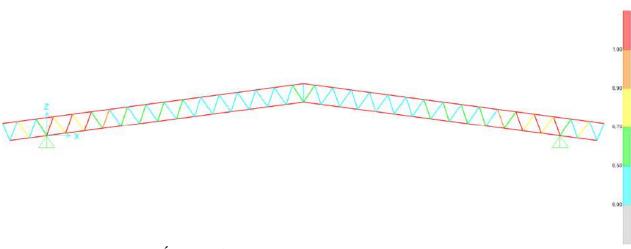
64	1.2D+1.6G+0.8W	12,74	0,00	0,00
65	1.2D+1.6G+0.8W	-12,99	0,00	0,00
66	1.2D+1.6G+0.8W	-4,61	0,00	0,00
67	1.2D+1.6G+0.8W	4,46	0,00	0,00
68	1.2D+1.6G+0.8W	-3,12	0,00	0,00
69	1.2D+1.6G+0.8W	3,40	0,00	0,00
70	1.2D+1.6G+0.8W	-3,78	0,00	0,00
71	1.2D+1.6G+0.8W	3,59	0,00	0,00
72	1.2D+1.6G+0.8W	-3,60	0,00	0,00
73	1.2D+1.6G+0.8W	4,10	0,00	0,00
74	1.2D+1.6G+0.8W	-4,47	0,00	0,00
75	1.2D+1.6G+0.8W	2,99	0,00	0,00
76	1.2D+1.6G+0.8W	-17,75	0,00	0,00

35.7.3 Verificación solicitaciones correa existente

		STEEL SECTION	CHECK (Summa	ary for Co	ombo and Statio	n)	
Units : Kh	1, m, C						
Frame : 40		K Mid: 27,500	Combo: 1.	2D+1.6G+0.	.8W Design Ty	pe: Beam	
Length: 5,6		Y Mid: 1,000	Shape: 2L				Moment Frame
Loc : 5,6		Z Mid: 0,000	Class: No			ot: 0,000	
, .		0,000	010331 1101	oonpace	TT ZHOPZ H	0. 0,000	ucgi ces
Provision:	LRFD I	Analysis: Direc	t Analysis				
D/C Limit=1	1,000	2nd Order: Gene	ral 2nd Order	r R	eduction: Tau-	b Fixed	
AlphaPr/Py=		AlphaPr/Pe=0,00	00 Tau_b=1,0	00 E	A factor=0,800	EI fact	or=0,800
PhiB=0,900		PhiC=0,900	PhiTY=0,9		hiTF=0,750		
PhiS=0,900		Phis-RI=1,000	PhiST=0,9	00			
A-0 014F 01		100-4 LOFF 04			00-4 07LF 0F	00_4 b	705 01
A=3,046E-04		133=1,405E-06	r33=0,068		33=1,874E-05	Au3=1,4	
J=0,000		122=0,000	r22=0,008		322=1,018E-06	Au2=3,8	46E-84
E=199947978		Fy=227527,010	Ry=1,000		33=2,056E-05		
RLLF=1,000	,	Fu=351632,652		Z	22=1,835E-06		
DESIGN MESS							
Error:	Section	overstressed					
Warning	j: kl/r :	> 200 (AISC E2)					
STRESS CHEC	K EUBCE	S & MOMENTS (Co	mbo 1 20+1 6	C+0 8H)			
Locatio		Pu	Mu33	Mu22	Vu2	Vu3	Tu
5,000	""	0,000	-9,083	0,000	9,566	0,000	0,000
	& BIAX	IAL MOMENT DESI					
Factor		L	K1	K2	B1	B2	Cm
Major B		1,000	1,000	1,000	1,000	1,000	1,000
Minor B	Bending	1,000	1,000	1,000	1,000	1,000	1,000
		Lltb	Kltb	СЬ			
LTB		1,000	1,000	2,938			
		Pu	phi*Pnc	phi*F	nt		
		Force	Capacity	Capaci			
Axial							
нхтат		0,000	1,134	62,3	382		
		Mu	phi∗Mn	phi*	€Mn		
		Moment	Capacity	No L			
Major	Moment	-9,083	3,837	3,8			
				3,0	337		
Minor	Moment	0,000	0,209				
SHEAR CHE	СК						
		Vu	phi*Vn	Stre	ess Statu	ıs	
		Force	Capacity	Rat	io Chec	k	
Major	Shear	9,566	37,429	0,2		K	
	Shear	0,000	18,100	0,0		K	
				15.50			
CONNECTIO	N SHEAR	FORCES FOR BI					
		VMajor	VMajor				
- 62		Left	Right				
Major	(U2)	8,855	9,566				
1.50							


35.7.4 Verificación solicitaciones cercha existente

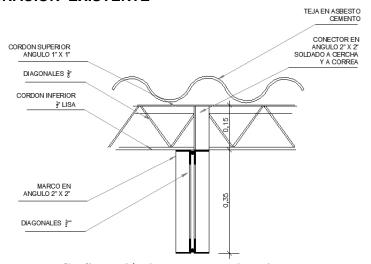
AISC360-05/IBC200	6 STEEL SECTION	CHECK (Summa	ary for	Combo and Stat	ion)	
Units : KN, m, C						
Frame : 43	X Mid: 6,553	Combo: 1.2	2D+1.6G+	0.8W Design	Type: Brace	
Length: 4,810	Y Mid: 0,000			nf B37 Frame T		Moment Fram
Loc : 4,205	Z Mid: 0,235	Class: No	n-Compac	t Princpl	Rot: 0,000	degrees
Provision: LRFD	Analysis: Direc					
D/C Limit=1,000	2nd Order: Gene			Reduction: Ta		
AlphaPr/Py=1,477	AlphaPr/Pe=6,50	5 Tau_b=-2,8	818	EA factor=0,8	00 EI facto	or=0,800
PhiB=0,900	PhiC=0,900	PhiTY=0,9	00	PhiTF=0,750		
PhiS=0,900	Phis-RI=1,000	PhiST=0,9	00			
A=6,272E-04	133=0,000	r33=0,016		S33=4,280E-06	Av3=4,3	48E-04
J=0,000	122=0,000	r22=0,025		S22=6,832E-06	Av2=2,8	
alpha=90,000						
E=199947978,8 RLLF=1,000	fy=227527,010 Fu=351632,652	Ry=1,000		z33=7,707E-06 z22=1,181E-05		
				The second secon		
DESIGN MESSAGES						
	on overstressed					
STRESS CHECK FORC	CES & MOMENTS (Co	mbo 1.2D+1.60	G+0.8W)			
Location	Pu	Mu33	Mu22	Vu2	Vu3	Tu
4,205	-210,777	-0,644	0,000	1,801	0,000	0,000
PMM DEMAND/CAPACI	TY RATIO (H1-1	a)				
D/C Ratio:	8,895 = 8,241 +	0,653 + 0,00		(8/9)(Mr22/Mc	22)	
AXIAL FORCE & BIA	XIAI MOMENT DEST	GN (H1-1a)				
Factor	L L	K1	K2	B1	B2	Cm
Major Bending		1,000	1,000	1,000	1,000	1,000
Minor Bending		1,000	1,000	1,000	1,000	1,000
	L1tb	Kltb	Cb			
LTB	1,000	1,000	1,440			
	Pu	phi*Pnc	phi*			
8	Force	Capacity	Capac			
Axial	-210,777	25,576	128,	434		
	Mu	phi∗Mn	phi			
8	Moment	Capacity	No			
Major Momen		0,876	0,	876		
Minor Momen	t 0,000	1,399				
SHEAR CHECK						
	Vu	phi∗Vn	Str	ess Stat	us	
	Force	Capacity	Ra	tio Che	ck	
Major Shear	1,801	35,197			ОК	
Minor Shear	0,000	53,425	0,	000	OK	



35.7.6 Índices de sobre-esfuerzos cercha existente

Índices máximos de sobre- esfuerzos cercha

35.8 ALTERNATIVA DE REFORZAMIENTO PROPUESTO


La cercha principal presenta un índice de sobreesfuerzo muy elevado, debido a que las correas tienen una gran separación entre sí, las cargas no se están transmitiendo en los nodos, los perfiles de los cordones inferior y superior no cuentan con la sección transversal apropiada para la luz máxima y las cargas requeridas, principalmente el granizo y el viento. Por lo tanto, se recomienda desmontar todos los elementos estructurales que componen esta cubierta (cercha y correas), para ser reemplazados según un nuevo diseño acorde a las exigencias del reglamento NSR-10.

36. ANÁLISIS CUBIERTA BLOQUE 33

36.1 CONFIGURACION EXISTENTE

Configuración de correa y cercha existente

36.2 EVALUACIONES DE CARGA

Inclinación de la cubierta Separación máxima entre correas

7,56°		=	13,3%
1,67	m		

SERVICIO NACIONAL DE APRENDIZAJE - SENA

CARGA MUERTA: Según tabla B.3.4.1-1 y B.3.4.1-4 del título B de la NSR-10

 Teja eternit
 0,00 KN/m²

 Teja Asbesto cemento
 0,20 KN/m²

 Cielo raso
 0,07 KN/m²

 Lámparas
 0,03 KN/m²

 Estructura metálica
 0,03 KN/m²

 Total Carga Muerta (D)
 0,33 KN/m²

CARGA VIVA: Según tabla B.4.2.1-2 del título B de la NSR-10

Inclinación de la cubierta de 7,56 º

Lr = 0,50 KN/m²

CARGA DE GRANIZO: Según B.4.8.3 del titulo B de la NSR-10, la carga de granizo, G:

G = 1,00 KN/m²

CARGA DE VIENTO:

W= 0,40 KN/m² (Presión)

36.3 CASOS DE CARGA

CASOS DE CARGA	DESCRIPCIÓN
PP	Peso Propio de la estructura
D	Carga muerta
Lr	Carga viva de cubierta
W	Viento
G	Granizo

36.4 COMBINACIONES DE DISEÑO

Según lo estipulado en B.2.4.2 del título B de la NSR-10:

Combinaciones de carga para ser utilizadas con el método de resistencia

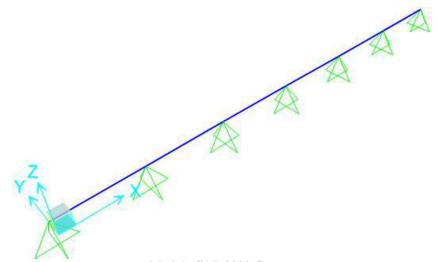
COMBINACION	CARGA TOTAL
	MAYORADA KN/m²
1,4D	0,46
1,2D+0,5Lr	0,65
1.2D+0.5G	0,90
1,2D+1,6Lr+0,8W	1,20
1.2D+1.6G+0.8W	2,32
1,2D+1,6W+0,5Lr	1,29
1,2D+1,0E	0,40
0,9D+1,6W	0,94
0,9D+1,0E	0,30

Gobierna la combinación 1,2D+1,6G+0,8W

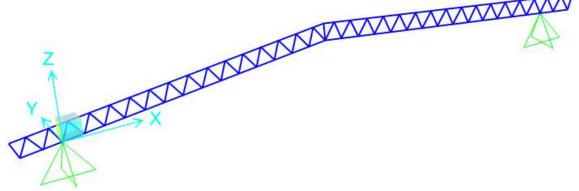
MUERTA	GRANIZO	VIENTO		
1,2D	1,6G	0,8W	Wtotal	
0,40	1,60	0,32	2,32	KN/m ²

Se calcula la resultante carga muerta, según la inclinación de cubir 7,56º

Wu muerta 0,40 KN/m² Wu resulta 2,32 KN/m²


Con una separacion maxima entre correas de 1,67 m, se calculan las cargas totales SIN MAYORAR:

W D =	0,56	KN/m	W Lr =	0,84	KN/m
W G =	1,67	KN/m	W w =	0,67	KN/m
W T =	3.87	KN/m			


36.5 RESULTADOS DEL ANÁLISIS

Modelo SAP 2000 Correa

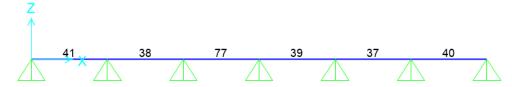
Modelo SAP 2000 Cercha

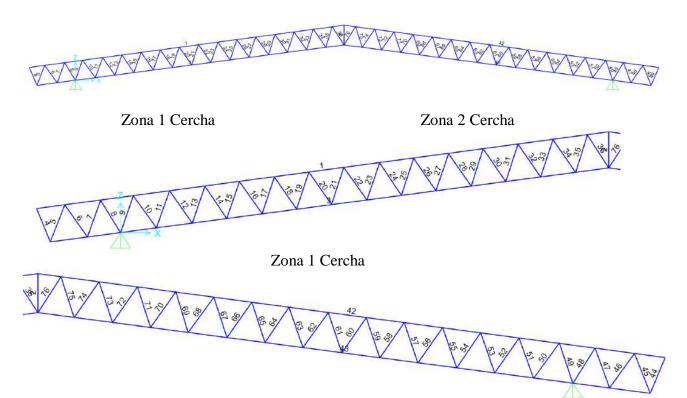
36.6 REACCIONES MAXIMAS EN LOS APOYOS

Reacciones máximas Correas- Cercha Dirección Z

REACCIONES					
CORREAS (KN)					
Lr 4,76					
D 3,17					
W	3,81				
G	9,52				

Reacciones máximas Cercha- Apoyos Dirección Z




REACCIONES					
CEF	CERCHA (KN)				
Lr	19,04				
D 13,38					
W	15,23				
G	38,08				

36.7 VERIFICACIÓN ESTRUCTURA EXISTENTE

Nombres de los elementos que componen la correa (frames) en SAP2000:

Nombres de los elementos que componen la cercha (frames) en SAP2000:

Zona 2 Cercha

(350)

36.7.1 Valores de momentos máximos (KN-M) y cortantes máximos (KN) combinación 1.2D+1.6G+0.8W, en la correa:

TABLE: Element Forces - Frames						
Frame	OutputCase	Р	V2	M3		
Text	Text	KN	KN	KN-m		
37	1.2D+1.6G+0.8W	0,00	10,25	-10,24		
38	1.2D+1.6G+0.8W	0,00	-10,25	-10,24		
39	1.2D+1.6G+0.8W	0,00	-9,88	-8,38		
40	1.2D+1.6G+0.8W	0,00	-11,74	-10,24		
41	1.2D+1.6G+0.8W	0,00	11,74	-10,24		
77	1.2D+1.6G+0.8W	0,00	9,88	-8,38		

36.7.2 Valores de momentos máximos (KN-M) y cortantes máximos (KN) combinación 1.2D+1.6G+0.8W, en la cercha:

TABLE: Element Forces - Frames						
Frame	OutputCase	P	M3			
Text	Text	KN	KN	KN-m		
1	1.2D+1.6G+0.8W	-162,57	16,30	1,11		
2	1.2D+1.6G+0.8W	21,76	0,00	0,00		
3	1.2D+1.6G+0.8W	-233,68	-2,71	-0,71		
4	1.2D+1.6G+0.8W	-22,82	0,01	0,00		
5	1.2D+1.6G+0.8W	25,41	0,00	0,00		
6	1.2D+1.6G+0.8W	-24,01	0,00	0,00		
7	1.2D+1.6G+0.8W	20,65	0,00	0,00		
8	1.2D+1.6G+0.8W	-20,42	0,00	0,00		
9	1.2D+1.6G+0.8W	-45,12	0,00	0,00		
10	1.2D+1.6G+0.8W	43,37 0,00		0,00		
11	1.2D+1.6G+0.8W	-45,00 0,00		0,00		
12	1.2D+1.6G+0.8W	48,32 0,00		0,00		
13	1.2D+1.6G+0.8W	-47,39	0,00	0,00		
14	1.2D+1.6G+0.8W	30,57	0,00	0,00		
15	1.2D+1.6G+0.8W	-31,26	0,00	0,00		
16	1.2D+1.6G+0.8W	19,89	0,00	0,00		
17	1.2D+1.6G+0.8W	-19,40	0,00	0,00		
18	1.2D+1.6G+0.8W	21,55	0,00	0,00		

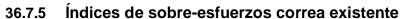
(351)

19	1.2D+1.6G+0.8W	-21,22	0,00	0,00
20	1.2D+1.6G+0.8W	20,70	0,00	0,00
21	1.2D+1.6G+0.8W	-20,21	0,00	0,00
22	1.2D+1.6G+0.8W	22,07	0,00	0,00
23	1.2D+1.6G+0.8W	-21,54	0,00	0,00
24	1.2D+1.6G+0.8W	14,14	0,00	0,00
25	1.2D+1.6G+0.8W	-14,43	0,00	0,00
26	1.2D+1.6G+0.8W	-5,12	0,00	0,00
27	1.2D+1.6G+0.8W	4,95	0,00	0,00
28	1.2D+1.6G+0.8W	-3,46	0,00	0,00
29	1.2D+1.6G+0.8W	3,76	0,00	0,00
30	1.2D+1.6G+0.8W	-4,18	0,00	0,00
31	1.2D+1.6G+0.8W	3,96	0,00	0,00
32	1.2D+1.6G+0.8W	-3,96	0,00	0,00
33	1.2D+1.6G+0.8W	4,51	0,00	0,00
34	1.2D+1.6G+0.8W	-4,92	0,00	0,00
35	1.2D+1.6G+0.8W	3,27	0,00	0,00
36	1.2D+1.6G+0.8W	-19,67	0,00	0,00
42	1.2D+1.6G+0.8W	-162,57	16,30	1,11
43	1.2D+1.6G+0.8W	-233,68	-2,71	-0,71
44	1.2D+1.6G+0.8W	-22,82	0,01	0,00
45	1.2D+1.6G+0.8W	25,41	0,00	0,00
46	1.2D+1.6G+0.8W	-24,01	0,00	0,00
47	1.2D+1.6G+0.8W	20,65	0,00	0,00
48	1.2D+1.6G+0.8W	-20,42	0,00	0,00
49	1.2D+1.6G+0.8W	-45,12	0,00	0,00
50	1.2D+1.6G+0.8W	43,37	0,00	0,00
51	1.2D+1.6G+0.8W	-45,00	0,00	0,00
52	1.2D+1.6G+0.8W	48,32	0,00	0,00
53	1.2D+1.6G+0.8W	-47,39	0,00	0,00
54	1.2D+1.6G+0.8W	30,57	0,00	0,00
55	1.2D+1.6G+0.8W	-31,26	0,00	0,00
56	1.2D+1.6G+0.8W	19,89	0,00	0,00
57	1.2D+1.6G+0.8W	-19,40	0,00	0,00
58	1.2D+1.6G+0.8W	21,55	0,00	0,00
59	1.2D+1.6G+0.8W	-21,22	0,00	0,00
60	1.2D+1.6G+0.8W	20,70	0,00	0,00
61	1.2D+1.6G+0.8W	-20,21	0,00	0,00

62	1.2D+1.6G+0.8W	22,07	0,00	0,00
63	1.2D+1.6G+0.8W	-21,54	0,00	0,00
64	1.2D+1.6G+0.8W	14,14	0,00	0,00
65	1.2D+1.6G+0.8W	-14,43	0,00	0,00
66	1.2D+1.6G+0.8W	-5,12	0,00	0,00
67	1.2D+1.6G+0.8W	4,95	0,00	0,00
68	1.2D+1.6G+0.8W	-3,46	0,00	0,00
69	1.2D+1.6G+0.8W	3,76	0,00	0,00
70	1.2D+1.6G+0.8W	-4,18	0,00	0,00
71	1.2D+1.6G+0.8W	3,96	0,00	0,00
72	1.2D+1.6G+0.8W	-3,96	0,00	0,00
73	1.2D+1.6G+0.8W	4,51	0,00	0,00
74	1.2D+1.6G+0.8W	-4,92	0,00	0,00
75	1.2D+1.6G+0.8W	3,27	0,00	0,00
76	1.2D+1.6G+0.8W	-19,67	0,00	0,00

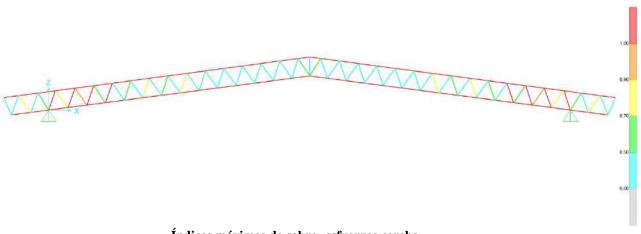
36.7.3 Verificación solicitaciones correa existente

AISC360-05/IBC200 Units : KN, m, C		N CHECK (Su	mmary for	Combo	and Station	n)	
Frame : 37	X Mid: 22,500	Combo:	1.2D+1.6G+	ค.ลม	Design Typ	ne: Beam	
Length: 5,000	Y Mid: 1,000		2L 1x1/8	0.0			Moment Frame
Loc : 5,000	Z Mid: 0,000		Non-Compac	t		ot: 0,000	
. 5,000	2 1114. 0,000	01033.	non compac		TTINCPI III	oc. 0,000	uegrees
Provision: LRFD	Analysis: Dire						
D/C Limit=1,000	2nd Order: Ger				ction: Tau-I		
AlphaPr/Py=0,000	AlphaPr/Pe=0,	000 Tau_b=1	,000	EA F	actor=0,800	EI fact	or=0,800
PhiB=0,900	PhiC=0,900	PhiTY=0	000	PhiT	F=0,750		
PhiS=0,900	PhiS-RI=1,000	PhiST=0			. 0,150		
11113-0,700	1113 11-1,000	111131-0	,,,,,,,				
A=3,046E-04	I33=1.405E-06	r33=0,0	168	233=	1.874E-05	Av3=1,4	73E-04
J=0,000	122=0,000	r22=0,0			1,018E-06	Au2=3,0	
E=199947978.8	fy=227527,010	Ry=1,00			2,056E-05		
RLLF=1,000	Fu=351632,652				1,835E-06		
	, , , , , , , , , , , , , , , , , , , ,				,,0052 00		
	on overstressed · > 200 (AISC E	2)					
STRESS CHECK FORC	ES & MOMENTS (Combo 1.2D+1	.6G+0.8W)				
Location	Pu	Mu33	Mu22		Vu2	Vu3	Tu
5,000	0,000	-18,241	0,000		10,247	0,000	0,000
AXIAL FORCE & BIF Factor Major Bending	L	SIGN (H1-1 K1 1,000	K2 1,000		B1 1,000	B2 1,000	Cm 1,000
Minor Bending		1,000	1,000		1,000	1,000	1,000
ninor bending	1,000	1,000	1,000		1,000	1,000	1,000
	Lltb	K1tb	Cb				
LTB	1,000	1,000	2,989				
	Pu	phi*Pnc	phi*l	Pnt			
	Force	Capacity					
Axial	0,000	1,134					
	Mu	phi∗Mn	phi	∗Mn			
	Moment	Capacity					
Major Momen		3,837		337			
Minor Momen		0,209					
TIZTIOT TIONET	0,000	0,207					
SHEAR CHECK							
	Vu	phi*Vn	Str	255	Status		
	Force	Capacity		tio	Check		
Major Shear		37,429		274	ОК		
Minor Shear		18,100		999	OK		
CONNECTION SHEA	R FORCES FOR B	EAMS					
	VMajor	VMajor					
	Left	Right					
Major (V2)	9,134	10,247					
	.,						



36.7.4 Verificación solicitaciones cercha existente

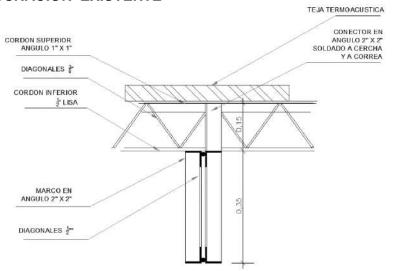
AISC360-05/IBC	2006 STEEL SECTION	H CHECK (Su	mmary for	Combo and Sta	tion)	
Units : KN, m	, C					
Frame : 43	X Mid: 6,553		1.2D+1.6G+		Type: Brace	W F
Length: 4,810	Y Mid: 0,000			nf B37 Frame		
Loc : 4,205	Z Mid: 0,235	Class:	Non-Compac	t Princp	1 Rot: 0,000	uegrees
Provision: LRF	Analysis: Dire	ert Analusis				
D/C Limit=1,00				Reduction: T	au-b Fixed	
AlphaPr/Py=1,6				EA factor=0,		or=0,800
	,					
PhiB=0,900	PhiC=0,900	PhiTY=0	,900	PhiTF=0,750		
PhiS=0,900	Phis-RI=1,000	PhiST=0	,900			
A=6,272E-04	133=0,000	r33=0,0		S33=4,280E-0		
J=0,000	122=0,000	r22=0,0	25	S22=6,832E-0	6 Av2=2,8	65E-04
alpha=90,000						
E=199947978,8	fy=227527,010	Ry=1,00	18	z33=7,707E-0		
RLLF=1,000	Fu=351632,652			z22=1,181E-0	5	
DESIGN MESSAGES						
	s tion overstressed					
Littor. Sec	cton over scressed					
STRESS CHECK FO	DRCES & MOMENTS (C	ombo 1.2D+1	.6G+0.8W)			
Location	Pu Pu	Mu33	Mu22	Vu2	Vu3	Tu
4,205	-233,682	-0,714	0,000	1,995	0,000	0,000
D/C Ratio:		+ (8/9)(Mr	33/Mc33) 4	(8/9)(Mr22/M	c22)	
	BIAXIAL MOMENT DES		83-55	D4	00	0
Factor	L	K1	K2	B1	B2	Cm
Major Bend:		1,000	1,000	1,000	1,000	1,000
Minor Bend	tily 1,666	1,000	1,000	1,000	1,000	1,000
	Lltb	K1tb	СР			
LTB	1,000	1,000	1,435			
	Pu Force	phi*Pno Capacito	c phi	*Pnt		
Axial	-233,682	25,570		,434		
HYTGI	200,002	25,57	0 120	,404		
	Mu	phi*M	n nh	i*Mn		
	Moment	Capacit	The second second	LTB		
Major Mom		0,87	,	.876		
Minor Mom		1,399		,070		
HILIOI HON	0,000	1,37				
SHEAR CHECK						
JHEHI OHLON	Vu	phi*V	n 9t	ress Sta	atus	
	Force	Capacit			neck	
Major She		35,19	,	.057	OK	
Minor She	53.53 (1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	53,42		,000	OK	
HILIOI SHE	u. 0,000	30,42		, 000	JK.	



36.7.6 Índices de sobre-esfuerzos cercha existente

Índices máximos de sobre- esfuerzos cercha

36.8 ALTERNATIVA DE REFORZAMIENTO PROPUESTO


La cercha principal presenta un índice de sobreesfuerzo muy elevado, debido a que las correas tienen una gran separación entre sí, las cargas no se están transmitiendo en los nodos, los perfiles de los cordones inferior y superior no cuentan con la sección transversal apropiada para la luz máxima y las cargas requeridas, principalmente el granizo y el viento. Por lo tanto, se recomienda desmontar todos los elementos estructurales que componen esta cubierta (cercha y correas), para ser reemplazados según un nuevo diseño acorde a las exigencias del reglamento NSR-10.

37. ANÁLISIS CUBIERTA BLOQUE 34

37.1 CONFIGURACION EXISTENTE

Configuración de correa y cercha existente

37.2 EVALUACIONES DE CARGA

Inclinación de la cubierta Separación máxima entre correas

7,56°		=	13,3%
1.67	m		

CARGA MUERTA: Según tabla B.3.4.1-1 y B.3.4.1-4 del título B de la NSR-10

 Teja eternit
 0,00 KN/m²

 Teja termoacustica
 0,08 KN/m²

 Cielo raso
 0,07 KN/m²

 Lámparas
 0,03 KN/m²

 Estructura metálica
 0,03 KN/m²

 Total Carga Muerta (D)
 0,21 KN/m²

CARGA VIVA: Según tabla B.4.2.1-2 del título B de la NSR-10

Inclinación de la cubierta de 7,56 °

Lr = 0,50 KN/m²

CARGA DE GRANIZ(Según B.4.8.3 del título B de la NSR-10, la carga de granizo, G:

G = 1,00 KN/m²

CARGA DE VIENTO:

W= 0,40 KN/m² (Presión)

37.3 CASOS DE CARGA

CASOS DE CARGA	DESCRIPCIÓN
PP	Peso Propio de la estructura
D	Carga muerta
Lr	Carga viva de cubierta
W	Viento
G	Granizo

37.4 COMBINACIONES DE DISEÑO

Según lo estipulado en B.2.4.2 del título B de la NSR-10:

Combinaciones de carga para ser utilizadas con el método de resistencia

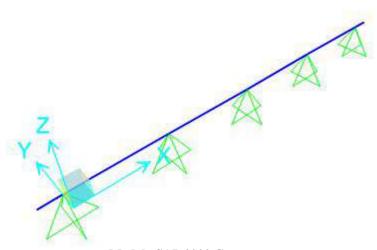
COMBINACION	CARGA TOTAL			
	MAYORADA KN/m²			
1,4D	0,29			
1,2D+0,5Lr	0,50			
1.2D+0.5G	0,75			
1,2D+1,6Lr+0,8W	1,05			
1.2D+1.6G+0.8W	2,17			
1,2D+1,6W+0,5Lr	1,14			
1,2D+1,0E	0,25			
0,9D+1,6W	0,83			
0,9D+1,0E	0,19			

Gobierna la combinación 1,2D+1,6G+0,8W

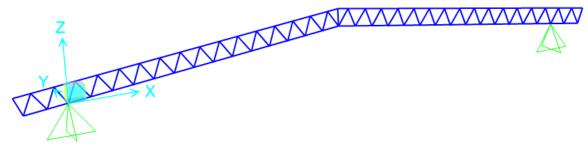
MUERTA	GRANIZO	VIENTO		
1,2D	1,6G	0,8W	Wtotal	
0.25	1.60	0.32	2.17	KN/m²

Se calcula la resultante carga muerta, según la inclinación de cul 7,56º

Wu muerta 0,25 KN/m² Wu resulta 2,17 KN/m²


Con una separacion maxima entre correas de 1,67 m, se calculan las cargas totales SIN MAYORAR:

W D =	0,35	"KN/m	W Lr =	0,84	KN/m
W G =	1,67	KN/m	W w =	0,67	KN/m
W T =	3 63	KN/m			


37.5 RESULTADOS DEL ANÁLISIS

Modelo SAP 2000 Correa

Modelo SAP 2000 Cercha

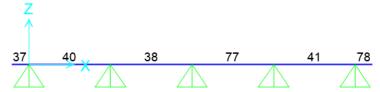
37.6 REACCIONES MAXIMAS EN LOS APOYOS

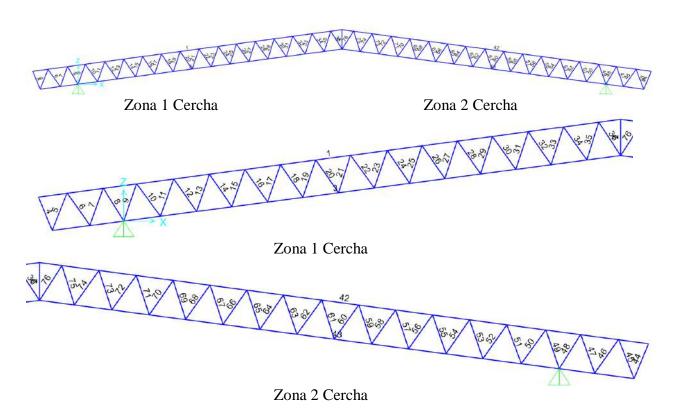
Reacciones máximas Correas- Cercha Dirección Z

REACCIONES				
CORREAS (KN)				
Lr	5,11			
D 2,17				
W	4,09			
G	10,22			

Reacciones máximas Cercha- Apoyos Dirección Z

REACCIONES					
CER	CERCHA (KN)				
Lr 20,44					
D 9,36					
W	16,35				
G	40,88				


(360)



37.7 VERIFICACIÓN ESTRUCTURA EXISTENTE

Nombres de los elementos que componen la correa (frames) en SAP2000:

Nombres de los elementos que componen la cercha (frames) en SAP2000:

37.7.1 Valores de momentos máximos (KN-M) y cortantes máximos (KN) combinación 1.2D+1.6G+0.8W, en la correa:

TABLE: Element Forces - Frames						
Frame OutputCase P V2 M						
Text	Text	KN	KN	KN-m		
37	1.2D+1.6G+0.8W	0,00	4,24	-2,44		

(361)

38	1.2D+1.6G+0.8W	0,00	-10,66	-11,24
40	1.2D+1.6G+0.8W	0,00	11,73	-11,24
41	1.2D+1.6G+0.8W	0,00	-11,73	-11,24
77	1.2D+1.6G+0.8W	0,00	10,66	-11,24
78	1.2D+1.6G+0.8W	0,00	-4,24	-2,44

37.7.2 Valores de momentos máximos (KN-M) y cortantes máximos (KN) combinación 1.2D+1.6G+0.8W, en la cercha:

	TABLE: Element Forces - Frames					
Frame	OutputCase	Р	V2	M3		
Text	Text	KN	KN	KN-m		
1	1.2D+1.6G+0.8W	-163,61	16,40	1,12		
2	1.2D+1.6G+0.8W	21,90	0,00	0,00		
3	1.2D+1.6G+0.8W	-235,18	-2,72	-0,72		
4	1.2D+1.6G+0.8W	-22,97	0,01	0,00		
5	1.2D+1.6G+0.8W	25,57	0,00	0,00		
6	1.2D+1.6G+0.8W	-24,17	0,00	0,00		
7	1.2D+1.6G+0.8W	20,78	0,00	0,00		
8	1.2D+1.6G+0.8W	-20,55	0,00	0,00		
9	1.2D+1.6G+0.8W	-45,41	0,00	0,00		
10	1.2D+1.6G+0.8W	43,65	0,00	0,00		
11	1.2D+1.6G+0.8W	-45,29	0,00	0,00		
12	1.2D+1.6G+0.8W	48,63	0,00	0,00		
13	1.2D+1.6G+0.8W	-47,69	0,00	0,00		
14	1.2D+1.6G+0.8W	30,76	0,00	0,00		
15	1.2D+1.6G+0.8W	-31,46	0,00	0,00		
16	1.2D+1.6G+0.8W	20,02	0,00	0,00		
17	1.2D+1.6G+0.8W	-19,52	0,00	0,00		
18	1.2D+1.6G+0.8W	21,68	0,00	0,00		
19	1.2D+1.6G+0.8W	-21,36	0,00	0,00		
20	1.2D+1.6G+0.8W	20,83	0,00	0,00		
21	1.2D+1.6G+0.8W	-20,34	0,00	0,00		
22	1.2D+1.6G+0.8W	22,21	0,00	0,00		
23	1.2D+1.6G+0.8W	-21,68	0,00	0,00		
24	1.2D+1.6G+0.8W	14,23	0,00	0,00		
25	1.2D+1.6G+0.8W	-14,52	0,00	0,00		
26	1.2D+1.6G+0.8W	-5,15	0,00	0,00		

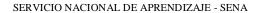
(362)

27	1.2D+1.6G+0.8W	4,98	0,00	0,00
28	1.2D+1.6G+0.8W	-3,48	0,00	0,00
29	1.2D+1.6G+0.8W	3,78	0,00	0,00
30	1.2D+1.6G+0.8W	-4,20	0,00	0,00
31	1.2D+1.6G+0.8W	3,98	0,00	0,00
32	1.2D+1.6G+0.8W	-3,98	0,00	0,00
33	1.2D+1.6G+0.8W	4,54	0,00	0,00
34	1.2D+1.6G+0.8W	-4,94	0,00	0,00
35	1.2D+1.6G+0.8W	3,29	0,00	0,00
36	1.2D+1.6G+0.8W	-19,79	0,00	0,00
42	1.2D+1.6G+0.8W	-163,61	16,40	1,12
43	1.2D+1.6G+0.8W	-235,18	-2,72	-0,72
44	1.2D+1.6G+0.8W	-22,97	0,01	0,00
45	1.2D+1.6G+0.8W	25,57	0,00	0,00
46	1.2D+1.6G+0.8W	-24,17	0,00	0,00
47	1.2D+1.6G+0.8W	20,78	0,00	0,00
48	1.2D+1.6G+0.8W	-20,55	0,00	0,00
49	1.2D+1.6G+0.8W	-45,41	0,00	0,00
50	1.2D+1.6G+0.8W	43,65	0,00	0,00
51	1.2D+1.6G+0.8W	-45,29	0,00	0,00
52	1.2D+1.6G+0.8W	48,63	0,00	0,00
53	1.2D+1.6G+0.8W	-47,69	0,00	0,00
54	1.2D+1.6G+0.8W	30,76	0,00	0,00
55	1.2D+1.6G+0.8W	-31,46	0,00	0,00
56	1.2D+1.6G+0.8W	20,02	0,00	0,00
57	1.2D+1.6G+0.8W	-19,52	0,00	0,00
58	1.2D+1.6G+0.8W	21,68	0,00	0,00
59	1.2D+1.6G+0.8W	-21,36	0,00	0,00
60	1.2D+1.6G+0.8W	20,83	0,00	0,00
61	1.2D+1.6G+0.8W	-20,34	0,00	0,00
62	1.2D+1.6G+0.8W	22,21	0,00	0,00
63	1.2D+1.6G+0.8W	-21,68	0,00	0,00
64	1.2D+1.6G+0.8W	14,23	0,00	0,00
65	1.2D+1.6G+0.8W	-14,52	0,00	0,00
66	1.2D+1.6G+0.8W	-5,15	0,00	0,00
67	1.2D+1.6G+0.8W	4,98	0,00	0,00
68	1.2D+1.6G+0.8W	-3,48	0,00	0,00
69	1.2D+1.6G+0.8W	3,78	0,00	0,00

(363)

70	1.2D+1.6G+0.8W	-4,20	0,00	0,00
71	1.2D+1.6G+0.8W	3,98	0,00	0,00
72	1.2D+1.6G+0.8W	-3,98	0,00	0,00
73	1.2D+1.6G+0.8W	4,54	0,00	0,00
74	1.2D+1.6G+0.8W	-4,94	0,00	0,00
75	1.2D+1.6G+0.8W	3,29	0,00	0,00
76	1.2D+1.6G+0.8W	-19,79	0,00	0,00

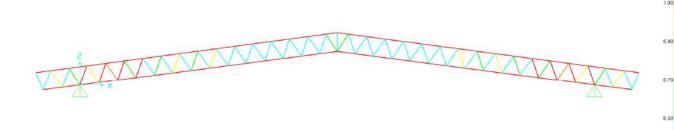
37.7.3 Verificación solicitaciones correa existente


AISC360-05/IBC2006 STEEL SECTION CHECK (Summary for Combo and Station) Units : KN, m, C Frame: 38 X Mid: 8,250 Combo: 1.2D+1.6G+0.8W Design Tupe: Beam Y Mid: 1,000 Length: 5,500 Shape: 2L 1x1/8 Frame Type: Special Moment Frame Loc : 0,000 Z Mid: 0,000 Class: Non-Compact Princpl Rot: 0,000 degrees Provision: LRFD Analysis: Direct Analysis D/C Limit=1,000 2nd Order: General 2nd Order Reduction: Tau-b Fixed AlphaPr/Py=0,000 AlphaPr/Pe=0,000 Tau_b=1,000 EA factor=0,800 EI factor=0,800 PhiB=0,900 PhiC=0,900 PhiTY=0,900 PhiTF=0,750 PhiS=0,900 PhiS-RI=1,000 PhiST=0,900 A=3,046E-04 I33=1,405E-06 r33=0,068 S33=1,874E-05 Av3=1,473E-04 S22=1,018E-06 J=0,000 122=0,000 r22=0,008 Av2=3,046E-04 E=199947978,8 fy=227527,010 Ry=1,000 z33=2,056E-05 z22=1,835E-06 RLLF=1,000 Fu=351632,652 DESIGN MESSAGES Error: Section overstressed Warning: k1/r > 200 (AISC E2) STRESS CHECK FORCES & MOMENTS (Combo 1.2D+1.6G+0.8W) Location Mu33 Vu2 Mu22 Uu3 Tu Pu 0,000 0,000 -11,238 0,000 -10,663 0,000 0,000 PMM DEMAND/CAPACITY RATIO (H1-1b) D/C Ratio: 2,929 = 0,000 + 2,929 + 0,000 = (1/2)(Pr/Pc) + (Mr33/Mc33) + (Mr22/Mc22) AXIAL FORCE & BIAXIAL MOMENT DESIGN (H1-1b)Factor K1 K2 **B1 B2** Cm L 1,000 Major Bending 1,000 1,000 1,000 1,000 1,000 Minor Bending 1,000 1,000 1,000 1,000 1,000 1,000 L1tb Kltb Cb LTB 1,000 1,000 2,888

	Pu	phi*Pnc	phi*Pnt	
	Force	Capacity	Capacity	
Axial	0,000	0,937	62,382	
	Mu	phi∗Mn	phi∗Mn	
	Moment	Capacity	No LTB	
Major Moment	-11,238	3,837	3,837	
Minor Moment	0,000	0,209		
SHEAR CHECK				
	Vu	phi∗Vn	Stress	Status
	Force	Capacity	Ratio	Check
Major Shear	10,663	37,429	0,285	ОК
Minor Shear	0,000	18,100	0,000	OK
CONNECTION SHEAR	FORCES FOR BE	AMS		
	VMajor	VMajor		
	Left	Right		
Major (V2)	10,663	9,600		

37.7.4 Verificación solicitaciones cercha existente

AISC36	50-05	/IBC20	06 STEE	L SECTION	N CHECK (S	Summary for	Combo	and Stati	on)	
Units	: K	(N, m,	C		10	A design distribution of the Commission of Secure				
Frame	. 43	,	X Mid	1: 6,553	Combo:	1.20+1.6	+0 OH	Decian T	upe: Brace	
Length				1: 0,000					pe: Special	Moment Fram
Loc	: 4,			1: 0,235		Non-Comp			Rot: 0,000	
LUC	. 4,	,205	2 1110	1. 0,205	GIGSS.	. Hon comp.		. i Incpi	noc. 0,000	uegi ees
Provis	inn:	LRED	Analı	isis: Dire	ect Analysi	5				
D/C Li					neral 2nd 0		Reduc	tion: Tau	ı-h Fixed	
		1=1,648			258 Tau b=			ctor=0,86		or=0,800
	,					1000000	1000			
PhiB=6	9,900	3	PhiC=	-0,900	PhiTY=	0,900	PhiTF	=0,750		
PhiS=6	900	3		RI=1,000	PhiST=	0,900				
A=6,27	72E-6	34	133=6	9,000	r33=0,	016	533=4	,280E-06	Av3=4,3	48E-04
J=0,00	90		122=6	3,000	r22=0,	025	S22=6	,832E-06	Av2=2,8	65E-04
alpha=	90,0	900								
E=1999	4797	78,8	fy=22	27527,010	Ry=1,8	300	z33=7	,707E-06		
RLLF=1	1,000	3	Fu=35	1632,652			z22=1	,181E-05		
DESIGN										
	ror:	Secti	on over	stressed						
Er										
STRESS			CES & N			1.6G+0.8W				-
STRESS	ocati			Pu	Mu33	Mu2	2	Vu2	Vu3	Tu
STRESS							2	Vu2 2,007	Vu3 0,000	Tu 0,000
STRESS Lo 4,	cati ,2 0 5	ion	-23	Pu 35,178	Mu33 -0,719	Mu2	2		100707	1
STRESS Lo 4,	ocati ,205 EMAND	ion O/CAPAC	-23	Pu 35,178 TIO (H1-	Mu33 -0,719 -1a)	Mu2: 0,00	2		100707	1
STRESS Lo 4,	ocati ,205 EMAND	ion	-23	Pu 35,178 TIO (H1- = 9,195 +	Mu33 -0,719 -1a) + 0,729 + 0	Mu2: 0,00	2	2,007	0,000	1
STRESS Lo 4,	ocati ,205 EMAND	ion O/CAPAC	-23	Pu 35,178 TIO (H1- = 9,195 +	Mu33 -0,719 -1a)	Mu2: 0,00	2	2,007	0,000	1
STRESS Lo 4, PMM DE D/	ocati ,205 EMAND /C Ra	ion /CAPAC itio:	-23 ITY RAT 9,924	Pu 35,178 TIO (H1- = 9,195 + = (Pr/Pc)	Mu33 -0,719 -1a) - 0,729 + 0) + (8/9)(M	Mu2: 0,00 3,000 1r33/Mc33)	2	2,007	0,000	1
STRESS Lo 4, PMM DE D/	cati ,205 EMAND /C Ra	ion)/CAPAC atio: CE & BI	-23 ITY RAT 9,924	Pu 85,178 FIO (H1- = 9,195 + = (Pr/Pc)	Mu33 -0,719 -1a) + 0,729 + 0) + (8/9)(M	Mu2: 0,00 3,000 1r33/Mc33)	• • (8/9)	2,007 (Mr22/Mc2	0,000	0,000
STRESS Lo 4, PMM DE D/ AXIAL Fa	Cati ,205 EMAND /C Ra FORC	ion)/CAPAC atio: CE & BI	-23 ITY RAT 9,924 AXIAL N	Pu 85,178 FIO (H1- = 9,195 + = (Pr/Pc) HOMENT DES	Mu33 -0,719 -1a) + 0,729 + 6) + (8/9)(M SIGN (H1- K1	Mu2: 6,66 3,666 4r33/Mc33) -1a)	• (8/9)	2,007 (Mr22/Mc2 B1	0,000 22)	0,000 Cm
STRESS Lo 4, PMM DE D/ AXIAL Fa Ma	cati ,205 EMAND /C Ra FORC actor	CE & BI	-23 ITY RAT 9,924 AXIAL M	Pu 35,178 TIO (H1- = 9,195 + = (Pr/Pc) 40MENT DES L 8,866	Mu33 -0,719 -1a) + 0,729 + 6) + (8/9)(M SIGN (H1- K1 1,000	Mu23 0,000 0,000 1r33/Mc33) -1a) K3	• (8/9)	2,007 (Mr22/Mc2 B1 1,000	0,000 22) B2 1,000	0,000 Cm 1,000
STRESS Lo 4, PMM DE D/ AXIAL Fa Ma	cati ,205 EMAND /C Ra FORC actor	ion)/CAPAC atio: CE & BI	-23 ITY RAT 9,924 AXIAL M	Pu 85,178 FIO (H1- = 9,195 + = (Pr/Pc) HOMENT DES	Mu33 -0,719 -1a) + 0,729 + 6) + (8/9)(M SIGN (H1- K1	Mu2: 6,66 3,666 4r33/Mc33) -1a)	• (8/9)	2,007 (Mr22/Mc2 B1	0,000 22)	0,000 Cm
STRESS Lo 4, PMM DE D/ AXIAL Fa Ma	cati ,205 EMAND /C Ra FORC actor	CE & BI	-23 ITY RAT 9,924 AXIAL M	Pu 35,178 TIO (H1- = 9,195 + = (Pr/Pc) 40MENT DES L 0,066 1,000	Mu33 -0,719 -1a) + 0,729 + 6) + (8/9)(M SIGN (H1- K1 1,000 1,000	Mu2: 0,00 0,00 0,000 1:33/Mc33) -1a) K: 1,00	+ (8/9)	2,007 (Mr22/Mc2 B1 1,000	0,000 22) B2 1,000	0,000 Cm 1,000
STRESS Lo 4, PMM DE D/ AXIAL Fa Ma	pcati ,205 EMAND /C Ra FORC actor ajor inor	CE & BI	-23 ITY RAT 9,924 AXIAL M	Pu 35,178 TIO (H1- = 9,195 + = (Pr/Pc) 10MENT DES L 8,866 1,888	Mu33 -0,719 -1a) + 0,729 + 0) + (8/9)(M SIGN (H1- K1 1,000 1,000	Mu2: 0,00 0,00 0,00 1,00 1,00	+ (8/9)	2,007 (Mr22/Mc2 B1 1,000	0,000 22) B2 1,000	0,000 Cm 1,000
STRESS Lo 4, PMM DE D/ AXIAL Fa Ma Mi	pcati ,205 EMAND /C Ra FORC actor ajor inor	CE & BI	-23 ITY RAT 9,924 AXIAL M	Pu 35,178 TIO (H1- = 9,195 + = (Pr/Pc) 40MENT DES L 0,066 1,000 Lltb 1,000	Mu33 -0,719 -1a) + 0,729 + 6) + (8/9)(M SIGN (H1- K1 1,000 1,000 Kltb 1,000	Mu2: 0,00 0,000 1r33/Mc33) -1a) K: 1,00 1,00	+ (8/9)	2,007 (Mr22/Mc2 B1 1,000	0,000 22) B2 1,000	0,000 Cm 1,000
STRESS Lo 4, PMM DE D/ AXIAL Fa Ma Mi	pcati ,205 EMAND /C Ra FORC actor ajor inor	CE & BI	-23 ITY RAT 9,924 AXIAL M	Pu 35,178 FIO (H1- = 9,195 + = (Pr/Pc) 40MENT DES L 0,066 1,000 Lltb 1,000 Pu	Mu33 -0,719 -1a) + 0,729 + 6) + (8/9)(M SIGN (H1- K1 1,000 1,000 Kltb 1,000 phi*Pr	Mu2: 0,000 0,000 1r33/Mc33) -1a) K: 1,00 1,00 Ci 1,43: nc phi	+ (8/9) - (8/9) - (8/9) - (8/9) - (8/9)	2,007 (Mr22/Mc2 B1 1,000	0,000 22) B2 1,000	0,000 Cm 1,000
STRESS Lo 4, PMM DE D/ AXIAL Fa Ma Mi	Cati,205 EMAND/C Ra FORC actor ajor inor	on //CAPAC atio: CE & BI Bendin Bendin	-23 ITY RAT 9,924 AXIAL M g	Pu 35,178 FIO (H1- = 9,195 + = (Pr/Pc) 40MENT DES L 0,066 1,000 Lltb 1,000 Pu Force	Mu33 -0,719 -1a) + 0,729 + 6) + (8/9)(M SIGN (H1- K1 1,000 1,000 K1tb 1,000 phi*Pr Capacit	Mu2: 0,000 0,000 1r33/Mc33) -1a) K: 1,00 1,00 C: 1,43: nc phi	+ (8/9) + (8/9)	2,007 (Mr22/Mc2 B1 1,000	0,000 22) B2 1,000	0,000 Cm 1,000
STRESS Lo 4, PMM DE D/ AXIAL Fa Ma Mi	pcati ,205 EMAND /C Ra FORC actor ajor inor	on //CAPAC atio: CE & BI Bendin Bendin	-23 ITY RAT 9,924 AXIAL M g	Pu 35,178 FIO (H1- = 9,195 + = (Pr/Pc) 40MENT DES L 0,066 1,000 Lltb 1,000 Pu	Mu33 -0,719 -1a) + 0,729 + 6) + (8/9)(M SIGN (H1- K1 1,000 1,000 Kltb 1,000 phi*Pr	Mu2: 0,000 0,000 1r33/Mc33) -1a) K: 1,00 1,00 C: 1,43: nc phi	+ (8/9) - (8/9) - (8/9) - (8/9) - (8/9)	2,007 (Mr22/Mc2 B1 1,000	0,000 22) B2 1,000	0,000 Cm 1,000
STRESS Lo 4, PMM DE D/ AXIAL Fa Ma Mi	Cati,205 EMAND/C Ra FORC actor ajor inor	on //CAPAC atio: CE & BI Bendin Bendin	-23 ITY RAT 9,924 AXIAL M g	Pu 35,178 (IO (H1- = 9,195 + = (Pr/Pc) 40MENT DES L 0,066 1,000 L1tb 1,000 Pu Force -235,178	Mu33 -6,719 -1a) + 6,729 + 6 9 + (8/9)(M SIGN (H1- K1 1,888 1,888 K1tb 1,888 phi*Pr Capacit 25,57	Mu2: 0,000 1:33/Mc33) -1a) K: 1,00 1,00 1,43: nc phi	* (8/9)	2,007 (Mr22/Mc2 B1 1,000	0,000 22) B2 1,000	0,000 Cm 1,000
STRESS Lo 4, PMM DE D/ AXIAL Fa Ma Mi	Cati,205 EMAND/C Ra FORC actor ajor inor	on //CAPAC atio: CE & BI Bendin Bendin	-23 ITY RAT 9,924 AXIAL M g	Pu 35,178 (IO (H1- = 9,195 + = (Pr/Pc) 40MENT DES L 8,866 1,889 L1tb 1,889 Pu Force -235,178	Mu33 -6,719 -1a) + 6,729 + 6 9 + (8/9)(M SIGN (H1- K1 1,888 1,888 1,888 KItb 1,888 phi*Pr Capacit 25,57	Mu2: 0,000 1:33/Mc33) -1a) 1,00 1,00 1,43: 1c phi ty Capa 76 128	* (8/9) * (8/9) **Pnt city ,434 i*Mn	2,007 (Mr22/Mc2 B1 1,000	0,000 22) B2 1,000	0,000 Cm 1,000
STRESS Lo 4, PMM DE D/ AXIAL Fa Ma Mi LT	cati,205 EMAND/C Ra FORC actor ajor for	on /CAPAC otio: EE & BI Bendin Bendin	-23 ITY RAT 9,924 AXIAL M	Pu 35,178 FIO (H1- = 9,195 + = (Pr/Pc) 40MENT DES L 8,866 1,889 Lltb 1,889 Pu Force -235,178 Mu Moment	Mu33 -6,719 -1a) + 0,729 + 6 0,729 + 6 (8/9)(M SIGN (H1- K1 1,000 1,000 K1tb 1,000 phi*Pr Capacit 25,57 phi*M Capacit	Mu2: 6,666 6,666 6,666 6,666 1,666 1,666 1,439 1,4	* (8/9) * (8/9) *Pnt city ,434 i*Mn	2,007 (Mr22/Mc2 B1 1,000	0,000 22) B2 1,000	0,000 Cm 1,000
STRESS Lo 4, PMM DE D/ AXIAL Fa Ma Mi LT	ocati,205 EMAND/C Ra FORCector ajor inor	on //CAPAC otio: EE & BI Bendin Bendin	-23 ITY RAT 9,924 AXIAL M	Pu 35,178 FIO (H1- = 9,195 + = (Pr/Pc) 40MENT DES L 8,866 1,889 L1tb 1,889 Pu Force -235,178 Mu Moment -8,719	Mu33 -6,719 -1a) + 0,729 + 6 + (8/9)(N SIGN (H1- K1 1,000 1,000 K1tb 1,000 Phi*Pr Capacit 25,57 phi*N Capacit 0,87	Mu2: 0,000 0,000 1r33/Mc33) -1a) K: 1,00 1,43: 1c phi ty Capa 76 128	* (8/9) * (8/9) **Pnt city ,434 i*Mn	2,007 (Mr22/Mc2 B1 1,000	0,000 22) B2 1,000	0,000 Cm 1,000
STRESS Lo 4, PMM DE D/ AXIAL Fa Ma Mi LT	ocati,205 EMAND/C Ra FORCector ajor inor	on /CAPAC otio: EE & BI Bendin Bendin	-23 ITY RAT 9,924 AXIAL M	Pu 35,178 FIO (H1- = 9,195 + = (Pr/Pc) 40MENT DES L 8,866 1,889 Lltb 1,889 Pu Force -235,178 Mu Moment	Mu33 -6,719 -1a) + 0,729 + 6 0,729 + 6 (8/9)(M SIGN (H1- K1 1,000 1,000 K1tb 1,000 phi*Pr Capacit 25,57 phi*M Capacit	Mu2: 0,000 0,000 1r33/Mc33) -1a) K: 1,00 1,43: 1c phi ty Capa 76 128	* (8/9) * (8/9) *Pnt city ,434 i*Mn	2,007 (Mr22/Mc2 B1 1,000	0,000 22) B2 1,000	0,000 Cm 1,000
STRESS Lo 4, PMM DE D/ AXIAL Fa Ma Mi LT	cati,205 EMAND/C Ra FORCector ajor inor [B	on //CAPAC otio: E & BI Bendin Bendin	-23 ITY RAT 9,924 AXIAL M	Pu 35,178 FIO (H1- = 9,195 + = (Pr/Pc) 40MENT DES L 8,866 1,889 L1tb 1,889 Pu Force -235,178 Mu Moment -8,719	Mu33 -6,719 -1a) + 0,729 + 6 + (8/9)(N SIGN (H1- K1 1,000 1,000 K1tb 1,000 Phi*Pr Capacit 25,57 phi*N Capacit 0,87	Mu2: 0,000 0,000 1r33/Mc33) -1a) K: 1,00 1,43: 1c phi ty Capa 76 128	* (8/9) * (8/9) *Pnt city ,434 i*Mn	2,007 (Mr22/Mc2 B1 1,000	0,000 22) B2 1,000	0,000 Cm 1,000
STRESS Lo 4, PMM DE D/ AXIAL Fa Ma Mi LT	cati,205 EMAND/C Ra FORCector ajor inor [B	on //CAPAC otio: E & BI Bendin Bendin	-23 ITY RAT 9,924 AXIAL M	Pu 35,178 FIO (H1- = 9,195 + = (Pr/Pc) MOMENT DES 0,866 1,888 L1tb 1,888 Pu Force -235,178 Mu Moment -0,719 0,888	Mu33 -0,719 -1a) + 0,729 + 6 0) + (8/9)(M SIGN (H1- K1 1,000 1,000 K1tb 1,000 phi*Pr Capacit 25,57 phi*M Capacit 0,87 1,39	Mu2: 0,000 1r33/Mc33) 1a) 1,00 1,00 1,43: 10 1,43: 10 10 10 10 10 10 10 10 10 10	* (8/9) * (8/9) *Pnt city 4,434 i*Mn LTB	2,007 (Mr22/Mc2 81 1,000 1,000	0,000 22) 1,000 1,000	0,000 Cm 1,000
STRESS Lo 4, PMM DE D/ AXIAL Fa Ma Mi LT	cati,205 EMAND/C Ra FORCector ajor inor [B	on //CAPAC otio: E & BI Bendin Bendin	-23 ITY RAT 9,924 AXIAL M	Pu 35,178 FIO (H1- = 9,195 + = (Pr/Pc) MOMENT DES L 0,066 1,000 L1tb 1,000 Pu Force -235,178 Mu Moment -0,719 0,000	Mu33 -0,719 -1a) + 0,729 + 6) + (8/9)(M SIGN (H1- K1 1,000 1,000 Kltb 1,000 phi*Pr Capacit 25,57 phi*M Capacit 9,87 1,39	Mu2: 0,000 0,000 1r33/Mc33) -1a) K: 1,00 1,00 1,43: 1,	* (8/9) * (8/9) * (8/9) * (8/9) * (8/9) * (8/9) * (8/9) * (8/9) * (8/9) * (8/9) * (8/9)	2,007 (Mr22/Mc2 81 1,000 1,000	0,000 22) 1,000 1,000	0,000 Cm 1,000
STRESS Lo 4, PMM DE D/ AXIAL Fa Mai LT A SHEAR	ocati,205 EMAND/C Ra FORCector ajor inor [B Hajor finor C B Hajor finor C B Hajor	on //CAPAC otio: EE & BI Bendin Bendin	-23 ITY RAT 9,924 AXIAL M g g	Pu 35,178 FIO (H1- = 9,195 + = (Pr/Pc) MOMENT DES L 0,066 1,000 Lltb 1,000 Pu Force -235,178 Mu Moment -0,719 0,000 Vu Force	Mu33 -0,719 -1a) + 0,729 + 6) + (8/9)(M SIGN (H1- K1 1,000 1,000 Kltb 1,000 phi*Pr Capacit 25,57 phi*M Capacit 0,87 1,39	Mu2: 0,000 1r33/Mc33) 1a) 1,000 1,000 1,439 1	* (8/9) * (8/9) * *Pnt city , 434 i * Mn LTB 1,876	2,007 (Mr22/Mc2 81 1,000 1,000	0,000 22) 1,000 1,000	0,000 Cm 1,000
STRESS Lo 4, PMM DE D/ AXIAL Fa Ma Mi LT A SHEAR	ocati ,205 EMAND /C Ra FORC actor ajor inor (B Major Minor R CHE	on //CAPAC otio: E & BI Bendin Bendin	-23 ITY RAT 9,924 AXIAL M g g	Pu 35,178 FIO (H1- = 9,195 + = (Pr/Pc) MOMENT DES L 0,066 1,000 L1tb 1,000 Pu Force -235,178 Mu Moment -0,719 0,000	Mu33 -0,719 -1a) + 0,729 + 6) + (8/9)(M SIGN (H1- K1 1,000 1,000 Kltb 1,000 phi*Pr Capacit 25,57 phi*M Capacit 9,87 1,39	Mu2: 0,000 1r33/Mc33) 1a) 1,000 1,000 1,439 1	* (8/9) * (8/9) * (8/9) * (8/9) * (8/9) * (8/9) * (8/9) * (8/9) * (8/9) * (8/9) * (8/9)	2,007 (Mr22/Mc2 81 1,000 1,000 Statu Chec	0,000 22) 1,000 1,000	0,000 Cm 1,000

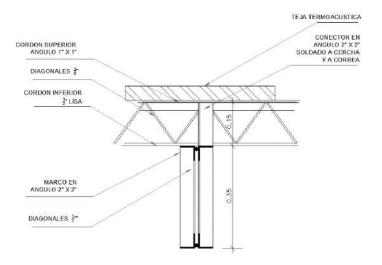


37.7.5 Índices de sobre-esfuerzos correa existente

37.7.6 Índices de sobre-esfuerzos cercha existente

Índices máximos de sobre- esfuerzos cercha

37.8 ALTERNATIVA DE REFORZAMIENTO PROPUESTO


La cercha principal presenta un índice de sobreesfuerzo muy elevado, debido a que las correas tienen una gran separación entre sí, las cargas no se están transmitiendo en los nodos, los perfiles de los cordones inferior y superior no cuentan con la sección transversal apropiada para la luz máxima y las cargas requeridas, principalmente el granizo y el viento. Por lo tanto, se recomienda desmontar todos los elementos estructurales que componen esta cubierta (cercha y correas), para ser reemplazados según un nuevo diseño acorde a las exigencias del reglamento NSR-10.

38. ANÁLISIS CUBIERTA BLOQUE 35

38.1 CONFIGURACION EXISTENTE

Configuración de correa y cercha existente

38.2 EVALUACIONES DE CARGA

Inclinación de la cubierta	7,56°
Separación máxima entre correas	1.67

7,56°	=	13,3%
1.67	m	

CARGA MUERTA: Según tabla B.3.4.1-1 y B.3.4.1-4 del título B de la NSR-10

 Teja eternit
 0,00 KN/m²

 Teja termoacustica
 0,08 KN/m²

 Cielo raso
 0,07 KN/m²

 Lámparas
 0,03 KN/m²

 Estructura metálica
 0,03 KN/m²

 Total Carga Muerta (D)
 0,21 KN/m²

CARGA VIVA: Según tabla B.4.2.1-2 del título B de la NSR-10

Inclinación de la cubierta de 7,56 º

Lr = 0,50 KN/m²

CARGA DE GRANIZ(Según B.4.8.3 del título B de la NSR-10, la carga de granizo, G:

G = 1,00 KN/m²

CARGA DE VIENTO:

W= 0,40 KN/m² (Presión)

38.3 CASOS DE CARGA

CASOS DE CARGA	DESCRIPCIÓN
PP	Peso Propio de la estructura
D	Carga muerta
Lr	Carga viva de cubierta
W	Viento
G	Granizo

38.4 COMBINACIONES DE DISEÑO

Según lo estipulado en B.2.4.2 del título B de la NSR-10:

Combinaciones de carga para ser utilizadas con el método de resistencia

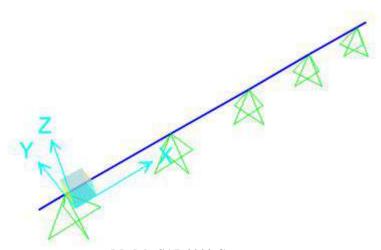
COMBINACION	CARGA TOTAL
	MAYORADA KN/m²
1,4D	0,29
1,2D+0,5Lr	0,50
1.2D+0.5G	0,75
1,2D+1,6Lr+0,8W	1,05
1.2D+1.6G+0.8W	2,17
1,2D+1,6W+0,5Lr	1,14
1,2D+1,0E	0,25
0,9D+1,6W	0,83
0,9D+1,0E	0,19

Gobierna la combinación 1,2D+1,6G+0,8W

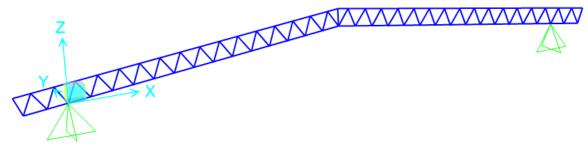
MUERTA	GRANIZO	VIENTO		
1,2D	1,6G	0,8W	Wtotal	
0.25	1 60	0.32	2 17	KN/m²

Se calcula la resultante carga muerta, según la inclinación de cul 7,56º

Wu muerta 0,25 KN/m² Wu resulta 2,17 KN/m²


Con una separacion maxima entre correas de 1,67 m, se calculan las cargas totales SIN MAYORAR:

W D =	0,35	"KN/m	W Lr =	0,84	KN/m
W G =	1,67	KN/m	W w =	0,67	KN/m
W T =	3.63	KN/m			


38.5 RESULTADOS DEL ANÁLISIS

Modelo SAP 2000 Correa

Modelo SAP 2000 Cercha

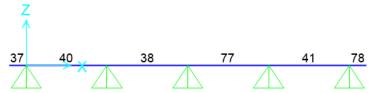
38.6 REACCIONES MAXIMAS EN LOS APOYOS

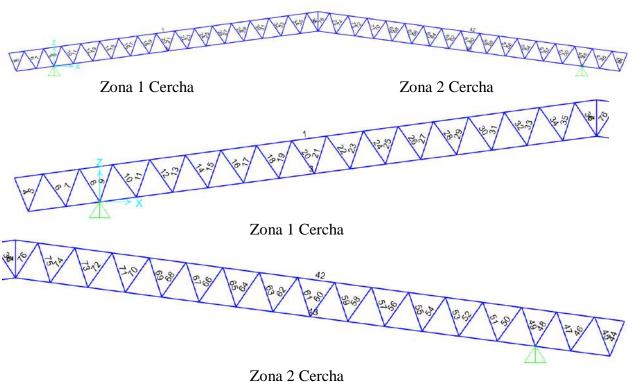
Reacciones máximas Correas- Cercha Dirección Z

REACCIONES				
CORREAS (KN)				
Lr	5,11			
D	2,17			
W	4,09			
G	10,22			

Reacciones máximas Cercha- Apoyos Dirección Z

REACCIONES			
CER	CHA (KN)		
Lr	20,44		
D 9,36			
W 16,35			
G	40,88		


(371)



VERIFICACIÓN ESTRUCTURA EXISTENTE 38.7

Nombres de los elementos que componen la correa (frames) en SAP2000:

Nombres de los elementos que componen la cercha (frames) en SAP2000:

Valores de momentos máximos (KN-M) y cortantes máximos (KN) 38.7.1 combinación 1.2D+1.6G+0.8W, en la correa:

TABLE: Element Forces - Frames						
Frame	OutputCase	Р	V2	M3		
Text	Text	KN	KN	KN-m		
37	1.2D+1.6G+0.8W	0,00	4,24	-2,44		

(372)

38	1.2D+1.6G+0.8W	0,00	-10,66	-11,24
40	1.2D+1.6G+0.8W	0,00	11,73	-11,24
41	1.2D+1.6G+0.8W	0,00	-11,73	-11,24
77	1.2D+1.6G+0.8W	0,00	10,66	-11,24
78	1.2D+1.6G+0.8W	0,00	-4,24	-2,44

38.7.2 Valores de momentos máximos (KN-M) y cortantes máximos (KN) combinación 1.2D+1.6G+0.8W, en la cercha:

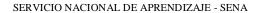
TABLE: Element Forces - Frames					
Frame	OutputCase	Р	V2	M3	
Text	Text	KN	KN	KN-m	
1	1.2D+1.6G+0.8W	-163,61	16,40	1,12	
2	1.2D+1.6G+0.8W	21,90	0,00	0,00	
3	1.2D+1.6G+0.8W	-235,18	-2,72	-0,72	
4	1.2D+1.6G+0.8W	-22,97	0,01	0,00	
5	1.2D+1.6G+0.8W	25,57	0,00	0,00	
6	1.2D+1.6G+0.8W	-24,17	0,00	0,00	
7	1.2D+1.6G+0.8W	20,78	0,00	0,00	
8	1.2D+1.6G+0.8W	-20,55	0,00	0,00	
9	1.2D+1.6G+0.8W	-45,41	0,00	0,00	
10	1.2D+1.6G+0.8W	43,65	0,00	0,00	
11	1.2D+1.6G+0.8W	-45,29	0,00	0,00	
12	1.2D+1.6G+0.8W	48,63	0,00	0,00	
13	1.2D+1.6G+0.8W	-47,69	0,00	0,00	
14	1.2D+1.6G+0.8W	30,76	0,00	0,00	
15	1.2D+1.6G+0.8W	-31,46	0,00	0,00	
16	1.2D+1.6G+0.8W	20,02	0,00	0,00	
17	1.2D+1.6G+0.8W	-19,52	0,00	0,00	
18	1.2D+1.6G+0.8W	21,68	0,00	0,00	
19	1.2D+1.6G+0.8W	-21,36	0,00	0,00	
20	1.2D+1.6G+0.8W	20,83	0,00	0,00	
21	1.2D+1.6G+0.8W	-20,34	0,00	0,00	
22	1.2D+1.6G+0.8W	22,21	0,00	0,00	
23	1.2D+1.6G+0.8W	-21,68	0,00	0,00	
24	1.2D+1.6G+0.8W	14,23	0,00	0,00	
25	1.2D+1.6G+0.8W	-14,52	0,00	0,00	
26	1.2D+1.6G+0.8W	-5,15	0,00	0,00	

(373)

27 1.2D+1.6G+0.8W 4,98 0,00 0,00 28 1.2D+1.6G+0.8W -3,48 0,00 0,00 29 1.2D+1.6G+0.8W 3,78 0,00 0,00 30 1.2D+1.6G+0.8W -4,20 0,00 0,00 31 1.2D+1.6G+0.8W 3,98 0,00 0,00 32 1.2D+1.6G+0.8W -3,98 0,00 0,00 34 1.2D+1.6G+0.8W -4,94 0,00 0,00 35 1.2D+1.6G+0.8W -4,94 0,00 0,00 42 1.2D+1.6G+0.8W -19,79 0,00 0,00 42 1.2D+1.6G+0.8W -19,79 0,00 0,00 42 1.2D+1.6G+0.8W -235,18 -2,72 -0,72 44 1.2D+1.6G+0.8W -22,97 0,01 0,00 45 1.2D+1.6G+0.8W -25,57 0,00 0,00 46 1.2D+1.6G+0.8W -20,78 0,00 0,00 47 1.2D+1.6G+0.8W -20,55 0,00					
29 1.2D+1.6G+0.8W 3,78 0,00 0,00 30 1.2D+1.6G+0.8W -4,20 0,00 0,00 31 1.2D+1.6G+0.8W 3,98 0,00 0,00 32 1.2D+1.6G+0.8W -3,98 0,00 0,00 34 1.2D+1.6G+0.8W -4,94 0,00 0,00 35 1.2D+1.6G+0.8W -19,79 0,00 0,00 42 1.2D+1.6G+0.8W -19,79 0,00 0,00 42 1.2D+1.6G+0.8W -163,61 16,40 1,12 43 1.2D+1.6G+0.8W -235,18 -2,72 -0,72 44 1.2D+1.6G+0.8W -22,97 0,01 0,00 45 1.2D+1.6G+0.8W 25,57 0,00 0,00 46 1.2D+1.6G+0.8W 20,78 0,00 0,00 47 1.2D+1.6G+0.8W -20,55 0,00 0,00 49 1.2D+1.6G+0.8W -45,41 0,00 0,00 50 1.2D+1.6G+0.8W -45,29 0,00<	27	1.2D+1.6G+0.8W	4,98	0,00	0,00
30 1.2D+1.6G+0.8W -4,20 0,00 0,00 31 1.2D+1.6G+0.8W 3,98 0,00 0,00 32 1.2D+1.6G+0.8W -3,98 0,00 0,00 33 1.2D+1.6G+0.8W -4,94 0,00 0,00 34 1.2D+1.6G+0.8W -4,94 0,00 0,00 35 1.2D+1.6G+0.8W -19,79 0,00 0,00 42 1.2D+1.6G+0.8W -19,79 0,00 0,00 43 1.2D+1.6G+0.8W -235,18 -2,72 -0,72 44 1.2D+1.6G+0.8W -235,18 -2,72 -0,72 44 1.2D+1.6G+0.8W 25,57 0,00 0,00 45 1.2D+1.6G+0.8W 20,78 0,00 0,00 46 1.2D+1.6G+0.8W -24,17 0,00 0,00 47 1.2D+1.6G+0.8W -20,55 0,00 0,00 48 1.2D+1.6G+0.8W -45,41 0,00 0,00 50 1.2D+1.6G+0.8W -45,29 0,0	28	1.2D+1.6G+0.8W	-3,48	0,00	0,00
31 1.2D+1.6G+0.8W 3,98 0,00 0,00 32 1.2D+1.6G+0.8W -3,98 0,00 0,00 33 1.2D+1.6G+0.8W 4,54 0,00 0,00 34 1.2D+1.6G+0.8W -4,94 0,00 0,00 35 1.2D+1.6G+0.8W -19,79 0,00 0,00 42 1.2D+1.6G+0.8W -19,79 0,00 0,00 43 1.2D+1.6G+0.8W -235,18 -2,72 -0,72 44 1.2D+1.6G+0.8W -22,97 0,01 0,00 45 1.2D+1.6G+0.8W 25,57 0,00 0,00 46 1.2D+1.6G+0.8W -24,17 0,00 0,00 47 1.2D+1.6G+0.8W -20,55 0,00 0,00 48 1.2D+1.6G+0.8W -45,41 0,00 0,00 50 1.2D+1.6G+0.8W -45,41 0,00 0,00 51 1.2D+1.6G+0.8W -45,29 0,00 0,00 52 1.2D+1.6G+0.8W -47,69 0,00<	29	1.2D+1.6G+0.8W	3,78	0,00	0,00
32 1.2D+1.6G+0.8W -3,98 0,00 0,00 33 1.2D+1.6G+0.8W 4,54 0,00 0,00 34 1.2D+1.6G+0.8W -4,94 0,00 0,00 35 1.2D+1.6G+0.8W -19,79 0,00 0,00 42 1.2D+1.6G+0.8W -163,61 16,40 1,12 43 1.2D+1.6G+0.8W -235,18 -2,72 -0,72 44 1.2D+1.6G+0.8W -22,97 0,01 0,00 45 1.2D+1.6G+0.8W 25,57 0,00 0,00 46 1.2D+1.6G+0.8W 20,78 0,00 0,00 47 1.2D+1.6G+0.8W -20,55 0,00 0,00 48 1.2D+1.6G+0.8W -20,55 0,00 0,00 49 1.2D+1.6G+0.8W -45,41 0,00 0,00 50 1.2D+1.6G+0.8W -45,29 0,00 0,00 51 1.2D+1.6G+0.8W -47,69 0,00 0,00 52 1.2D+1.6G+0.8W -31,46 0,	30	1.2D+1.6G+0.8W	-4,20	0,00	0,00
33 1.2D+1.6G+0.8W 4,54 0,00 0,00 34 1.2D+1.6G+0.8W -4,94 0,00 0,00 35 1.2D+1.6G+0.8W 3,29 0,00 0,00 36 1.2D+1.6G+0.8W -19,79 0,00 0,00 42 1.2D+1.6G+0.8W -163,61 16,40 1,12 43 1.2D+1.6G+0.8W -235,18 -2,72 -0,72 44 1.2D+1.6G+0.8W -25,57 0,00 0,00 45 1.2D+1.6G+0.8W 25,57 0,00 0,00 46 1.2D+1.6G+0.8W -24,17 0,00 0,00 47 1.2D+1.6G+0.8W -20,55 0,00 0,00 48 1.2D+1.6G+0.8W -20,55 0,00 0,00 49 1.2D+1.6G+0.8W -45,41 0,00 0,00 50 1.2D+1.6G+0.8W -45,29 0,00 0,00 51 1.2D+1.6G+0.8W -47,69 0,00 0,00 52 1.2D+1.6G+0.8W 30,76 0,0	31	1.2D+1.6G+0.8W	3,98	0,00	0,00
34 1.2D+1.6G+0.8W -4,94 0,00 0,00 35 1.2D+1.6G+0.8W 3,29 0,00 0,00 36 1.2D+1.6G+0.8W -19,79 0,00 0,00 42 1.2D+1.6G+0.8W -163,61 16,40 1,12 43 1.2D+1.6G+0.8W -235,18 -2,72 -0,72 44 1.2D+1.6G+0.8W -22,97 0,01 0,00 45 1.2D+1.6G+0.8W 25,57 0,00 0,00 46 1.2D+1.6G+0.8W 20,78 0,00 0,00 47 1.2D+1.6G+0.8W -20,55 0,00 0,00 48 1.2D+1.6G+0.8W -45,41 0,00 0,00 50 1.2D+1.6G+0.8W -45,29 0,00 0,00 51 1.2D+1.6G+0.8W -45,29 0,00 0,00 52 1.2D+1.6G+0.8W -47,69 0,00 0,00 54 1.2D+1.6G+0.8W -31,46 0,00 0,00 55 1.2D+1.6G+0.8W -19,52 0	32	1.2D+1.6G+0.8W	-3,98	0,00	0,00
35 1.2D+1.6G+0.8W 3,29 0,00 0,00 36 1.2D+1.6G+0.8W -19,79 0,00 0,00 42 1.2D+1.6G+0.8W -163,61 16,40 1,12 43 1.2D+1.6G+0.8W -235,18 -2,72 -0,72 44 1.2D+1.6G+0.8W -22,97 0,01 0,00 45 1.2D+1.6G+0.8W 25,57 0,00 0,00 46 1.2D+1.6G+0.8W -24,17 0,00 0,00 47 1.2D+1.6G+0.8W 20,78 0,00 0,00 48 1.2D+1.6G+0.8W -20,55 0,00 0,00 50 1.2D+1.6G+0.8W -45,41 0,00 0,00 51 1.2D+1.6G+0.8W -45,29 0,00 0,00 51 1.2D+1.6G+0.8W -47,69 0,00 0,00 53 1.2D+1.6G+0.8W -31,46 0,00 0,00 54 1.2D+1.6G+0.8W -31,46 0,00 0,00 55 1.2D+1.6G+0.8W -19,52	33	1.2D+1.6G+0.8W	4,54	0,00	0,00
36 1.2D+1.6G+0.8W -19,79 0,00 0,00 42 1.2D+1.6G+0.8W -163,61 16,40 1,12 43 1.2D+1.6G+0.8W -235,18 -2,72 -0,72 44 1.2D+1.6G+0.8W -22,97 0,01 0,00 45 1.2D+1.6G+0.8W 25,57 0,00 0,00 46 1.2D+1.6G+0.8W -24,17 0,00 0,00 47 1.2D+1.6G+0.8W 20,78 0,00 0,00 48 1.2D+1.6G+0.8W -20,55 0,00 0,00 50 1.2D+1.6G+0.8W -45,41 0,00 0,00 51 1.2D+1.6G+0.8W -45,29 0,00 0,00 51 1.2D+1.6G+0.8W -47,69 0,00 0,00 52 1.2D+1.6G+0.8W -47,69 0,00 0,00 54 1.2D+1.6G+0.8W -31,46 0,00 0,00 55 1.2D+1.6G+0.8W -19,52 0,00 0,00 57 1.2D+1.6G+0.8W -19,52 <t< td=""><td>34</td><td>1.2D+1.6G+0.8W</td><td>-4,94</td><td>0,00</td><td>0,00</td></t<>	34	1.2D+1.6G+0.8W	-4,94	0,00	0,00
42 1.2D+1.6G+0.8W -163,61 16,40 1,12 43 1.2D+1.6G+0.8W -235,18 -2,72 -0,72 44 1.2D+1.6G+0.8W -22,97 0,01 0,00 45 1.2D+1.6G+0.8W 25,57 0,00 0,00 46 1.2D+1.6G+0.8W -24,17 0,00 0,00 47 1.2D+1.6G+0.8W 20,78 0,00 0,00 48 1.2D+1.6G+0.8W -20,55 0,00 0,00 50 1.2D+1.6G+0.8W -45,41 0,00 0,00 51 1.2D+1.6G+0.8W -45,29 0,00 0,00 52 1.2D+1.6G+0.8W -47,69 0,00 0,00 53 1.2D+1.6G+0.8W -31,46 0,00 0,00 54 1.2D+1.6G+0.8W -31,46 0,00 0,00 55 1.2D+1.6G+0.8W -19,52 0,00 0,00 57 1.2D+1.6G+0.8W -19,52 0,00 0,00 58 1.2D+1.6G+0.8W -21,36 <t< td=""><td>35</td><td>1.2D+1.6G+0.8W</td><td>3,29</td><td>0,00</td><td>0,00</td></t<>	35	1.2D+1.6G+0.8W	3,29	0,00	0,00
43 1.2D+1.6G+0.8W -235,18 -2,72 -0,72 44 1.2D+1.6G+0.8W -22,97 0,01 0,00 45 1.2D+1.6G+0.8W 25,57 0,00 0,00 46 1.2D+1.6G+0.8W -24,17 0,00 0,00 47 1.2D+1.6G+0.8W 20,78 0,00 0,00 48 1.2D+1.6G+0.8W -20,55 0,00 0,00 50 1.2D+1.6G+0.8W -45,41 0,00 0,00 51 1.2D+1.6G+0.8W -45,29 0,00 0,00 52 1.2D+1.6G+0.8W -47,69 0,00 0,00 53 1.2D+1.6G+0.8W -31,46 0,00 0,00 54 1.2D+1.6G+0.8W -31,46 0,00 0,00 55 1.2D+1.6G+0.8W -31,46 0,00 0,00 56 1.2D+1.6G+0.8W -19,52 0,00 0,00 57 1.2D+1.6G+0.8W -19,52 0,00 0,00 59 1.2D+1.6G+0.8W -21,36	36	1.2D+1.6G+0.8W	-19,79	0,00	0,00
44 1.2D+1.6G+0.8W -22,97 0,01 0,00 45 1.2D+1.6G+0.8W 25,57 0,00 0,00 46 1.2D+1.6G+0.8W -24,17 0,00 0,00 47 1.2D+1.6G+0.8W 20,78 0,00 0,00 48 1.2D+1.6G+0.8W -20,55 0,00 0,00 49 1.2D+1.6G+0.8W -45,41 0,00 0,00 50 1.2D+1.6G+0.8W 43,65 0,00 0,00 51 1.2D+1.6G+0.8W -45,29 0,00 0,00 52 1.2D+1.6G+0.8W -47,69 0,00 0,00 53 1.2D+1.6G+0.8W -31,46 0,00 0,00 54 1.2D+1.6G+0.8W -31,46 0,00 0,00 55 1.2D+1.6G+0.8W -19,52 0,00 0,00 57 1.2D+1.6G+0.8W -19,52 0,00 0,00 59 1.2D+1.6G+0.8W -21,36 0,00 0,00 60 1.2D+1.6G+0.8W -20,34 0,00	42	1.2D+1.6G+0.8W	-163,61	16,40	1,12
45 1.2D+1.6G+0.8W 25,57 0,00 0,00 46 1.2D+1.6G+0.8W -24,17 0,00 0,00 47 1.2D+1.6G+0.8W 20,78 0,00 0,00 48 1.2D+1.6G+0.8W -20,55 0,00 0,00 49 1.2D+1.6G+0.8W -45,41 0,00 0,00 50 1.2D+1.6G+0.8W 43,65 0,00 0,00 51 1.2D+1.6G+0.8W -45,29 0,00 0,00 52 1.2D+1.6G+0.8W -47,69 0,00 0,00 53 1.2D+1.6G+0.8W -31,46 0,00 0,00 54 1.2D+1.6G+0.8W -31,46 0,00 0,00 55 1.2D+1.6G+0.8W -19,52 0,00 0,00 57 1.2D+1.6G+0.8W -19,52 0,00 0,00 59 1.2D+1.6G+0.8W -21,36 0,00 0,00 60 1.2D+1.6G+0.8W -20,34 0,00 0,00 62 1.2D+1.6G+0.8W -21,68 0,00	43	1.2D+1.6G+0.8W	-235,18	-2,72	-0,72
46 1.2D+1.6G+0.8W -24,17 0,00 0,00 47 1.2D+1.6G+0.8W 20,78 0,00 0,00 48 1.2D+1.6G+0.8W -20,55 0,00 0,00 49 1.2D+1.6G+0.8W -45,41 0,00 0,00 50 1.2D+1.6G+0.8W 43,65 0,00 0,00 51 1.2D+1.6G+0.8W -45,29 0,00 0,00 52 1.2D+1.6G+0.8W -47,69 0,00 0,00 53 1.2D+1.6G+0.8W -31,46 0,00 0,00 54 1.2D+1.6G+0.8W -31,46 0,00 0,00 55 1.2D+1.6G+0.8W 20,02 0,00 0,00 57 1.2D+1.6G+0.8W 21,68 0,00 0,00 59 1.2D+1.6G+0.8W 20,83 0,00 0,00 60 1.2D+1.6G+0.8W 20,34 0,00 0,00 61 1.2D+1.6G+0.8W 22,21 0,00 0,00 62 1.2D+1.6G+0.8W -21,68 0,00 <td>44</td> <td>1.2D+1.6G+0.8W</td> <td>-22,97</td> <td>0,01</td> <td>0,00</td>	44	1.2D+1.6G+0.8W	-22,97	0,01	0,00
47 1.2D+1.6G+0.8W 20,78 0,00 0,00 48 1.2D+1.6G+0.8W -20,55 0,00 0,00 49 1.2D+1.6G+0.8W -45,41 0,00 0,00 50 1.2D+1.6G+0.8W 43,65 0,00 0,00 51 1.2D+1.6G+0.8W -45,29 0,00 0,00 52 1.2D+1.6G+0.8W -47,69 0,00 0,00 53 1.2D+1.6G+0.8W -31,46 0,00 0,00 54 1.2D+1.6G+0.8W -31,46 0,00 0,00 55 1.2D+1.6G+0.8W 20,02 0,00 0,00 56 1.2D+1.6G+0.8W -19,52 0,00 0,00 57 1.2D+1.6G+0.8W 21,68 0,00 0,00 59 1.2D+1.6G+0.8W -21,36 0,00 0,00 60 1.2D+1.6G+0.8W -20,34 0,00 0,00 61 1.2D+1.6G+0.8W -21,68 0,00 0,00 62 1.2D+1.6G+0.8W -21,68 0,00<	45	1.2D+1.6G+0.8W	25,57	0,00	0,00
48 1.2D+1.6G+0.8W -20,55 0,00 0,00 49 1.2D+1.6G+0.8W -45,41 0,00 0,00 50 1.2D+1.6G+0.8W 43,65 0,00 0,00 51 1.2D+1.6G+0.8W -45,29 0,00 0,00 52 1.2D+1.6G+0.8W 48,63 0,00 0,00 53 1.2D+1.6G+0.8W 30,76 0,00 0,00 54 1.2D+1.6G+0.8W -31,46 0,00 0,00 55 1.2D+1.6G+0.8W 20,02 0,00 0,00 56 1.2D+1.6G+0.8W -19,52 0,00 0,00 57 1.2D+1.6G+0.8W 21,68 0,00 0,00 59 1.2D+1.6G+0.8W -21,36 0,00 0,00 60 1.2D+1.6G+0.8W -20,34 0,00 0,00 61 1.2D+1.6G+0.8W -20,34 0,00 0,00 62 1.2D+1.6G+0.8W -21,68 0,00 0,00 64 1.2D+1.6G+0.8W -14,52 0,00 </td <td>46</td> <td>1.2D+1.6G+0.8W</td> <td>-24,17</td> <td>0,00</td> <td>0,00</td>	46	1.2D+1.6G+0.8W	-24,17	0,00	0,00
49 1.2D+1.6G+0.8W -45,41 0,00 0,00 50 1.2D+1.6G+0.8W 43,65 0,00 0,00 51 1.2D+1.6G+0.8W -45,29 0,00 0,00 52 1.2D+1.6G+0.8W 48,63 0,00 0,00 53 1.2D+1.6G+0.8W -47,69 0,00 0,00 54 1.2D+1.6G+0.8W 30,76 0,00 0,00 55 1.2D+1.6G+0.8W -31,46 0,00 0,00 56 1.2D+1.6G+0.8W 20,02 0,00 0,00 57 1.2D+1.6G+0.8W 21,68 0,00 0,00 59 1.2D+1.6G+0.8W -21,36 0,00 0,00 60 1.2D+1.6G+0.8W 20,83 0,00 0,00 61 1.2D+1.6G+0.8W -20,34 0,00 0,00 62 1.2D+1.6G+0.8W -21,68 0,00 0,00 64 1.2D+1.6G+0.8W -14,52 0,00 0,00 65 1.2D+1.6G+0.8W -5,15 0,00 <td>47</td> <td>1.2D+1.6G+0.8W</td> <td>20,78</td> <td>0,00</td> <td>0,00</td>	47	1.2D+1.6G+0.8W	20,78	0,00	0,00
50 1.2D+1.6G+0.8W 43,65 0,00 0,00 51 1.2D+1.6G+0.8W -45,29 0,00 0,00 52 1.2D+1.6G+0.8W 48,63 0,00 0,00 53 1.2D+1.6G+0.8W -47,69 0,00 0,00 54 1.2D+1.6G+0.8W 30,76 0,00 0,00 55 1.2D+1.6G+0.8W -31,46 0,00 0,00 56 1.2D+1.6G+0.8W 20,02 0,00 0,00 57 1.2D+1.6G+0.8W 21,68 0,00 0,00 59 1.2D+1.6G+0.8W -21,36 0,00 0,00 60 1.2D+1.6G+0.8W 20,83 0,00 0,00 61 1.2D+1.6G+0.8W -20,34 0,00 0,00 62 1.2D+1.6G+0.8W 22,21 0,00 0,00 63 1.2D+1.6G+0.8W -1,68 0,00 0,00 65 1.2D+1.6G+0.8W -14,52 0,00 0,00 66 1.2D+1.6G+0.8W -5,15 0,00	48	1.2D+1.6G+0.8W	-20,55	0,00	0,00
51 1.2D+1.6G+0.8W -45,29 0,00 0,00 52 1.2D+1.6G+0.8W 48,63 0,00 0,00 53 1.2D+1.6G+0.8W -47,69 0,00 0,00 54 1.2D+1.6G+0.8W 30,76 0,00 0,00 55 1.2D+1.6G+0.8W -31,46 0,00 0,00 56 1.2D+1.6G+0.8W 20,02 0,00 0,00 57 1.2D+1.6G+0.8W -19,52 0,00 0,00 58 1.2D+1.6G+0.8W 21,68 0,00 0,00 59 1.2D+1.6G+0.8W -21,36 0,00 0,00 60 1.2D+1.6G+0.8W -20,34 0,00 0,00 61 1.2D+1.6G+0.8W -20,34 0,00 0,00 63 1.2D+1.6G+0.8W -21,68 0,00 0,00 64 1.2D+1.6G+0.8W -14,52 0,00 0,00 65 1.2D+1.6G+0.8W -5,15 0,00 0,00 66 1.2D+1.6G+0.8W -5,15 0,00 <td>49</td> <td>1.2D+1.6G+0.8W</td> <td>-45,41</td> <td>0,00</td> <td>0,00</td>	49	1.2D+1.6G+0.8W	-45,41	0,00	0,00
52 1.2D+1.6G+0.8W 48,63 0,00 0,00 53 1.2D+1.6G+0.8W -47,69 0,00 0,00 54 1.2D+1.6G+0.8W 30,76 0,00 0,00 55 1.2D+1.6G+0.8W -31,46 0,00 0,00 56 1.2D+1.6G+0.8W 20,02 0,00 0,00 57 1.2D+1.6G+0.8W -19,52 0,00 0,00 58 1.2D+1.6G+0.8W 21,68 0,00 0,00 59 1.2D+1.6G+0.8W -21,36 0,00 0,00 60 1.2D+1.6G+0.8W 20,83 0,00 0,00 61 1.2D+1.6G+0.8W -20,34 0,00 0,00 62 1.2D+1.6G+0.8W -21,68 0,00 0,00 64 1.2D+1.6G+0.8W -21,68 0,00 0,00 65 1.2D+1.6G+0.8W -14,52 0,00 0,00 66 1.2D+1.6G+0.8W -5,15 0,00 0,00 67 1.2D+1.6G+0.8W -3,48 0,00 <td>50</td> <td>1.2D+1.6G+0.8W</td> <td>43,65</td> <td>0,00</td> <td>0,00</td>	50	1.2D+1.6G+0.8W	43,65	0,00	0,00
53 1.2D+1.6G+0.8W -47,69 0,00 0,00 54 1.2D+1.6G+0.8W 30,76 0,00 0,00 55 1.2D+1.6G+0.8W -31,46 0,00 0,00 56 1.2D+1.6G+0.8W 20,02 0,00 0,00 57 1.2D+1.6G+0.8W -19,52 0,00 0,00 58 1.2D+1.6G+0.8W 21,68 0,00 0,00 59 1.2D+1.6G+0.8W -21,36 0,00 0,00 60 1.2D+1.6G+0.8W 20,83 0,00 0,00 61 1.2D+1.6G+0.8W -20,34 0,00 0,00 62 1.2D+1.6G+0.8W 22,21 0,00 0,00 64 1.2D+1.6G+0.8W -21,68 0,00 0,00 65 1.2D+1.6G+0.8W -14,52 0,00 0,00 66 1.2D+1.6G+0.8W -5,15 0,00 0,00 67 1.2D+1.6G+0.8W -3,48 0,00 0,00 68 1.2D+1.6G+0.8W -3,48 0,00	51	1.2D+1.6G+0.8W	-45,29	0,00	0,00
54 1.2D+1.6G+0.8W 30,76 0,00 0,00 55 1.2D+1.6G+0.8W -31,46 0,00 0,00 56 1.2D+1.6G+0.8W 20,02 0,00 0,00 57 1.2D+1.6G+0.8W -19,52 0,00 0,00 58 1.2D+1.6G+0.8W 21,68 0,00 0,00 59 1.2D+1.6G+0.8W -21,36 0,00 0,00 60 1.2D+1.6G+0.8W 20,83 0,00 0,00 61 1.2D+1.6G+0.8W -20,34 0,00 0,00 62 1.2D+1.6G+0.8W 22,21 0,00 0,00 63 1.2D+1.6G+0.8W -21,68 0,00 0,00 64 1.2D+1.6G+0.8W -14,52 0,00 0,00 65 1.2D+1.6G+0.8W -5,15 0,00 0,00 67 1.2D+1.6G+0.8W 4,98 0,00 0,00 68 1.2D+1.6G+0.8W -3,48 0,00 0,00	52	1.2D+1.6G+0.8W	48,63	0,00	0,00
55 1.2D+1.6G+0.8W -31,46 0,00 0,00 56 1.2D+1.6G+0.8W 20,02 0,00 0,00 57 1.2D+1.6G+0.8W -19,52 0,00 0,00 58 1.2D+1.6G+0.8W 21,68 0,00 0,00 59 1.2D+1.6G+0.8W -21,36 0,00 0,00 60 1.2D+1.6G+0.8W 20,83 0,00 0,00 61 1.2D+1.6G+0.8W -20,34 0,00 0,00 62 1.2D+1.6G+0.8W 22,21 0,00 0,00 63 1.2D+1.6G+0.8W -21,68 0,00 0,00 64 1.2D+1.6G+0.8W -14,52 0,00 0,00 65 1.2D+1.6G+0.8W -5,15 0,00 0,00 67 1.2D+1.6G+0.8W 4,98 0,00 0,00 68 1.2D+1.6G+0.8W -3,48 0,00 0,00	53	1.2D+1.6G+0.8W	-47,69	0,00	0,00
56 1.2D+1.6G+0.8W 20,02 0,00 0,00 57 1.2D+1.6G+0.8W -19,52 0,00 0,00 58 1.2D+1.6G+0.8W 21,68 0,00 0,00 59 1.2D+1.6G+0.8W -21,36 0,00 0,00 60 1.2D+1.6G+0.8W 20,83 0,00 0,00 61 1.2D+1.6G+0.8W -20,34 0,00 0,00 62 1.2D+1.6G+0.8W 22,21 0,00 0,00 63 1.2D+1.6G+0.8W -21,68 0,00 0,00 64 1.2D+1.6G+0.8W 14,23 0,00 0,00 65 1.2D+1.6G+0.8W -14,52 0,00 0,00 66 1.2D+1.6G+0.8W -5,15 0,00 0,00 67 1.2D+1.6G+0.8W 4,98 0,00 0,00 68 1.2D+1.6G+0.8W -3,48 0,00 0,00	54	1.2D+1.6G+0.8W	30,76	0,00	0,00
57 1.2D+1.6G+0.8W -19,52 0,00 0,00 58 1.2D+1.6G+0.8W 21,68 0,00 0,00 59 1.2D+1.6G+0.8W -21,36 0,00 0,00 60 1.2D+1.6G+0.8W 20,83 0,00 0,00 61 1.2D+1.6G+0.8W -20,34 0,00 0,00 62 1.2D+1.6G+0.8W 22,21 0,00 0,00 63 1.2D+1.6G+0.8W -21,68 0,00 0,00 64 1.2D+1.6G+0.8W 14,23 0,00 0,00 65 1.2D+1.6G+0.8W -14,52 0,00 0,00 66 1.2D+1.6G+0.8W -5,15 0,00 0,00 67 1.2D+1.6G+0.8W 4,98 0,00 0,00 68 1.2D+1.6G+0.8W -3,48 0,00 0,00	55	1.2D+1.6G+0.8W	-31,46	0,00	0,00
58 1.2D+1.6G+0.8W 21,68 0,00 0,00 59 1.2D+1.6G+0.8W -21,36 0,00 0,00 60 1.2D+1.6G+0.8W 20,83 0,00 0,00 61 1.2D+1.6G+0.8W -20,34 0,00 0,00 62 1.2D+1.6G+0.8W 22,21 0,00 0,00 63 1.2D+1.6G+0.8W -21,68 0,00 0,00 64 1.2D+1.6G+0.8W 14,23 0,00 0,00 65 1.2D+1.6G+0.8W -14,52 0,00 0,00 66 1.2D+1.6G+0.8W -5,15 0,00 0,00 67 1.2D+1.6G+0.8W 4,98 0,00 0,00 68 1.2D+1.6G+0.8W -3,48 0,00 0,00	56	1.2D+1.6G+0.8W	20,02	0,00	0,00
59 1.2D+1.6G+0.8W -21,36 0,00 0,00 60 1.2D+1.6G+0.8W 20,83 0,00 0,00 61 1.2D+1.6G+0.8W -20,34 0,00 0,00 62 1.2D+1.6G+0.8W 22,21 0,00 0,00 63 1.2D+1.6G+0.8W -21,68 0,00 0,00 64 1.2D+1.6G+0.8W 14,23 0,00 0,00 65 1.2D+1.6G+0.8W -14,52 0,00 0,00 66 1.2D+1.6G+0.8W -5,15 0,00 0,00 67 1.2D+1.6G+0.8W 4,98 0,00 0,00 68 1.2D+1.6G+0.8W -3,48 0,00 0,00	57	1.2D+1.6G+0.8W	-19,52	0,00	0,00
60 1.2D+1.6G+0.8W 20,83 0,00 0,00 61 1.2D+1.6G+0.8W -20,34 0,00 0,00 62 1.2D+1.6G+0.8W 22,21 0,00 0,00 63 1.2D+1.6G+0.8W -21,68 0,00 0,00 64 1.2D+1.6G+0.8W 14,23 0,00 0,00 65 1.2D+1.6G+0.8W -14,52 0,00 0,00 66 1.2D+1.6G+0.8W -5,15 0,00 0,00 67 1.2D+1.6G+0.8W 4,98 0,00 0,00 68 1.2D+1.6G+0.8W -3,48 0,00 0,00	58	1.2D+1.6G+0.8W	21,68	0,00	0,00
61 1.2D+1.6G+0.8W -20,34 0,00 0,00 62 1.2D+1.6G+0.8W 22,21 0,00 0,00 63 1.2D+1.6G+0.8W -21,68 0,00 0,00 64 1.2D+1.6G+0.8W 14,23 0,00 0,00 65 1.2D+1.6G+0.8W -14,52 0,00 0,00 66 1.2D+1.6G+0.8W -5,15 0,00 0,00 67 1.2D+1.6G+0.8W 4,98 0,00 0,00 68 1.2D+1.6G+0.8W -3,48 0,00 0,00	59	1.2D+1.6G+0.8W	-21,36	0,00	0,00
62 1.2D+1.6G+0.8W 22,21 0,00 0,00 63 1.2D+1.6G+0.8W -21,68 0,00 0,00 64 1.2D+1.6G+0.8W 14,23 0,00 0,00 65 1.2D+1.6G+0.8W -14,52 0,00 0,00 66 1.2D+1.6G+0.8W -5,15 0,00 0,00 67 1.2D+1.6G+0.8W 4,98 0,00 0,00 68 1.2D+1.6G+0.8W -3,48 0,00 0,00	60	1.2D+1.6G+0.8W	20,83	0,00	0,00
63 1.2D+1.6G+0.8W -21,68 0,00 0,00 64 1.2D+1.6G+0.8W 14,23 0,00 0,00 65 1.2D+1.6G+0.8W -14,52 0,00 0,00 66 1.2D+1.6G+0.8W -5,15 0,00 0,00 67 1.2D+1.6G+0.8W 4,98 0,00 0,00 68 1.2D+1.6G+0.8W -3,48 0,00 0,00	61	1.2D+1.6G+0.8W	-20,34	0,00	0,00
64 1.2D+1.6G+0.8W 14,23 0,00 0,00 65 1.2D+1.6G+0.8W -14,52 0,00 0,00 66 1.2D+1.6G+0.8W -5,15 0,00 0,00 67 1.2D+1.6G+0.8W 4,98 0,00 0,00 68 1.2D+1.6G+0.8W -3,48 0,00 0,00	62	1.2D+1.6G+0.8W	22,21	0,00	0,00
65 1.2D+1.6G+0.8W -14,52 0,00 0,00 66 1.2D+1.6G+0.8W -5,15 0,00 0,00 67 1.2D+1.6G+0.8W 4,98 0,00 0,00 68 1.2D+1.6G+0.8W -3,48 0,00 0,00	63	1.2D+1.6G+0.8W	-21,68	0,00	0,00
66 1.2D+1.6G+0.8W -5,15 0,00 0,00 67 1.2D+1.6G+0.8W 4,98 0,00 0,00 68 1.2D+1.6G+0.8W -3,48 0,00 0,00	64	1.2D+1.6G+0.8W	14,23	0,00	0,00
67 1.2D+1.6G+0.8W 4,98 0,00 0,00 68 1.2D+1.6G+0.8W -3,48 0,00 0,00	65	1.2D+1.6G+0.8W	-14,52	0,00	0,00
68 1.2D+1.6G+0.8W -3,48 0,00 0,00	66	1.2D+1.6G+0.8W	-5,15	0,00	0,00
	67	1.2D+1.6G+0.8W	4,98	0,00	0,00
69 1.2D+1.6G+0.8W 3.78 0.00 0.00	68	1.2D+1.6G+0.8W	-3,48	0,00	0,00
3, 3,	69	1.2D+1.6G+0.8W	3,78	0,00	0,00

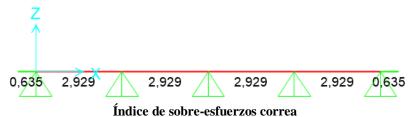
70	1.2D+1.6G+0.8W	-4,20	0,00	0,00
71	1.2D+1.6G+0.8W	3,98	0,00	0,00
72	1.2D+1.6G+0.8W	-3,98	0,00	0,00
73	1.2D+1.6G+0.8W	4,54	0,00	0,00
74	1.2D+1.6G+0.8W	-4,94	0,00	0,00
75	1.2D+1.6G+0.8W	3,29	0,00	0,00
76	1.2D+1.6G+0.8W	-19,79	0,00	0,00

38.7.3 Verificación solicitaciones correa existente

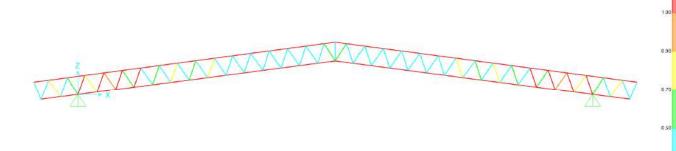

AISC360-05/IBC2006 STEEL SECTION CHECK (Summary for Combo and Station) Units : KN, m, C Frame: 38 X Mid: 8,250 Combo: 1.2D+1.6G+0.8W Design Tupe: Beam Y Mid: 1,000 Length: 5,500 Shape: 2L 1x1/8 Frame Type: Special Moment Frame Loc : 0,000 Z Mid: 0,000 Class: Non-Compact Princpl Rot: 0,000 degrees Provision: LRFD Analysis: Direct Analysis D/C Limit=1,000 2nd Order: General 2nd Order Reduction: Tau-b Fixed AlphaPr/Py=0,000 AlphaPr/Pe=0,000 Tau_b=1,000 EA factor=0,800 EI factor=0,800 PhiB=0,900 PhiC=0,900 PhiTY=0,900 PhiTF=0,750 PhiS=0,900 PhiS-RI=1,000 PhiST=0,900 A=3,046E-04 I33=1,405E-06 r33=0,068 S33=1,874E-05 Av3=1,473E-04 S22=1,018E-06 J=0,000 122=0,000 r22=0,008 Av2=3,046E-04 E=199947978,8 fy=227527,010 Ry=1,000 z33=2,056E-05 z22=1,835E-06 RLLF=1,000 Fu=351632,652 DESIGN MESSAGES Error: Section overstressed Warning: k1/r > 200 (AISC E2) STRESS CHECK FORCES & MOMENTS (Combo 1.2D+1.6G+0.8W) Location Mu33 Vu2 Mu22 Uu3 Tu Pu 0,000 0,000 -11,238 0,000 -10,663 0,000 0,000 PMM DEMAND/CAPACITY RATIO (H1-1b) D/C Ratio: 2,929 = 0,000 + 2,929 + 0,000 = (1/2)(Pr/Pc) + (Mr33/Mc33) + (Mr22/Mc22) AXIAL FORCE & BIAXIAL MOMENT DESIGN (H1-1b)Factor K1 K2 **B1 B2** Cm L 1,000 Major Bending 1,000 1,000 1,000 1,000 1,000 Minor Bending 1,000 1,000 1,000 1,000 1,000 1,000 L1tb Kltb Cb LTB 1,000 1,000 2,888

	Pu	phi*Pnc	phi*Pnt	
	Force	Capacity	Capacity	
Axial	0,000	0,937	62,382	
	Mu	phi∗Mn	phi∗Mn	
	Moment	Capacity	No LTB	
Major Moment	-11,238	3,837	3,837	
Minor Moment	0,000	0,209	Self-media (Al-California)	
SHEAR CHECK				
	Vu	phi∗Vn	Stress	Status
	Force	Capacity	Ratio	Check
Major Shear	10,663	37,429	0,285	ОК
Minor Shear	0,000	18,100	0,000	OK
CONNECTION SHEAR	FORCES FOR BE	AMS		
	VMajor	VMajor		
	Left	Right		
Major (V2)	10,663	9,600		

38.7.4 Verificación solicitaciones cercha existente



AISC360-05/IBC20 Units : KN, m,	006 STEEL SECTION	CHECK (Summa	ary for (Combo and Statio	n)	
Frame : 43	X Mid: 6,553	Combo: 1.2			pe: Brace	
Length: 4,810	Y Mid: 0,000			of B37 Frame Typ		
Loc : 4,205	Z Mid: 0,235	Class: No	n-compact	t Princpi i	lot: 0,000	uegrees
Provision: LRFD	Analysis: Direc	t Analysis				
D/C Limit=1,000	2nd Order: Gene	ral 2nd Order	r	Reduction: Tau-	b Fixed	
AlphaPr/Py=1,648	AlphaPr/Pe=7,25	8 Tau_b=-4,	272	EA factor=0,800	EI fact	or=0,800
PhiB=0,900	PhiC=0,900	PhiTY=0,9	00	PhiTF=0,750		
PhiS=0,900	Phis-RI=1,000	PhiST=0,9	00			
A=6,272E-04	133=0,000	r33=0,016		S33=4,280E-06	Av3=4,3	48E-04
J=0,000	122=0,000	r22=0,025		S22=6,832E-06	Au2=2,8	
alpha=90,000						
E=199947978,8	fy=227527,010	Ry=1,000		z33=7,707E-06		
RLLF=1,000	Fu=351632,652			z22=1,181E-05		
DESIGN MESSAGES						
Error: Secti	on overstressed					
STRESS CHECK FOR	CES & MOMENTS (Co	mbo 1.2D+1.60	G+0.8W)			
Location	Pu	Mu33	Mu22	Vu2	Vu3	Tu
4,205	-235,178	-0,719	0,000	2,007	0,000	0,000
PMM DEMAND/CAPAC	ITY RATIO (H1-1	a)				
D/C Ratio:	9,924 = 9,195 +	0,729 + 0,00		(8/9)(Mr22/Mc22	2)	
AVIAL FORCE & DI						
Factor	AXIAL MOMENT DESI	GN (H1-1a) K1	К2	B1	B2	Cm
Major Bendin		1,000	1,000	1,000	1,000	1,000
Minor Bendin		1,000	1,000	1,000	1,000	1,000
LTB	1,000	K1tb 1,000	Cb 1,435			
LID	Pu	phi*Pnc	phi*F	2nt		
	Force	Capacity	Capaci			
Axial						
нхтат	-235,178	25,576	128,	134		
	Mu	phi*Mn	phi:	•Mn		
	Moment	Capacity	No I	.TB		
Major Mome	nt -0,719	0,876	0,8	376		
Minor Mome	nt 0,000	1,399				
SHEAR CHECK						
JULIU AUCAN	Vu	phi*Vn	Stre	ss Status		
	Force	Capacity	Rat	io Check		
Major Shea		35,197	0,1			
Minor Shea		53,425		399 OK		
	-,		-,			

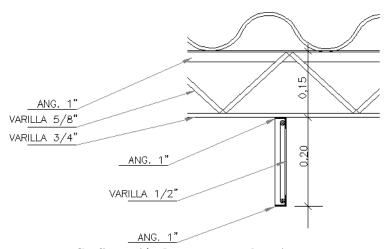


38.7.5 Índices de sobre-esfuerzos correa existente

38.7.6 Índices de sobre-esfuerzos cercha existente

Índices máximos de sobre- esfuerzos cercha

38.8 ALTERNATIVA DE REFORZAMIENTO PROPUESTO


La cercha principal presenta un índice de sobreesfuerzo muy elevado, debido a que las correas tienen una gran separación entre sí, las cargas no se están transmitiendo en los nodos, los perfiles de los cordones inferior y superior no cuentan con la sección transversal apropiada para la luz máxima y las cargas requeridas, principalmente el granizo y el viento. Por lo tanto, se recomienda desmontar todos los elementos estructurales que componen esta cubierta (cercha y correas), para ser reemplazados según un nuevo diseño acorde a las exigencias del reglamento NSR-10.

39. ANÁLISIS CUBIERTA BLOQUE 36

39.1 CONFIGURACION EXISTENTE

Configuración de correa y cercha existente

39.2 EVALUACIONES DE CARGA

Inclinación de la cubierta Separación máxima entre correas

7,56°		=	13,3%
1 21	m		

CARGA MUERTA: Según tabla B.3.4.1-1 y B.3.4.1-4 del título B de la NSR-10

 Teja eternit
 0,00 KN/m²

 Teja Asbesto cemento
 0,20 KN/m²

 Cielo raso
 0,07 KN/m²

 Lámparas
 0,03 KN/m²

 Estructura metálica
 0,03 KN/m²

 Total Carga Muerta (D)
 0,33 KN/m²

CARGA VIVA: Según tabla B.4.2.1-2 del título B de la NSR-10

Inclinación de la cubierta de 7,56 °

Lr = 0,50 KN/m²

CARGA DE GRANIZO: Según B.4.8.3 del titulo B de la NSR-10, la carga de granizo, G:

G = 1,00 KN/m²

CARGA DE VIENTO:

W= 0,40 KN/m² (Presión)

39.3 CASOS DE CARGA

CASOS DE CARGA	DESCRIPCIÓN
PP	Peso Propio de la estructura
D	Carga muerta
Lr	Carga viva de cubierta
W	Viento
G	Granizo

39.4 COMBINACIONES DE DISEÑO

Según lo estipulado en B.2.4.2 del título B de la NSR-10:

Combinaciones de carga para ser utilizadas con el método de resistencia

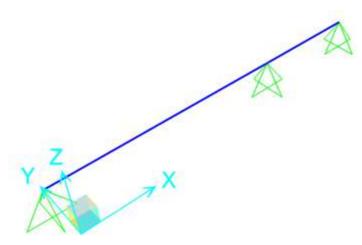
COMBINACION	CARGA TOTAL
	MAYORADA KN/m²
1,4D	0,46
1,2D+0,5Lr	0,65
1.2D+0.5G	0,90
1,2D+1,6Lr+0,8W	1,20
1.2D+1.6G+0.8W	2,32
1,2D+1,6W+0,5Lr	1,29
1,2D+1,0E	0,40
0,9D+1,6W	0,94
0,9D+1,0E	0,30

Gobierna la combinación 1,2D+1,6G+0,8W

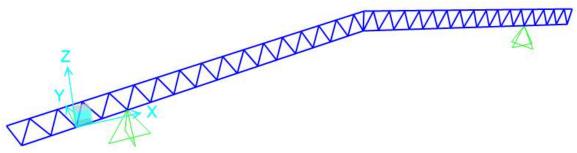
MUERTA	GRANIZO	VIENTO		
1,2D	1,6G	0,8W	Wtotal	
0.40	1.60	0.32	2.32	KN/m ²

Se calcula la resultante carga muerta, según la inclinación de cubie 7,56º

Wu muerta 0,40 KN/m² Wu resulta 2,32 KN/m²


Con una separacion maxima entre correas de 1,21 m, se calculan las cargas totales SIN MAYORAR:

W D =	0,40	"KN/m	W Lr =	0,61	KN/m
W G =	1,21	KN/m	W w =	0,48	KN/m
W T =	2.81	KN/m			


39.5 RESULTADOS DEL ANÁLISIS

Modelo SAP 2000 Correa

Modelo SAP 2000 Cercha

39.6 REACCIONES MAXIMAS EN LOS APOYOS

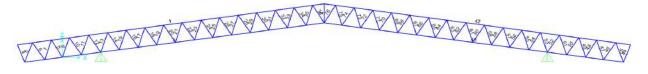
Reacciones máximas Correas- Cercha Dirección Z

REACCIONES			
CORREAS (KN)			
Lr 3,47			
D	2,31		
W	2,78		
G	6,94		

Reacciones máximas Cercha- Apoyos Dirección Z

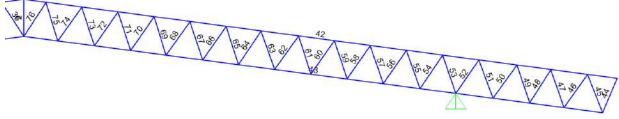
REACCIONES						
CERCHA (KN)						
Lr		13,88				
D	D 9,94					
W		11,10				
G		27,76				

(382)



39.7 VERIFICACIÓN ESTRUCTURA EXISTENTE

Nombres de los elementos que componen la correa (frames) en SAP2000:


Nombres de los elementos que componen la cercha (frames) en SAP2000:

Zona 1 Cercha

Zona 2 Cercha

Zona 2 Cercha

39.7.1 Valores de momentos máximos (KN-M) y cortantes máximos (KN) combinación 1.2D+1.6G+0.8W, en la correa:

TABLE: Element Forces - Frames					
Frame	OutputCase	Р	V2	M3	
Text	Text	KN	KN	KN-m	
37	1.2D+1.6G+0.8W	0,00	9,09	-5,76	

(383)

38	1.2D+1.6G+0.8W	0,00	-6,64	-5,76
----	----------------	------	-------	-------

39.7.2 Valores de momentos máximos (KN-M) y cortantes máximos (KN) combinación 1.2D+1.6G+0.8W, en la cercha:

TABLE: Element Forces - Frames						
Frame	OutputCase	Р	V2	M3		
Text	Text	KN	KN	KN-m		
1	1.2D+1.6G+0.8W	72,30	-12,92	0,30		
2	1.2D+1.6G+0.8W	12,22	0,00	0,00		
3	1.2D+1.6G+0.8W	-95,95	-0,17	-0,06		
4	1.2D+1.6G+0.8W	-16,52	0,00	0,00		
5	1.2D+1.6G+0.8W	18,20	0,00	0,00		
6	1.2D+1.6G+0.8W	-18,04	0,00	0,00		
7	1.2D+1.6G+0.8W	17,89	0,00	0,00		
8	1.2D+1.6G+0.8W	-17,51	0,00	0,00		
9	1.2D+1.6G+0.8W	17,86	0,00	0,00		
10	1.2D+1.6G+0.8W	-18,16	0,00	0,00		
11	1.2D+1.6G+0.8W	17,75	0,00	0,00		
12	1.2D+1.6G+0.8W	-17,79	0,00	0,00		
13	1.2D+1.6G+0.8W	-14,23	0,00	0,00		
14	1.2D+1.6G+0.8W	14,03	0,00	0,00		
15	1.2D+1.6G+0.8W	-14,21	0,00	0,00		
16	1.2D+1.6G+0.8W	14,34	0,00	0,00		
17	1.2D+1.6G+0.8W	-14,11	0,00	0,00		
18	1.2D+1.6G+0.8W	14,17	0,00	0,00		
19	1.2D+1.6G+0.8W	-14,04	0,00	0,00		
20	1.2D+1.6G+0.8W	14,18	0,00	0,00		
21	1.2D+1.6G+0.8W	-13,91	0,00	0,00		
22	1.2D+1.6G+0.8W	14,21	0,00	0,00		
23	1.2D+1.6G+0.8W	-13,99	0,00	0,00		
24	1.2D+1.6G+0.8W	13,93	0,00	0,00		
25	1.2D+1.6G+0.8W	-13,78	0,00	0,00		
26	1.2D+1.6G+0.8W	13,96	0,00	0,00		
27	1.2D+1.6G+0.8W	-13,79	0,00	0,00		
28	1.2D+1.6G+0.8W	14,00	0,00	0,00		
29	1.2D+1.6G+0.8W	-13,58	0,00	0,00		

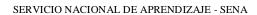
(384)

30	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,30 -0,06
32 1.2D+1.6G+0.8W 13,73 0,00 33 1.2D+1.6G+0.8W -13,46 0,00 34 1.2D+1.6G+0.8W 14,11 0,00 35 1.2D+1.6G+0.8W -13,75 0,00 36 1.2D+1.6G+0.8W -0,88 0,00	0,00 0,00 0,00 0,00 0,00 0,30 -0,06
33 1.2D+1.6G+0.8W -13,46 0,00 34 1.2D+1.6G+0.8W 14,11 0,00 35 1.2D+1.6G+0.8W -13,75 0,00 36 1.2D+1.6G+0.8W -0,88 0,00	0,00 0,00 0,00 0,00 0,30 -0,06
34 1.2D+1.6G+0.8W 14,11 0,00 35 1.2D+1.6G+0.8W -13,75 0,00 36 1.2D+1.6G+0.8W -0,88 0,00	0,00 0,00 0,00 0,30 -0,06
35 1.2D+1.6G+0.8W -13,75 0,00 36 1.2D+1.6G+0.8W -0,88 0,00	0,00 0,00 0,30 -0,06
36 1.2D+1.6G+0.8W -0,88 0,00	0,00 0,30 -0,06
	0,30 -0,06
42 4.20.4.66.0.044 72.20 42.02	-0,06
42 1.2D+1.6G+0.8W 72,30 -12,92	
43 1.2D+1.6G+0.8W -95,95 -0,17	0.00
44 1.2D+1.6G+0.8W -16,52 0,00	0,00
45 1.2D+1.6G+0.8W 18,20 0,00	0,00
46 1.2D+1.6G+0.8W -18,04 0,00	0,00
47 1.2D+1.6G+0.8W 17,89 0,00	0,00
48 1.2D+1.6G+0.8W -17,51 0,00	0,00
49 1.2D+1.6G+0.8W 17,86 0,00	0,00
50 1.2D+1.6G+0.8W -18,16 0,00	0,00
51 1.2D+1.6G+0.8W 17,75 0,00	0,00
52 1.2D+1.6G+0.8W -17,79 0,00	0,00
53 1.2D+1.6G+0.8W -14,23 0,00	0,00
54 1.2D+1.6G+0.8W 14,03 0,00	0,00
55 1.2D+1.6G+0.8W -14,21 0,00	0,00
56 1.2D+1.6G+0.8W 14,34 0,00	0,00
57 1.2D+1.6G+0.8W -14,11 0,00	0,00
58 1.2D+1.6G+0.8W 14,17 0,00	0,00
59 1.2D+1.6G+0.8W -14,04 0,00	0,00
60 1.2D+1.6G+0.8W 14,18 0,00	0,00
61 1.2D+1.6G+0.8W -13,91 0,00	0,00
62 1.2D+1.6G+0.8W 14,21 0,00	0,00
63 1.2D+1.6G+0.8W -13,99 0,00	0,00
64 1.2D+1.6G+0.8W 13,93 0,00	0,00
65 1.2D+1.6G+0.8W -13,78 0,00	0,00
66 1.2D+1.6G+0.8W 13,96 0,00	0,00
67 1.2D+1.6G+0.8W -13,79 0,00	0,00
68 1.2D+1.6G+0.8W 14,00 0,00	0,00
69 1.2D+1.6G+0.8W -13,58 0,00	0,00
70 1.2D+1.6G+0.8W 13,89 0,00	0,00
71 1.2D+1.6G+0.8W -13,66 0,00	0,00
72 1.2D+1.6G+0.8W 13,73 0,00	0,00

(385)

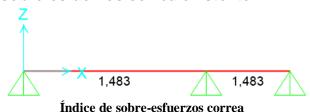
73	1.2D+1.6G+0.8W	-13,46	0,00	0,00
74	1.2D+1.6G+0.8W	14,11	0,00	0,00
75	1.2D+1.6G+0.8W	-13,75	0,00	0,00
76	1.2D+1.6G+0.8W	-0,88	0,00	0,00

39.7.3 Verificación solicitaciones correa existente

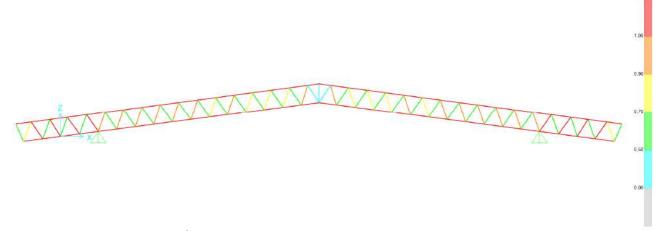

AISC360-05/IBC2	006 STEEL SECTION	CHECK (Sur	nmary for	Combo and Statio	n)	
Units : KN, m,	С					
Frame : 37 Length: 4,020	X Mid: 2,010 Y Mid: 1,000	100000000000000000000000000000000000000	1.2D+1.6G+ 1L 1x1/8 +	0.8W Design Ty 1B 3/4Frame Typ		Moment Frame
Loc : 4,020	Z Mid: 0,000	Class: 1	Non-Compac	t Princpl F	Rot: 0,000	degrees
Provision: LRFD				Baduatiana Tau	b = 5 d	
D/C Limit=1,000 AlphaPr/Py=0,00				Reduction: Tau- EA factor=0,800		or=0,800
PhiB=0,900 PhiS=0,900	PhiC=0,900 PhiS-RI=1,000	PhiTY=0, PhiST=0		PhiTF=0,750		
A=4,370E-04	I33=1,802E-06	r33=0,00		S33=1,898E-05	Au3=3,7	35F-04
J=0,000	122=0,000	r22=0,00		S22=1,111E-06	Au2=4,3	
E=199947978,8	fy=227527,010	Ry=1,000		z33=2,128E-05		
RLLF=1,000	Fu=351632,652			z22=2,324E-06		
	ion overstressed /r > 200 (AISC E2)				
STRESS CHECK FO	RCES & MOMENTS (C	ombo 1.2D+1.	.6G+0.8W)			
Location 4,020	9,000	Mu33 -5,763	Mu22 0,000	Vu2 9,089	Vu3 0,000	Tu 0,000
PMM DEMAND/CAPA						
D/C Ratio:	1,483 = 0,000 + = (1/2)(P			(Mr22/Mc22)		
AXIAL FORCE & B	IAXIAL MOMENT DES	IGN (H1-11	o)			
Factor	L	K1	К2	B1	B2	Cm
Major Bendi		1,000	1,000	1,000	1,000	1,000
Minor Bendi	ng 1,000	1,000	1,000	1,000	1,000	1,000
LTB	L1tb 1,000	Kltb 1,000	Cb 1,435			

	Pu	phi*Pnc	phi*Pnt	
	Force	Capacity	Capacity	
Axial	0,000	1,643	89,487	
	Mu	phi∗Mn	phi∗Mn	
	Moment	Capacity	No LTB	
Major Moment	-5,763	3,887	3,887	
Minor Moment	0,000	0,228	3 Tab	
SHEAR CHECK				
	Vu	phi∗Vn	Stress	Status
	Force	Capacity	Ratio	Check
Major Shear	9,089	53,692	0,169	OK
Minor Shear	0,000	45,886	0,000	OK
CONNECTION SHEAR F	ORCES FOR BE	AMS		
	VMajor	VMajor		
	Left	Right		
Major (V2)	6,222	9,089		

39.7.4 Verificación solicitaciones cercha existente



AISC360-05/IBC200 Units : KN, m, C		CHECK (Summa	ry for	Combo and St	ration)	
Frame : 43	X Mid: 6,553	Combo: 1.2			n Type: Brace	
Length: 4,810	Y Mid: 0,000	Shape: L 1			· Type: Special	
Loc : 3,589	Z Mid: 0,235	Class: Con	npact	Princ	pl Rot: 0,000	degrees
Provision: LRFD D/C Limit=1,000	Analysis: Direc 2nd Order: Gene			Poduation:	Tau-b Fixed	
						0 000
AlphaPr/Py=2,769	AlphaPr/Pe=299,	40 lau_D=-19,	,580	EA factor=	,800 El fact	or=0,800
PhiB=0,900	PhiC=0,900	PhiTY=0,90	90	PhiTF=0,75	3	
PhiS=0,900	PhiS-RI=1,000	PhiST=0,90	30			
A=1,523E-04	133=0,000	r33=0,008		533=0,000	Au3=8,1	128F-85
J=0,000	122=0,000	r22=0,008		S22=0,000	Av2=8,1	
alpha=45,000	122 0,000			JLL 0,000		LUL US
E=199947978,8	fy=227527,010	Ry=1,000		z33=0,000		
RLLF=1,000	Fu=351632,652	, .,		z22=0,000		
DESIGN MESSAGES						
	n overstressed					
	> 200 (AISC E2)					
STRESS CHECK FORC	7750					
Location	Pu	Mu33	Mu22	Vu2	Vu3	Tu
3,589	-95,951	-0,065	0,000	0,144	0,000	0,000
PMM DEMAND/CAPACI	그러 내에는 전시하다 중요하지만하다	5.3				
D/C Ratio:	380,2 = 379, + 0	,501 + 0,422 fbw/Fbw + fbz	/Ehz			
	- 14/14	10w/10w - 102	.,, , , ,			
AXIAL FORCE & BIA	IXIAL MOMENT DESI	GN (H2-1)				
Factor	L	K1	K2	B1	B2	Cm
Major Bending		1,000	1,000	1,000	1,000	1,000
Minor Bending	1,000	1,000	1,000	1,000	1,000	1,000
	L1tb	Kltb	СЬ			
LTB	1,000	1,000	1,000			
	Pu	phi*Pnc	nhi	*Pnt		
	Force			city		
Aud - 7		Capacity				
Axial	-95,951	0,253	31	1,191		
	Mu	phi*Mn	pt	ni*Mn		
	Moment	Capacity	No	LTB		
Major Mome	nt -0,046	0.091		188		
Minor Mome		0,108				
SHEAR CHECK						
	Vu	phi*Vn	St	ress	Status	
	Force	Capacity	F	Ratio	Check	
Major Shear		9,986		0.014	OK	
Minor Shear		9,986		0,000	OK	
niinor silear	0,000	7,700		,,,,,,,,	UN	

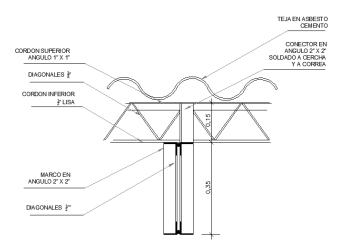


39.7.5 Índices de sobre-esfuerzos correa existente

39.7.6 Índices de sobre-esfuerzos cercha existente

Índices máximos de sobre- esfuerzos cercha

39.8 ALTERNATIVA DE REFORZAMIENTO PROPUESTO


La cercha principal presenta un índice de sobreesfuerzo muy elevado, debido a que las correas tienen una gran separación entre sí, las cargas no se están transmitiendo en los nodos, los perfiles de los cordones inferior y superior no cuentan con la sección transversal apropiada para la luz máxima y las cargas requeridas, principalmente el granizo y el viento. Por lo tanto, se recomienda desmontar todos los elementos estructurales que componen esta cubierta (cercha y correas), para ser reemplazados según un nuevo diseño acorde a las exigencias del reglamento NSR-10.

40. ANÁLISIS CUBIERTA BLOQUE 37

40.1 CONFIGURACION EXISTENTE

Configuración de correa y cercha existente

40.2 EVALUACIONES DE CARGA

Inclinación de la cubierta Separación máxima entre correas

7,56°		=	13,3%
1.67	m		

CARGA MUERTA: Según tabla B.3.4.1-1 y B.3.4.1-4 del título B de la NSR-10

 Teja eternit
 0,00 KN/m²

 Teja Asbesto cemento
 0,20 KN/m²

 Cielo raso
 0,07 KN/m²

 Lámparas
 0,03 KN/m²

 Estructura metálica
 0,03 KN/m²

 Total Carga Muerta (D)
 0,33 KN/m²

CARGA VIVA: Según tabla B.4.2.1-2 del título B de la NSR-10

Inclinación de la cubierta de 7,56 °

Lr = 0.50 KN/m²

CARGA DE GRANIZO: Según B.4.8.3 del titulo B de la NSR-10, la carga de granizo, G:

G = 1,00 KN/m²

CARGA DE VIENTO:

W= 0,40 KN/m² (Presión)

40.3 CASOS DE CARGA

CASOS DE CARGA	DESCRIPCIÓN
PP	Peso Propio de la estructura
D	Carga muerta
Lr	Carga viva de cubierta
W	Viento
G	Granizo

40.4 COMBINACIONES DE DISEÑO

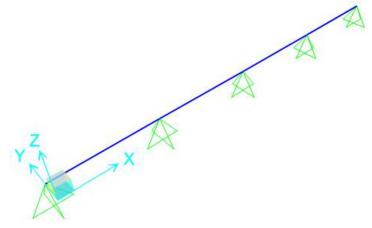
Según lo estipulado en B.2.4.2 del título B de la NSR-10:

Combinaciones de carga para ser utilizadas con el método de resistencia

COMBINACION	CARGA TOTAL
	MAYORADA KN/m²
1,4D	0,46
1,2D+0,5Lr	0,65
1.2D+0.5G	0,90
1,2D+1,6Lr+0,8W	1,20
1.2D+1.6G+0.8W	2,32
1,2D+1,6W+0,5Lr	1,29
1,2D+1,0E	0,40
0,9D+1,6W	0,94
0,9D+1,0E	0,30

Gobierna la combinación 1,2D+1,6G+0,8W

MUERTA	GRANIZO	VIENTO		
1,2D	1,6G	0,8W	Wtotal	
0,40	1,60	0,32	2,32	KN/m ²

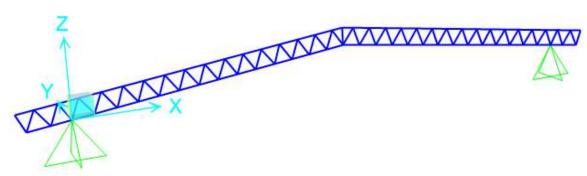

Se calcula la resultante carga muerta, según la inclinación de cubie 7,56º

Wu muerta 0,40 KN/m² Wu resulta 2,32 KN/m²

Con una separacion maxima entre correas de 1,67 m, se calculan las cargas totales SIN MAYORAR:

W D =	0,56	"KN/m	W Lr =	0,84	KN/m
W G =	1,67	KN/m	W w =	0,67	KN/m
W T =	3,87	KN/m			

40.5 RESULTADOS DEL ANÁLISIS



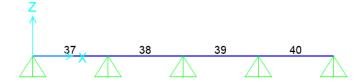
Modelo SAP 2000 Correa

(392)

Modelo SAP 2000 Cercha

40.6 REACCIONES MAXIMAS EN LOS APOYOS

Reacciones máximas Correas- Cercha Dirección Z

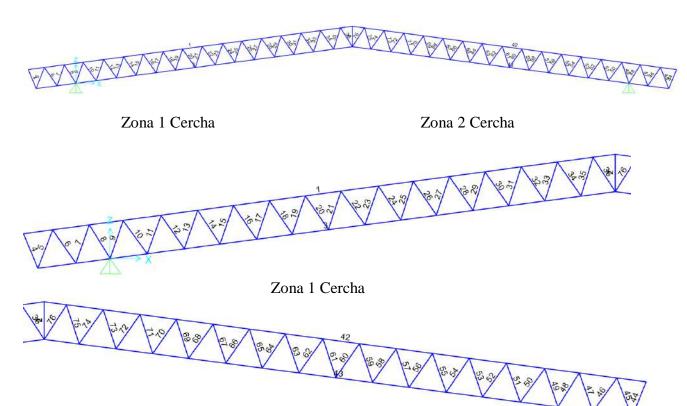

REACCIONES				
CORREAS (KN)				
Lr 4,80				
D 3,20				
W 3,84				
G	9,60			

Reacciones máximas Cercha- Apoyos Dirección Z

REACCIONES				
CERCHA (KN)				
Lr 19,20				
D 13,48				
W 15,36				
G	38,40			

40.7 VERIFICACIÓN ESTRUCTURA EXISTENTE

Nombres de los elementos que componen la correa (frames) en SAP2000:



Nombres de los elementos que componen la cercha (frames) en SAP2000:

(393)

Zona 2 Cercha

40.7.1 Valores de momentos máximos (KN-M) y cortantes máximos (KN) combinación 1.2D+1.6G+0.8W, en la correa:

TABLE: Element Forces - Frames								
Frame	e OutputCase P V2 M3							
Text	Text	KN	KN	KN-m				
37	1.2D+1.6G+0.8W	0,00	11,95	-10,53				
38	1.2D+1.6G+0.8W	0,00	-10,54	-10,53				
39	1.2D+1.6G+0.8W	0,00	10,54	-10,53				
40	1.2D+1.6G+0.8W	0,00	-11,95	-10,53				

40.7.2 Valores de momentos máximos (KN-M) y cortantes máximos (KN) combinación 1.2D+1.6G+0.8W, en la cercha:

TABLE: Element Forces - Frames						
Frame OutputCase P V2 M3						
Text	Text	KN	KN	KN-m		

(394)

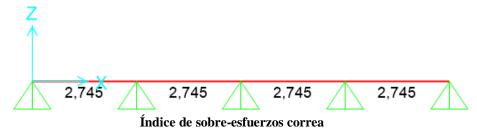
1	1 20 11 60 10 9 14	162.02	16.44	1 1 2
1	1.2D+1.6G+0.8W	-163,92	16,44	1,12
2	1.2D+1.6G+0.8W	21,94	0,00	0,00
3	1.2D+1.6G+0.8W	-235,64	-2,73	-0,72
4	1.2D+1.6G+0.8W	-23,02	0,01	0,00
5	1.2D+1.6G+0.8W	25,62	0,00	0,00
6	1.2D+1.6G+0.8W	-24,22	0,00	0,00
7	1.2D+1.6G+0.8W	20,82	0,00	0,00
8	1.2D+1.6G+0.8W	-20,59	0,00	0,00
9	1.2D+1.6G+0.8W	-45,50	0,00	0,00
10	1.2D+1.6G+0.8W	43,73	0,00	0,00
11	1.2D+1.6G+0.8W	-45,38	0,00	0,00
12	1.2D+1.6G+0.8W	48,73	0,00	0,00
13	1.2D+1.6G+0.8W	-47,79	0,00	0,00
14	1.2D+1.6G+0.8W	30,82	0,00	0,00
15	1.2D+1.6G+0.8W	-31,52	0,00	0,00
16	1.2D+1.6G+0.8W	20,06	0,00	0,00
17	1.2D+1.6G+0.8W	-19,56	0,00	0,00
18	1.2D+1.6G+0.8W	21,73	0,00	0,00
19	1.2D+1.6G+0.8W	-21,40	0,00	0,00
20	1.2D+1.6G+0.8W	20,87	0,00	0,00
21	1.2D+1.6G+0.8W	-20,38	0,00	0,00
22	1.2D+1.6G+0.8W	22,26	0,00	0,00
23	1.2D+1.6G+0.8W	-21,72	0,00	0,00
24	1.2D+1.6G+0.8W	14,26	0,00	0,00
25	1.2D+1.6G+0.8W	-14,55	0,00	0,00
26	1.2D+1.6G+0.8W	-5,16	0,00	0,00
27	1.2D+1.6G+0.8W	4,99	0,00	0,00
28	1.2D+1.6G+0.8W	-3,48	0,00	0,00
29	1.2D+1.6G+0.8W	3,79	0,00	0,00
30	1.2D+1.6G+0.8W	-4,21	0,00	0,00
31	1.2D+1.6G+0.8W	3,99	0,00	0,00
32	1.2D+1.6G+0.8W	-3,99	0,00	0,00
33	1.2D+1.6G+0.8W	4,55	0,00	0,00
34	1.2D+1.6G+0.8W	-4,95	0,00	0,00
35	1.2D+1.6G+0.8W	3,29	0,00	0,00
36	1.2D+1.6G+0.8W	-19,83	0,00	0,00
42	1.2D+1.6G+0.8W	-163,92	16,44	1,12
43	1.2D+1.6G+0.8W	-235,64	-2,73	-0,72

(395)

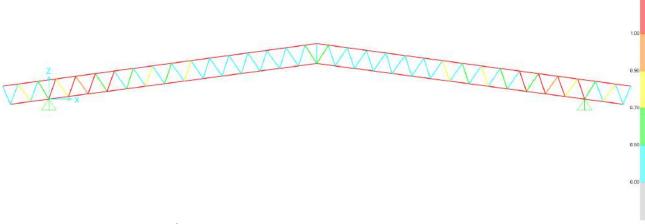
-				
44	1.2D+1.6G+0.8W	-23,02	0,01	0,00
45	1.2D+1.6G+0.8W	25,62	0,00	0,00
46	1.2D+1.6G+0.8W	-24,22	0,00	0,00
47	1.2D+1.6G+0.8W	20,82	0,00	0,00
48	1.2D+1.6G+0.8W	-20,59	0,00	0,00
49	1.2D+1.6G+0.8W	-45,50	0,00	0,00
50	1.2D+1.6G+0.8W	43,73	0,00	0,00
51	1.2D+1.6G+0.8W	-45,38	0,00	0,00
52	1.2D+1.6G+0.8W	48,73	0,00	0,00
53	1.2D+1.6G+0.8W	-47,79	0,00	0,00
54	1.2D+1.6G+0.8W	30,82	0,00	0,00
55	1.2D+1.6G+0.8W	-31,52	0,00	0,00
56	1.2D+1.6G+0.8W	20,06	0,00	0,00
57	1.2D+1.6G+0.8W	-19,56	0,00	0,00
58	1.2D+1.6G+0.8W	21,73	0,00	0,00
59	1.2D+1.6G+0.8W	-21,40	0,00	0,00
60	1.2D+1.6G+0.8W	20,87	0,00	0,00
61	1.2D+1.6G+0.8W	-20,38	0,00	0,00
62	1.2D+1.6G+0.8W	22,26	0,00	0,00
63	1.2D+1.6G+0.8W	-21,72	0,00	0,00
64	1.2D+1.6G+0.8W	14,26	0,00	0,00
65	1.2D+1.6G+0.8W	-14,55	0,00	0,00
66	1.2D+1.6G+0.8W	-5,16	0,00	0,00
67	1.2D+1.6G+0.8W	4,99	0,00	0,00
68	1.2D+1.6G+0.8W	-3,48	0,00	0,00
69	1.2D+1.6G+0.8W	3,79	0,00	0,00
70	1.2D+1.6G+0.8W	-4,21	0,00	0,00
71	1.2D+1.6G+0.8W	3,99	0,00	0,00
72	1.2D+1.6G+0.8W	-3,99	0,00	0,00
73	1.2D+1.6G+0.8W	4,55	0,00	0,00
74	1.2D+1.6G+0.8W	-4,95	0,00	0,00
75	1.2D+1.6G+0.8W	3,29	0,00	0,00
76	1.2D+1.6G+0.8W	-19,83	0,00	0,00

40.7.3 Verificación solicitaciones correa existente

AISC360-05/IBC20 Units : KN, m,	06 STEEL SECTION	CHECK (Summa	ary for C	ombo a	nd Station)	
Fuamo + 20	X Mid: 7,500	Combos 4 2	D. 4 40.0	OLI	Dosian Tun	os Doom	
Frame : 38		Combo: 1.2			Design Typ		Mamont Fuam
Length: 5,000	Y Mid: 1,000	Shape: 2L					Moment Fram
Loc : 0,000	Z Mid: 0,000	Class: Non	-Compact	S / 0	Princpl Ro	t: 0,000	degrees
Provision: LRFD	Analysis: Direc	t Analysis					
D/C Limit=1,000	2nd Order: Gene			Reduct	ion: Tau-b	Fixed	
AlphaPr/Py=0,000					tor=0,800		or=0,800
PhiB=0,900	PhiC=0,900	PhiTY=0,90		PhiTF=	0,750		
PhiS=0,900	PhiS-RI=1,000	PhiST=0,96	30				
	100 4 1055 01						705 01
A=3,046E-04	I33=1,405E-06	r33=0,068			874E-05	Au3=1,4	
J=0,000	122=0,000	r22=0,008			018E-06	Av2=3,6	146E-04
E=199947978,8	fy=227527,010	Ry=1,000		z33=2,	056E-05		
RLLF=1,000	Fu=351632,652			z22=1,	835E-06		
Warning: kl/	on overstressed r > 200 (AISC E2)		. a am				
	CES & MOMENTS (Co						
Location 0,000	Pu 0,000	Mu33 -10,533	Mu22 0,000		Vu2 .540	Vu3 0,000	0,000
Factor	AXIAL MOMENT DESI L	/Pc) + (Mr33/ GN (H1-1b) K1	Mc33) +		B1	B2	Cm
Major Bendin		1,000	1,000		,000	1,000	1,000
Minor Bendin	g 1,000	1,000	1,000	1	, 000	1,000	1,000
	Lltb	Kltb	СЬ				
LTB	1,000	1,000	2,885				
	Pu	phi*Pnc	nhi	*Pnt			
	Force	Capacity	Capac				
Axial	0,000	1,134	62	,382			
	Mu	phi∗Mn	phi	i*Mn			
	Moment	Capacity		LTB			
Major Mome		3,837		,837			
Minor Mome		0,209	o,	,001			
LITHUL LIONE	111. 0,000	0,209					
SHEAR CHECK							
	Vu	phi∗Vn	Sti	ress	Statu	s	
	Force	Capacity	Ra	atio	Chec	k	
Major Shea		37,429		,282	0		
Minor Shea	r 9,999	18,100		,000	Ô		
CUNNECTION SHE	AR FORCES FOR B	EQMS					
COMMECLION 2HE							
	VMajor	VMajor					
**************************************	Left	Right					
Major (V2)	10,540	9,142					


40.7.4 Verificación solicitaciones cercha existente

AISC360-05/IBC20	06 STEEL SECTION	CHECK (Summ	aru for	Combo	and Statio	n)	
Units : KN, m,			.	001100	0.11123		
Frame: 43	X Mid: 6,553	Combo: 1.				pe: Brace	Name = 5
Length: 4,810 Loc : 4,205	Y Mid: 0,000 Z Mid: 0,235	Class: No				e: Special ot: 0,000	Moment Fram
100 . 4,205	Z MIU: 0,235	C1455: NO	п-сопрас		гетисьт к	UC. 0,000	uegrees
Provision: LRFD	Analysis: Direc	et Analusis					
D/C Limit=1,000	2nd Order: Gene		r	Reduc	tion: Tau-	b Fixed	
AlphaPr/Py=1,651	AlphaPr/Pe=7,27				ctor=0,800		or=0,800
							50-200 120- 8 0-120-000
PhiB=0,900	PhiC=0,900	PhiTY=0,9	00	PhiTF	=0,750		
PhiS=0,900	PhiS-RI=1,000	PhiST=0,9	00				
A / 0705 OL	100 0 000				0005 01		LOE 01
A=6,272E-04	133=0,000	r33=0,016			,280E-06	AU3=4,3	
J=0,000 alpha=90,000	122=0,000	r22=0,025		322=0	,832E-06	Av2=2,8	05E-04
E=199947978,8	fy=227527,010	Ry=1,000		733=7	,707E-06		
RLLF=1,000	Fu=351632,652	ng-1,000			,181E-05		
					,		
DESIGN MESSAGES							
Error: Section	on overstressed						
STRESS CHECK FOR					110		-
Location	Pu Pu	Mu33	Mu22		Vu2	Vu3	Tu
4,205	-235,636	-0,720	0,000		2,011	0,000	0,000
PMM DEMAND/CAPAC	ITY RATIO (H1-	1a)					
D/C Ratio:	9,944 = 9,213 +		0				
	[T	+ (8/9)(Mr33		(8/9)	(Mr22/Mc22)	
AXIAL FORCE & BIG					0.4		0-
Factor	- 0 0//	K1	K2		B1	B2	Cm
Major Bending Minor Bending		1,000	1,000		1,000	1,000	1,000
HTHOL BEHOTH	g 1,000	1,000	1,000		1,000	1,000	1,000
	Lltb	Kltb	Cb				
LTB	1,000	1,000	1,435				
	Pu	phi*Pnc		i*Pnt			
	Force	Capacity	A 72 3 7 7 8	acity			
Axial	-235,636	25,576	128	8,434			
		7.00 and a 0.00 and 20.00	0.602				
	Mu	phi*Mn	•	hi*Mn			
10 Up 47 2 0 E 56 - 112 Up 10 10 10 10 10 10	Moment	Capacity		D LTB			
Major Momen		0,876		0,876			
Minor Momer	nt 0,000	1,399					
SHEAR CHECK							
	Vu	phi*Un		tress	Stat		
	Force	Capacity		Ratio	Che		
Major Shear		35,197		0,057		OK	
Minor Shear	0,000	53,425	1	0,000		ОК	



40.7.5 Índices de sobre-esfuerzos correa existente

40.7.6 Índices de sobre-esfuerzos cercha existente

Índices máximos de sobre- esfuerzos cercha

40.8 ALTERNATIVA DE REFORZAMIENTO PROPUESTO

La cercha principal presenta un índice de sobreesfuerzo muy elevado, debido a que las correas tienen una gran separación entre sí, las cargas no se están transmitiendo en los nodos, los perfiles de los cordones inferior y superior no cuentan con la sección transversal apropiada para la luz máxima y las cargas requeridas, principalmente el granizo y el viento. Por lo tanto, se recomienda desmontar todos los elementos estructurales que componen esta cubierta (cercha y correas), para ser reemplazados según un nuevo diseño acorde a las exigencias del reglamento NSR-10.

41. ANÁLISIS CUBIERTA BLOQUE 38

41.1 CONFIGURACION EXISTENTE

Configuración de correa y cercha existente

41.2 EVALUACIONES DE CARGA

Inclinación de la cubierta Separación máxima entre correas 7,56 = 13,3% 1,67 m

CARGA MUERTA: Según tabla B.3.4.1-1 y B.3.4.1-4 del título B de la NSR-10

Teja eternit 0,00 KN/m² Teja Asbesto cemento KN/m² 0,20 Cielo raso KN/m² 0,07 Lámparas KN/m² 0,03 Estructura metálica KN/m² 0,03 Total Carga Muerta (D) **0,33** KN/m²

CARGA VIVA: Según tabla B.4.2.1-2 del título B de la NSR-10

Inclinación de la cubierta de 7,56

Lr = 0,50 KN/m²

CARGA DE GRANIZ(Según B.4.8.3 del titulo B de la NSR-10, la carga de granizo, G:

G = **1,00** KN/m²

CARGA DE VIENTO:

W= 0,40 KN/m² (Presión)

41.3 CASOS DE CARGA

CASOS DE CARGA	DESCRIPCIÓN		
PP	Peso Propio de la estructura		
D	Carga muerta		
Lr	Carga viva de cubierta		
W	Viento		
G	Granizo		

41.4 COMBINACIONES DE DISEÑO

Según lo estipulado en B.2.4.2 del título B de la NSR-10:

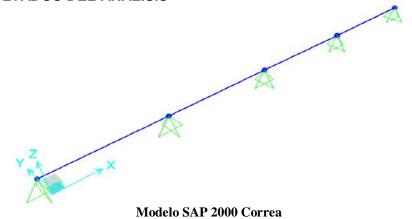
Combinaciones de carga para ser utilizadas con el método de resistencia

(401)

COMBINACION	CARGA TOTAL
	MAYORADA KN/m²
1,4D	0,46
1,2D+0,5Lr	0,65
1.2D+0.5G	0,90
1,2D+1,6Lr+0,8W	1,20
1.2D+1.6G+0.8W	2,32
1,2D+1,6W+0,5Lr	1,29
1,2D+1,0E	0,40
0,9D+1,6W	0,94
0,9D+1,0E	0,30

Gobierna la combinación 1,2D+1,6G+0,8W

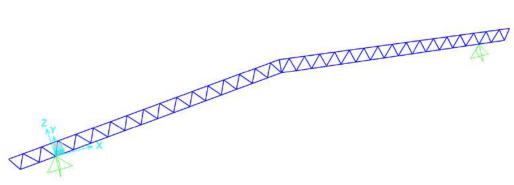
MUERTA	GRANIZO	VIENTO		
1,2D	1,6G	0,8W	Wtotal	
0.40	1,60	0.32	2.32	KN/m ²


Se calcula la resultante carga muerta, según la inclinación de cul 7,56

Wu muerta 0,40 KN/m² Wu resulta 2,32 KN/m²

Con una separacion maxima entre correas de 1,67 m, se calculan las cargas totales SIN MAYORAR:

W D =	0,56	KN/m	W Lr =	0,84	KN/m
W G =	1,67	KN/m	W w =	0,67	KN/m
W T =	3.87	KN/m			

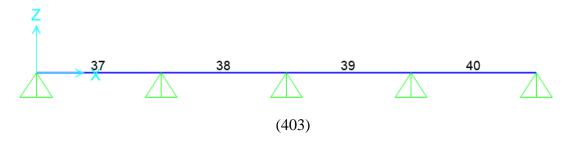

41.5 RESULTADOS DEL ANÁLISIS

(402)

Modelo SAP 2000 Cercha

41.6 REACCIONES MAXIMAS EN LOS APOYOS

Reacciones máximas Correas- Cercha Dirección Z


REACCIONES				
CORREAS (KN)				
Lr 4,80				
D	3,20			
W	3,84			
G	9,60			

Reacciones máximas Cercha- Apoyos Dirección Z

REACCIONES					
CER	CHA (KN)				
Lr	19,20				
D	13,48				
W	15,36				
G	38,40				

41.7 VERIFICACIÓN ESTRUCTURA EXISTENTE

Nombres de los elementos que componen la correa (frames) en SAP2000:

Nombres de los elementos que componen la cercha (frames) en SAP2000:

Zona 1 Cercha

Zona 1 Cercha

Zona 2 Cercha

Zona 2 Cercha

41.7.1 Valores de momentos máximos (KN-M) y cortantes máximos (KN) combinación 1.2D+1.6G+0.8W, en la correa:

(404)

TABLE: Element Forces - Frames					
Frame	OutputCase	Р	V2	M3	
Text	Text	KN	KN	KN-m	
37	1.2D+1.6G+0.8W	0,00	11,95	-10,53	
38	1.2D+1.6G+0.8W	0,00	-10,54	-10,53	
39	1.2D+1.6G+0.8W	0,00	10,54	-10,53	
40	1.2D+1.6G+0.8W	0,00	-11,95	-10,53	

41.7.2 Valores de momentos máximos (KN-M) y cortantes máximos (KN) combinación 1.2D+1.6G+0.8W, en la cercha:

TABLE: Element Forces - Frames				
Frame	OutputCase	P	V2	M3
Text	Text	KN	KN	KN-m
1	1.2D+1.6G+0.8W	-163,92	16,44	1,12
2	1.2D+1.6G+0.8W	21,94	0,00	0,00
3	1.2D+1.6G+0.8W	-235,64	-2,73	-0,72
4	1.2D+1.6G+0.8W	-23,02	0,01	0,00
5	1.2D+1.6G+0.8W	25,62	0,00	0,00
6	1.2D+1.6G+0.8W	-24,22	0,00	0,00
7	1.2D+1.6G+0.8W	20,82	0,00	0,00
8	1.2D+1.6G+0.8W	-20,59	0,00	0,00
9	1.2D+1.6G+0.8W	-45,50	0,00	0,00
10	1.2D+1.6G+0.8W	43,73	0,00	0,00
11	1.2D+1.6G+0.8W	-45,38	0,00	0,00
12	1.2D+1.6G+0.8W	48,73	0,00	0,00
13	1.2D+1.6G+0.8W	-47,79	0,00	0,00
14	1.2D+1.6G+0.8W	30,82	0,00	0,00
15	1.2D+1.6G+0.8W	-31,52	0,00	0,00
16	1.2D+1.6G+0.8W	20,06	0,00	0,00
17	1.2D+1.6G+0.8W	-19,56	0,00	0,00
18	1.2D+1.6G+0.8W	21,73	0,00	0,00
19	1.2D+1.6G+0.8W	-21,40	0,00	0,00
20	1.2D+1.6G+0.8W	20,87	0,00	0,00
21	1.2D+1.6G+0.8W	-20,38	0,00	0,00
22	1.2D+1.6G+0.8W	22,26	0,00	0,00
23	1.2D+1.6G+0.8W	-21,72	0,00	0,00
24	1.2D+1.6G+0.8W	14,26	0,00	0,00
25	1.2D+1.6G+0.8W	-14,55	0,00	0,00

(405)

26	1.2D+1.6G+0.8W	-5,16	0,00	0,00
27	1.2D+1.6G+0.8W	4,99	0,00	0,00
28	1.2D+1.6G+0.8W	-3,48	0,00	0,00
29	1.2D+1.6G+0.8W	3,79	0,00	0,00
30	1.2D+1.6G+0.8W	-4,21	0,00	0,00
31	1.2D+1.6G+0.8W	3,99	0,00	0,00
32	1.2D+1.6G+0.8W	-3,99	0,00	0,00
33	1.2D+1.6G+0.8W	4,55	0,00	0,00
34	1.2D+1.6G+0.8W	-4,95	0,00	0,00
35	1.2D+1.6G+0.8W	3,29	0,00	0,00
36	1.2D+1.6G+0.8W	-19,83	0,00	0,00
42	1.2D+1.6G+0.8W	-163,92	16,44	1,12
43	1.2D+1.6G+0.8W	-235,64	-2,73	-0,72
44	1.2D+1.6G+0.8W	-23,02	0,01	0,00
45	1.2D+1.6G+0.8W	25,62	0,00	0,00
46	1.2D+1.6G+0.8W	-24,22	0,00	0,00
47	1.2D+1.6G+0.8W	20,82	0,00	0,00
48	1.2D+1.6G+0.8W	-20,59	0,00	0,00
49	1.2D+1.6G+0.8W	-45,50	0,00	0,00
50	1.2D+1.6G+0.8W	43,73	0,00	0,00
51	1.2D+1.6G+0.8W	-45,38	0,00	0,00
52	1.2D+1.6G+0.8W	48,73	0,00	0,00
53	1.2D+1.6G+0.8W	-47,79	0,00	0,00
54	1.2D+1.6G+0.8W	30,82	0,00	0,00
55	1.2D+1.6G+0.8W	-31,52	0,00	0,00
56	1.2D+1.6G+0.8W	20,06	0,00	0,00
57	1.2D+1.6G+0.8W	-19,56	0,00	0,00
58	1.2D+1.6G+0.8W	21,73	0,00	0,00
59	1.2D+1.6G+0.8W	-21,40	0,00	0,00
60	1.2D+1.6G+0.8W	20,87	0,00	0,00
61	1.2D+1.6G+0.8W	-20,38	0,00	0,00
62	1.2D+1.6G+0.8W	22,26	0,00	0,00
63	1.2D+1.6G+0.8W	-21,72	0,00	0,00
64	1.2D+1.6G+0.8W	14,26	0,00	0,00
65	1.2D+1.6G+0.8W	-14,55	0,00	0,00
66	1.2D+1.6G+0.8W	-5,16	0,00	0,00
67	1.2D+1.6G+0.8W	4,99	0,00	0,00
68	1.2D+1.6G+0.8W	-3,48	0,00	0,00

(406)

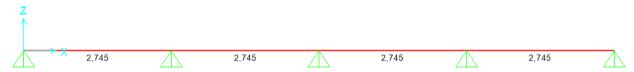
69	1.2D+1.6G+0.8W	3,79	0,00	0,00
70	1.2D+1.6G+0.8W	-4,21	0,00	0,00
71	1.2D+1.6G+0.8W	3,99	0,00	0,00
72	1.2D+1.6G+0.8W	-3,99	0,00	0,00
73	1.2D+1.6G+0.8W	4,55	0,00	0,00
74	1.2D+1.6G+0.8W	-4,95	0,00	0,00
75	1.2D+1.6G+0.8W	3,29	0,00	0,00
76	1.2D+1.6G+0.8W	-19,83	0,00	0,00

41.7.3 Verificación solicitaciones correa existente

AISC360-05/IBC200 Units : KN, m, C		CHECK (Summary	for Combo	and Station)	
Frame : 38 Length: 5,000 Loc : 0,000	X Mid: 7,500 Y Mid: 1,000 Z Mid: 0,000	Combo: 1.2D+ Shape: 2L 1x Class: Non-C	1/8	Design Typ Frame Type Princpl Ro	: Special	Moment Frame Jegrees
Provision: LRFD D/C Limit=1,000	Analysis: Direct	t Analysis	•	ction: Tau-b		
AlphaPr/Py=0,000	AlphaPr/Pe=0,00			actor=0,800		or=0,800
PhiB=0,900 PhiS=0,900	PhiC=0,900 PhiS-RI=1,000	PhiTY=0,900 PhiST=0,900	PhiT	F=0,750		
A=3,046E-04	I33=1,405E-06	r33=0,068	233=-	1,874E-05	Au3=1,47	73E-04
J=0,000	122=0,000	r22=0,008		1,018E-06	Av2=3,0	16E−04
E=199947978,8 RLLF=1,000	fy=227527,010 Fu=351632,652	Ry=1,000		2,056E-05 1,835E-06		
DESIGN MESSAGES						
Error: Sectio	n overstressed > 200 (AISC E2)					
STRESS CHECK FORC	ES & MOMENTS (Co	mbo 1.2D+1.6G+8	80)			
Location 0,000	Pu	Mu33	Mu22	Vu2 10,540	Vu3 0,000	Tu 9,000
PMM DEMAND/CAPACI	TY RATIO (H1-1	.,				
	2,745 = 0,000 + 3		33) + (Mr22	2/Mc22)		
AXIAL FORCE & BIA	XIAL MOMENT DEST	GN (H1-1b)				
Factor	L	K1	K2	B1	B2	Cm
Major Bending Minor Bending			,000 ,000	1,000	1,000	1,000
LTB	L1tb 1,000	K1tb 1,000 2	Cb ,885			

	Pu	phi*Pnc	phi*Pnt	
	Force	Capacity	Capacity	
Axial	0,000	1,134	62,382	
	Mu	phi∗Mn	phi∗Mn	
	Moment	Capacity	No LTB	
Major Moment	-10,533	3,837	3,837	
Minor Moment	9,999	0,209		
HEAR CHECK				
	Vu	phi∗Vn	Stress	Status
	Force	Capacity	Ratio	Check
Major Shear	10,540	37,429	0,282	OK
Minor Shear	0,000	18,100	0,000	ОК
ONNECTION SHEAR F	ORCES FOR BE			
	VMajor	VMajor		
d(001129) (0020520)	Left	Right		
Major (V2)	10,540	9,142		

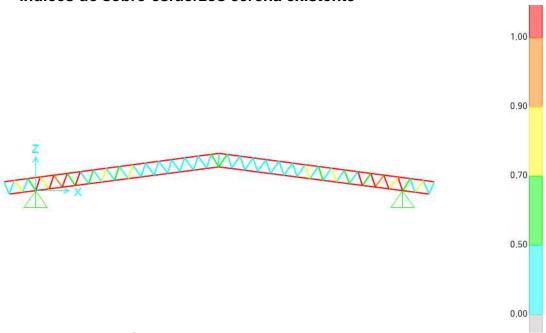
41.7.4 Verificación solicitaciones cercha existente


AISC360-05/IBC200	6 STEEL SECTION	CHECK (Sur	mary for	Combo and Stati	on)		
Units : KN, m, C							
Frame : 3 Length: 4,810	X Mid: 1,784 Y Mid: 0,000		.2D+1.6G+	0.8W Design T nf B37 Frame Ty	ype: Brace pe: Special	Moment Frame	
Loc : 4,205	Z Mid: 0,235	Class: N	lon-Compac	t Princpl	Rot: 0,000 c	legrees	
Provision: LRFD D/C Limit=1,000	Analysis: Direc 2nd Order: Gene	ral 2nd Ord		Reduction: Tau			
AlphaPr/Py=1,651	AlphaPr/Pe=7,27	2 Tau_b=-4	,301	EA factor=0,80	00 EI facto	or=0,800	
PhiB=0,900 PhiS=0,900	PhiC=0,900 PhiS-RI=1,000	PhiTY=0, PhiST=0,		PhiTF=0,750			
A=6,272E-04	133-0,000	r33=0,01	6	S33=4,280E-06	Av3=4,3	48E-04	
J=0,000 alpha=90,000	122=0,000	r22=0,02		S22=6,832E-06	Au2=2,86		
E=199947978,8 RLLF=1,000	fy=227527,010 Fu=351632,652	Ry=1,000	,	z33=7,707E-06 z22=1,181E-05			
DESIGN MESSAGES Error: Sectio	n overstressed						
STRESS CHECK FORC	ES & MOMENTS (Co	mbo 1.2D+1.	6G+0.8W)				
Location 4,205	Pu -235,636	Mu33 -0,720	Mu22 0,000	Vu2 2,011	Vu3 0,000	Tu 0,000	
PMM DEMAND/CAPACI	TY RATIO (H1-1	a)					
D/C Ratio:	9,944 = 9,213 + = (Pr/Pc)			(8/9)(Mr22/Mc2	2)		
AXIAL FORCE & BIA	XIAL MOMENT DESI	GN (H1-1a	1)				
Factor	L	K1	K2	B1	B2	Cm	
Major Bending		1,000	1,000	1,000	1,000	1,000	
Minor Bending	1,000	1,000	1,000	1,000	1,000	1,000	
	Lltb	Kltb	Cb				
LTB	1,000	1.000	1,435				

(408)

	Pu	phi*Pnc	phi*Pnt	
Axial	Force -235,636	Capacity 25,576	Capacity 128,434	
	Mu	phi*Mn	phi∗Mn	
Major Moment	Moment -0,720	Capacity 0,876	No LTB 9,876	
Minor Moment	9,999	1,399		
SHEAR CHECK	Vu	phi*Vn	Stress	Status
Major Shear	Force 2,811	Capacity 35,197	Ratio 0,057	Check OK
Minor Shear	0,000	53,425	0,000	OK

41.7.5 Índices de sobre-esfuerzos correa existente

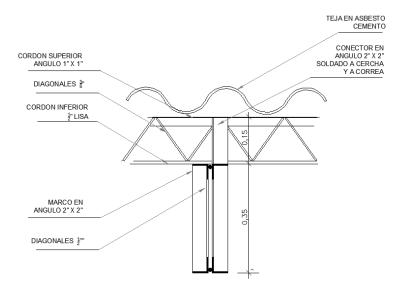


Índice de sobre-esfuerzos correa

Índices máximos de sobre- esfuerzos cercha

41.8 ALTERNATIVA DE REFORZAMIENTO PROPUESTO

La cercha principal presenta un índice de sobreesfuerzo muy elevado, debido a que las correas tienen una gran separación entre sí, las cargas no se están transmitiendo en los nodos, los perfiles de los cordones inferior y superior no cuentan con la sección transversal apropiada para la luz máxima y las cargas requeridas, principalmente el granizo y el viento. Por lo tanto, se recomienda desmontar todos los elementos estructurales que componen esta cubierta (cercha y correas), para ser reemplazados según un nuevo diseño acorde a las exigencias del reglamento NSR-10.


42. ANÁLISIS CUBIERTA BLOQUE 40

42.1 CONFIGURACION EXISTENTE

(410)

Configuración de correa y cercha existente

42.2 EVALUACIONES DE CARGA

Inclinación de la cubierta 7,56 = 13,3% Separación máxima entre correas 1,67 m

CARGA MUERTA: Según tabla B.3.4.1-1 y B.3.4.1-4 del título B de la NSR-10

 Teja eternit
 0,00
 KN/m²

 Teja Asbesto cemento
 0,20
 KN/m²

 Cielo raso
 0,07
 KN/m²

 Lámparas
 0,03
 KN/m²

 Estructura metálica
 0,03
 KN/m²

 Total Carga Muerta (D)
 0,33
 KN/m²

CARGA VIVA: Según tabla B.4.2.1-2 del título B de la NSR-10

Inclinación de la cubierta de 7,56

Lr = 0,50 KN/m²

CARGA DE GRANIZO Según B.4.8.3 del titulo B de la NSR-10, la carga de granizo, G:

G = **1,00** KN/m²

CARGA DE VIENTO:

W= 0,40 KN/m² (Presión) (411)

42.3 CASOS DE CARGA

CASOS DE CARGA	DESCRIPCIÓN
PP	Peso Propio de la estructura
D	Carga muerta
Lr	Carga viva de cubierta
W	Viento
G	Granizo

42.4 COMBINACIONES DE DISEÑO

Según lo estipulado en B.2.4.2 del título B de la NSR-10:

Combinaciones de carga para ser utilizadas con el método de resistencia

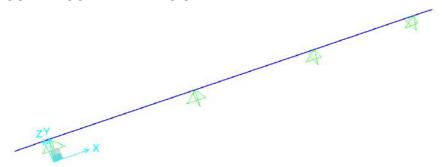
COMBINACION	CARGA TOTAL
	MAYORADA KN/m²
1,4D	0,46
1,2D+0,5Lr	0,65
1.2D+0.5G	0,90
1,2D+1,6Lr+0,8W	1,20
1.2D+1.6G+0.8W	2,32
1,2D+1,6W+0,5Lr	1,29
1,2D+1,0E	0,40
0,9D+1,6W	0,94
0,9D+1,0E	0,30

Gobierna la combinación 1,2D+1,6G+0,8W

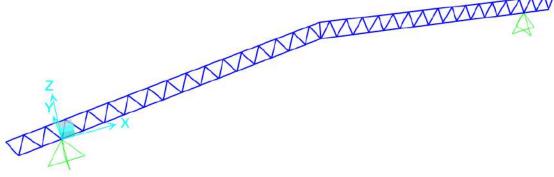
MUERTA	GRANIZO	VIENTO		
1,2D	1,6G	0,8W	Wtotal	
0.40	1,60	0,32	2.32	KN/m ²

Se calcula la resultante carga muerta, según la inclinación de cul 7,56

Wu muerta 0,40 KN/m² Wu resulta 2,32 KN/m²


Con una separacion maxima entre correas de 1,67 m, se calculan las cargas totales SIN MAYORAR:

W D =	0,56	"KN/m	W Lr =	0,84	KN/m
W G =	1,67	KN/m	W w =	0,67	KN/m
W T =	3.87	KN/m			



42.5 RESULTADOS DEL ANÁLISIS

Modelo SAP 2000 Correa

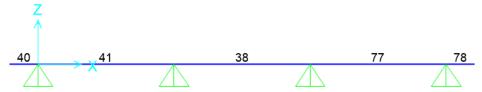
Modelo SAP 2000 Cercha

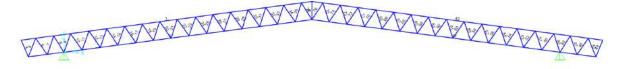
42.6 REACCIONES MAXIMAS EN LOS APOYOS

Reacciones máximas Correas- Cercha Dirección Z

REACCIONES				
CORREAS (KN)				
Lr	4,50			
D	3,00			
W	3,60			
G	9,00			

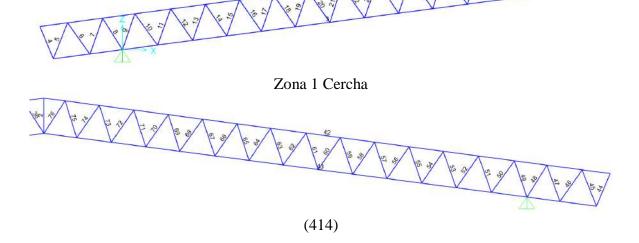
Reacciones máximas Cercha- Apoyos Dirección Z




REACCIONES				
CER	CERCHA (KN)			
Lr	18,00			
D	12,68			
W	14,40			
G	36,00			

42.7 VERIFICACIÓN ESTRUCTURA EXISTENTE

Nombres de los elementos que componen la correa (frames) en SAP2000:



Nombres de los elementos que componen la cercha (frames) en SAP2000:

Zona 1 Cercha

Zona 2 Cercha

Zona 2 Cercha

42.7.1 Valores de momentos máximos (KN-M) y cortantes máximos (KN) combinación 1.2D+1.6G+0.8W, en la correa:

TABLE: Element Forces - Frames						
Frame	OutputCase	Р	V2	M3		
Text	Text	KN	KN	KN-m		
38	1.2D+1.6G+0.8W	0,00	10,43	-9,98		
40	1.2D+1.6G+0.8W	0,00	4,34	-2,26		
41	1.2D+1.6G+0.8W	0,00	11,98	-9,98		
77	1.2D+1.6G+0.8W	0,00	-11,98	-9,98		
78	1.2D+1.6G+0.8W	0,00	-4,34	-2,26		

42.7.2 Valores de momentos máximos (KN-M) y cortantes máximos (KN) combinación 1.2D+1.6G+0.8W, en la cercha:

TABLE: Element Forces - Frames					
Frame	OutputCase	P	V2	M3	
Text	Text	KN	KN	KN-m	
1	1.2D+1.6G+0.8W	-153,90	15,41	1,05	
2	1.2D+1.6G+0.8W	20,59	0,00	0,00	
3	1.2D+1.6G+0.8W	-221,17	-2,56	-0,68	
4	1.2D+1.6G+0.8W	-21,58	0,01	0,00	
5	1.2D+1.6G+0.8W	24,03	0,00	0,00	
6	1.2D+1.6G+0.8W	-22,71	0,00	0,00	
7	1.2D+1.6G+0.8W	19,53	0,00	0,00	
8	1.2D+1.6G+0.8W	-19,32	0,00	0,00	
9	1.2D+1.6G+0.8W	-42,72	0,00	0,00	
10	1.2D+1.6G+0.8W	41,05	0,00	0,00	
11	1.2D+1.6G+0.8W	-42,60	0,00	0,00	
12	1.2D+1.6G+0.8W	45,73	0,00	0,00	
13	1.2D+1.6G+0.8W	-44,84	0,00	0,00	
14	1.2D+1.6G+0.8W	28,94	0,00	0,00	
15	1.2D+1.6G+0.8W	-29,59	0,00	0,00	
16	1.2D+1.6G+0.8W	18,84	0,00	0,00	
17	1.2D+1.6G+0.8W	-18,37	0,00	0,00	
18	1.2D+1.6G+0.8W	20,40	0,00	0,00	

(415)

19	1.2D+1.6G+0.8W	-20,09	0,00	0,00
20	1.2D+1.6G+0.8W	19,59	0,00	0,00
21	1.2D+1.6G+0.8W	-19,13	0,00	0,00
22	1.2D+1.6G+0.8W	20,88	0,00	0,00
23	1.2D+1.6G+0.8W	-20,38	0,00	0,00
24	1.2D+1.6G+0.8W	13,38	0,00	0,00
25	1.2D+1.6G+0.8W	-13,64	0,00	0,00
26	1.2D+1.6G+0.8W	-4,84	0,00	0,00
27	1.2D+1.6G+0.8W	4,69	0,00	0,00
28	1.2D+1.6G+0.8W	-3,27	0,00	0,00
29	1.2D+1.6G+0.8W	3,56	0,00	0,00
30	1.2D+1.6G+0.8W	-3,96	0,00	0,00
31	1.2D+1.6G+0.8W	3,76	0,00	0,00
32	1.2D+1.6G+0.8W	-3,76	0,00	0,00
33	1.2D+1.6G+0.8W	4,29	0,00	0,00
34	1.2D+1.6G+0.8W	-4,67	0,00	0,00
35	1.2D+1.6G+0.8W	3,12	0,00	0,00
36	1.2D+1.6G+0.8W	-18,62	0,00	0,00
42	1.2D+1.6G+0.8W	-153,90	15,41	1,05
43	1.2D+1.6G+0.8W	-221,17	-2,56	-0,68
44	1.2D+1.6G+0.8W	-21,58	0,01	0,00
45	1.2D+1.6G+0.8W	24,03	0,00	0,00
46	1.2D+1.6G+0.8W	-22,71	0,00	0,00
47	1.2D+1.6G+0.8W	19,53	0,00	0,00
48	1.2D+1.6G+0.8W	-19,32	0,00	0,00
49	1.2D+1.6G+0.8W	-42,72	0,00	0,00
50	1.2D+1.6G+0.8W	41,05	0,00	0,00
51	1.2D+1.6G+0.8W	-42,60	0,00	0,00
52	1.2D+1.6G+0.8W	45,73	0,00	0,00
53	1.2D+1.6G+0.8W	-44,84	0,00	0,00
54	1.2D+1.6G+0.8W	28,94	0,00	0,00
55	1.2D+1.6G+0.8W	-29,59	0,00	0,00
56	1.2D+1.6G+0.8W	18,84	0,00	0,00
57	1.2D+1.6G+0.8W	-18,37	0,00	0,00
58	1.2D+1.6G+0.8W	20,40	0,00	0,00
59	1.2D+1.6G+0.8W	-20,09	0,00	0,00
60	1.2D+1.6G+0.8W	19,59	0,00	0,00
61	1.2D+1.6G+0.8W	-19,13	0,00	0,00

62	1.2D+1.6G+0.8W	20,88	0,00	0,00
63	1.2D+1.6G+0.8W	-20,38	0,00	0,00
64	1.2D+1.6G+0.8W	13,38	0,00	0,00
65	1.2D+1.6G+0.8W	-13,64	0,00	0,00
66	1.2D+1.6G+0.8W	-4,84	0,00	0,00
67	1.2D+1.6G+0.8W	4,69	0,00	0,00
68	1.2D+1.6G+0.8W	-3,27	0,00	0,00
69	1.2D+1.6G+0.8W	3,56	0,00	0,00
70	1.2D+1.6G+0.8W	-3,96	0,00	0,00
71	1.2D+1.6G+0.8W	3,76	0,00	0,00
72	1.2D+1.6G+0.8W	-3,76	0,00	0,00
73	1.2D+1.6G+0.8W	4,29	0,00	0,00
74	1.2D+1.6G+0.8W	-4,67	0,00	0,00
75	1.2D+1.6G+0.8W	3,12	0,00	0,00
76	1.2D+1.6G+0.8W	-18,62	0,00	0,00

42.7.3 Verificación solicitaciones correa existente

AISC360-05/IBC2006 STEEL SECTION CHECK (Summary for Combo and Station) Units : KN, m, C Frame: 41 X Mid: 2,500 Combo: 1.2D+1.6G+0.8W Design Type: Beam Y Mid: 1,000 Length: 5,000 Shape: 2L 1x1/8 Frame Type: Special Moment Frame : 5,000 Z Mid: 0,000 Class: Non-Compact Princpl Rot: 0,000 degrees Loc Provision: LRFD Analysis: Direct Analysis D/C Limit=1,000 2nd Order: General 2nd Order Reduction: Tau-b Fixed EA factor=0,800 EI factor=0,800 AlphaPr/Py=0,000 AlphaPr/Pe=0,000 Tau_b=1,000 PhiB=0,900 PhiC=0,900 PhiTY=0,900 PhiTF=0,750 PhiS-RI=1,000 PhiST=0,900 PhiS=0,900 A=3,046E-04 I33=1,405E-06 r33=0,068 S33=1,874E-05 Av3=1,473E-04 122=0,000 S22=1,018E-06 Av2=3,046E-04 J=0,000 r22=0,008 E=199947978,8 fy=227527,010 Ry=1,000 z33=2,056E-05 RLLF=1,000 Fu=351632,652 z22=1,835E-06 DESIGN MESSAGES Error: Section overstressed Warning: k1/r > 200 (AISC E2) STRESS CHECK FORCES & MOMENTS (Combo 1.2D+1.6G+0.8W) Mu33 Location Pu Mu22 Vu₂ Vu3 Tu 0,000 -9,976 0,000 5,000 0,000 11.975 0,000 PMM DEMAND/CAPACITY RATIO (H1-1b) D/C Ratio: 2,600 = 0,000 + 2,600 + 0,000 = (1/2)(Pr/Pc) + (Mr33/Mc33) + (Mr22/Mc22) AXIAL FORCE & BIAXIAL MOMENT DESIGN (H1-1b)Factor K2 **B1 B2** Cm K1 Major Bending 1,000 1,000 1,000 1,000 1,000 1,000 Minor Bending 1,000 1,000 1,000 1,000 1,000 1,000 Kltb Litb Cb LTB 1,000 1,000 1,689 Pu phi*Pnc phi*Pnt Capacity Force Capacity 0,000 Axial 62,382 1,134 Mu phi*Mn phi*Mn Moment Capacity No LTB Major Moment -9,976 3,837 3,837 Minor Moment 0,000 0,209 SHEAR CHECK phi*Vn Vu Stress Status Force Capacity Ratio Check 11,975 37,429 0,320 OK Major Shear Minor Shear 0,000 18,100 0,000 OK CONNECTION SHEAR FORCES FOR BEAMS **VMajor UMajor**

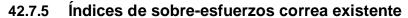
Left

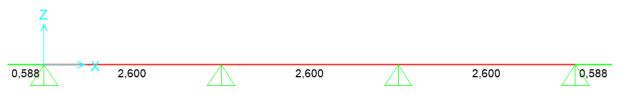
8,887

Major (V2)

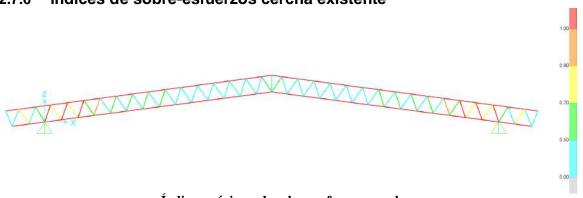
Right

11,975




42.7.4 Verificación solicitaciones cercha existente

	, m, C	TEEE SECTION	CHECK (Summ	lary ror c	JUNDO	and 5	racion	,		
							_			
Frame: 3		Mid: 1,784	100000000000000000000000000000000000000	2D+1.6G+0				e: Brac		
Length: 4,81		Mid: 0,000		2x1/8 Ir						
Loc : 4,26	0 5 Z	Mid: 0,235	Class: No	n-Compact		Princ	cp1 Ro	t: 0,00	10 deg	rees
Provision: L	LRFD An	alysis: Direc	ct Analysis							
D/C Limit=1,	,000 2n	d Order: Gene	eral 2nd Orde	r	Reduc	tion:	Tau-b	Fixed		
AlphaPr/Py=1	1,550 Al	phaPr/Pe=6,82	26 Tau_b=-3,	469	EA fa	ctor=	9,800	EI fa	ctor=	0,800
PhiB=0,900	Ph	iC=0,900	PhiTY=0,9	00	PhiTF	=0,75	9			
PhiS=0,900		iS-RI=1,000	PhiST=0,9			. conficient				
A=6,272E-04	13	3=0,000	r33=0,016		533=4	,280E	- 86	Au3=4	,348E	- 84
J=0,000		2=0,000	r22=0,025			,832E			,865E	
alpha=90,000		0,000							.,0052	
E=199947978,	,8 fy	=227527,010	Ry=1,000		z33=7	,707E-	- 06			
RLLF=1,000	Fu	=351632,652	11.1			,181E				
DESIGN MESSA										
Error: S	Section o	verstressed								
STRESS CHECK	K FORCES	& MOMENTS (Co	ombo 1.2D+1.6	G+0.8W)						
Location	n	Pu	Mu33	Mu22		Vu2		Vu3		Tu
4,205		224 440	0 /7/					0 000		0 000
4,205		-221,169	-0,676	0,000		1,889		0,000		0,000
				0,000		1,889		0,000		0,000
PMM DEMAND/C	CAPACITY	RATIO (H1-	1a)			1,889		0,000		0,000
	CAPACITY	RATIO (H1-	1a) 0,686 + 0,00	10	(9/0)		/Mc22)			0,000
PMM DEMAND/O	CAPACITY	RATIO (H1-	1a)	10	(8/9)		/Mc22)			0,000
PMM DEMAND/C D/C Rati	CAPACITY io: 9,3	RATIO (H1- 133 = 8,648 + = (Pr/Pc)	1a) 0,686 + 0,06 + (8/9)(Mr33 IGN (H1-1a)	30 3/Mc33) +	(8/9)	(Mr22,	/Mc22)			
PMM DEMAND/O D/C Rati AXIAL FORCE Factor	CAPACITY io: 9,3	RATIO (H1- 133 = 8,648 + = (Pr/Pc) IL MOMENT DES	1a) 0,686 + 0,06 + (8/9)(Mr33 IGN (H1-1a) K1	30 3/Mc33) + K2	(8/9)	(Mr22,		B2		Cm
PMM DEMAND/O D/C Rati AXIAL FORCE Factor Major Be	CAPACITY io: 9,3 & BIAXIA	RATIO (H1- 133 = 8,648 + = (Pr/Pc) IL MOMENT DES L 9,866	1a) 8,686 + 8,86 + (8/9)(Mr33 IGN (H1-1a) K1 1,888	8/Mc33) + K2	(8/9)	(Mr22, B1 1,000		B2 1,000		Cm 1,000
PMM DEMAND/O D/C Rati AXIAL FORCE Factor	CAPACITY io: 9,3 & BIAXIA	RATIO (H1- 133 = 8,648 + = (Pr/Pc) IL MOMENT DES	1a) 0,686 + 0,06 + (8/9)(Mr33 IGN (H1-1a) K1	30 3/Mc33) + K2	(8/9)	(Mr22,		B2		Cm
PMM DEMAND/O D/C Rati AXIAL FORCE Factor Major Be	CAPACITY io: 9,3 & BIAXIA	RATIO (H1- 133 = 8,648 + = (Pr/Pc) L MOMENT DES L 0,066 1,000	1a) 8,686 + 8,86 + (8/9)(Mr33 IGN (H1-1a) K1 1,888 1,888	K2 1,666 1,666	(8/9)	(Mr22, B1 1,000		B2 1,000		Cm 1,000
PMM DEMAND/O D/C Rati DXIAL FORCE Factor Major Be	CAPACITY io: 9,3 & BIAXIA	RATIO (H1- 133 = 8,648 + = (Pr/Pc) IL MOMENT DES L 9,866	1a) 8,686 + 8,86 + (8/9)(Mr33 IGN (H1-1a) K1 1,888	8/Mc33) + K2	(8/9)	(Mr22, B1 1,000		B2 1,000		Cm 1,000
PMM DEMAND/O D/C Rati AXIAL FORCE Factor Major Be Minor Be	CAPACITY io: 9,3 & BIAXIA	RATIO (H1- 133 = 8,648 + = (Pr/Pc) L MOMENT DES L 9,866 1,888 L1tb 1,888	1a) 0,686 + 0,08 + (8/9)(Mr33 IGN (H1-1a) K1 1,000 1,000 K1tb 1,000	K2 1,000 1,000 Cb		(Mr22, B1 1,000		B2 1,000		Cm 1,999
PMM DEMAND/O D/C Rati AXIAL FORCE Factor Major Be Minor Be	CAPACITY io: 9,3 & BIAXIA	RATIO (H1- 133 = 8,648 + = (Pr/Pc) L MOMENT DES L 9,866 1,888 L1tb 1,888	1a) 0,686 + 0,06 + (8/9)(Mr33 IGN (H1-1a) K1 1,000 1,000 K1tb 1,000 phi*Pnc	K2 1,000 1,000 Cb 1,438	nt	(Mr22, B1 1,000		B2 1,000		Cm 1,999
PMM DEMAND/O D/C Rati AXIAL FORCE Factor Major Be Minor Be	CAPACITY io: 9,3 & BIAXIA	RATIO (H1- 133 = 8,648 + = (Pr/Pc) IL MOMENT DES L 9,866 1,888 Lltb 1,888 Pu Force	1a) 0,686 + 0,08 + (8/9)(Mr33 IGN (H1-1a) K1 1,000 1,000 K1tb 1,000	K2 1,000 1,000 Cb	'nt ty	(Mr22, B1 1,000		B2 1,000		Cm 1,999
PMM DEMAND/O D/C Rati AXIAL FORCE Factor Major Be Minor Be	CAPACITY io: 9,3 & BIAXIA	RATIO (H1- 133 = 8,648 + = (Pr/Pc) IL MOMENT DES L 9,866 1,888 Lltb 1,888 Pu Force -221,169	1a) 8,686 + 8,86 + (8/9)(Mr33 IGN (H1-1a) K1 1,888 1,888 K1tb 1,888 phi*Pnc Capacity 25,576	K2 1,000 1,000 1,000 Cb 1,438 phi*P Capaci	nt ty	(Mr22, B1 1,000		B2 1,000		Cm 1,999
PMM DEMAND/O D/C Rati AXIAL FORCE Factor Major Be Minor Be	CAPACITY io: 9,3 & BIAXIA	RATIO (H1- 133 = 8,648 + = (Pr/Pc) IL MOMENT DES L 0,066 1,000 Lltb 1,000 Pu Force -221,169	1a) 8,686 + 8,86 + (8/9)(Mr33 IGN (H1-1a) K1 1,888 1,888 K1tb 1,888 phi*Pnc Capacity 25,576 phi*Mn	K2 1,000 1,000 Cb 1,438 phi*P Capaci 128,4	'nt ty 134	(Mr22, B1 1,000		B2 1,000		Cm 1,999
PMM DEMAND/O D/C Rati AXIAL FORCE Factor Major Be Minor Be LTB	CAPACITY io: 9,3 & BIAXIA ending ending	RATIO (H1- 133 = 8,648 + = (Pr/Pc) IL MOMENT DES: L 0,066 1,000 Lltb 1,000 Pu Force -221,169 Mu Moment	1a) 8,686 + 8,86 + (8/9)(Mr33 IGN (H1-1a) K1 1,888 1,888 K1tb 1,888 phi*Pnc Capacity 25,576 phi*Mn Capacity	K2 1,000 1,000 1,000 Cb 1,438 phi*P Capaci 128,4	nt ty i34 Mn TB	(Mr22, B1 1,000		B2 1,000		Cm 1,999
PMM DEMAND/O D/C Rati AXIAL FORCE Factor Major Be Minor Be LTB Axial	CAPACITY io: 9,3 & BIAXIA ending ending	RATIO (H1- 133 = 8,648 + = (Pr/Pc) IL MOMENT DES: L 0,066 1,000 Lltb 1,000 Pu Force -221,169 Mu Moment -0,676	1a) 8,686 + 8,86 + (8/9)(Mr33 IGN (H1-1a) K1 1,888 1,888 1,888 phi*Pnc Capacity 25,576 phi*Mn Capacity 8,876	K2 1,000 1,000 Cb 1,438 phi*P Capaci 128,4	nt ty i34 Mn TB	(Mr22, B1 1,000		B2 1,000		Cm 1,999
PMM DEMAND/O D/C Rati EXIAL FORCE Factor Major Be Minor Be LTB	CAPACITY io: 9,3 & BIAXIA ending ending	RATIO (H1- 133 = 8,648 + = (Pr/Pc) IL MOMENT DES: L 0,066 1,000 Lltb 1,000 Pu Force -221,169 Mu Moment	1a) 8,686 + 8,86 + (8/9)(Mr33 IGN (H1-1a) K1 1,888 1,888 K1tb 1,888 phi*Pnc Capacity 25,576 phi*Mn Capacity	K2 1,000 1,000 1,000 Cb 1,438 phi*P Capaci 128,4	nt ty i34 Mn TB	(Mr22, B1 1,000		B2 1,000		Cm 1,999
PMM DEMAND/O D/C Rati AXIAL FORCE Factor Major Be Minor Be LTB Axial Major M	CAPACITY io: 9,3 & BIAXIA ending ending	RATIO (H1- 133 = 8,648 + = (Pr/Pc) IL MOMENT DES: L 0,066 1,000 Lltb 1,000 Pu Force -221,169 Mu Moment -0,676	1a) 8,686 + 8,86 + (8/9)(Mr33 IGN (H1-1a) K1 1,888 1,888 1,888 phi*Pnc Capacity 25,576 phi*Mn Capacity 8,876	K2 1,000 1,000 1,000 Cb 1,438 phi*P Capaci 128,4	nt ty i34 Mn TB	(Mr22, B1 1,000		B2 1,000		Cm 1,999
PMM DEMAND/O D/C Rati AXIAL FORCE Factor Major Be Minor Be LTB Axial Major M	CAPACITY io: 9,3 & BIAXIA ending ending	RATIO (H1- 133 = 8,648 + = (Pr/Pc) IL MOMENT DES: L 0,066 1,000 Lltb 1,000 Pu Force -221,169 Mu Moment -0,676	1a) 8,686 + 8,86 + (8/9)(Mr33 IGN (H1-1a) K1 1,888 1,888 Phi*Pnc Capacity 25,576 Phi*Mn Capacity 8,876 1,399 Phi*Un	K2 1,000 1,000 1,000 Cb 1,438 phi*P Capaci 128,4	rnt ty 334 eMn .TB	(Mr22, 81 1,889 1,989		B2 1,000		Cm 1,999
PMM DEMAND/O D/C Rati AXIAL FORCE Factor Major Be Minor Be LTB Axial Major M	CAPACITY io: 9,3 & BIAXIA ending ending	RATIO (H1- 133 = 8,648 + = (Pr/Pc) IL MOMENT DES: L 0,066 1,000 Lltb 1,000 Pu Force -221,169 Mu Moment -0,676 0,000	1a) 8,686 + 8,88 + (8/9)(Mr33 IGN (H1-1a) K1 1,808 1,808 Phi*Pnc Capacity 25,576 phi*Mn Capacity 8,876 1,399 phi*Un Capacity	K2 1,000 1,000 1,000 Cb 1,438 phi*P Capaci 128,4 Phi*	ent ty 134 eMn TB	(Mr22, 81 1,888 1,888		B2 1,000		Cm 1,999
PMM DEMAND/O D/C Rati AXIAL FORCE Factor Major Be Minor Be LTB Axial	CAPACITY io: 9,3 & BIAXIA ending ending loment loment	RATIO (H1- 133 = 8,648 + = (Pr/Pc) IL MOMENT DES: L 0,066 1,000 Lltb 1,000 Pu Force -221,169 Mu Moment -0,676 0,000	1a) 8,686 + 8,86 + (8/9)(Mr33 IGN (H1-1a) K1 1,888 1,888 Phi*Pnc Capacity 25,576 Phi*Mn Capacity 8,876 1,399 Phi*Un	K2 1,000 1,000 1,000 Cb 1,438 phi*P Capaci 128,4 Phi 9,8	ont ty 34 Mn TB 376	(Mr22, 81 1,888 1,888	atus	B2 1,000		Cm 1,999

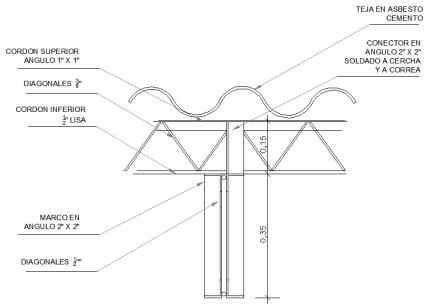


Índice de sobre-esfuerzos correa

42.7.6 Índices de sobre-esfuerzos cercha existente

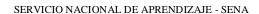
Índices máximos de sobre- esfuerzos cercha

42.8 ALTERNATIVA DE REFORZAMIENTO PROPUESTO


La cercha principal presenta un índice de sobreesfuerzo muy elevado, debido a que las correas tienen una gran separación entre sí, las cargas no se están transmitiendo en los nodos, los perfiles de los cordones inferior y superior no cuentan con la sección transversal apropiada para la luz máxima y las cargas requeridas, principalmente el granizo y el viento. Por lo tanto, se recomienda desmontar todos los elementos estructurales que componen esta cubierta (cercha y correas), para ser reemplazados según un nuevo diseño acorde a las exigencias del reglamento NSR-10.

43. ANÁLISIS CUBIERTA BLOQUE 41

43.1 CONFIGURACION EXISTENTE



Configuración de correa y cercha existente

43.2 EVALUACIONES DE CARGA

Inclinación de la cubierta Separación máxima entre correas

7,56		=	13,3%
1,67	m		

CARGA MUERTA: Según tabla B.3.4.1-1 y B.3.4.1-4 del título B de la NSR-10

 Teja eternit
 0,00 KN/m²

 Teja Asbesto cemento
 0,20 KN/m²

 Cielo raso
 0,07 KN/m²

 Lámparas
 0,03 KN/m²

 Estructura metálica
 0,03 KN/m²

 Total Carga Muerta (D)
 0,33 KN/m²

CARGA VIVA: Según tabla B.4.2.1-2 del título B de la NSR-10

Inclinación de la cubierta de 7,56

Lr = 0,50 KN/m²

CARGA DE GRANIZC Según B.4.8.3 del titulo B de la NSR-10, la carga de granizo, G:

G = 1,00 KN/m²

CARGA DE VIENTO:

W= 0,40 KN/m² (Presión)

43.3 CASOS DE CARGA

CASOS DE CARGA	DESCRIPCIÓN
PP	Peso Propio de la estructura
D	Carga muerta
Lr	Carga viva de cubierta
W	Viento
G	Granizo

43.4 COMBINACIONES DE DISEÑO

Según lo estipulado en B.2.4.2 del título B de la NSR-10: Combinaciones de carga para ser utilizadas con el método de resistencia

COMBINACION	CARGA TOTAL
	MAYORADA KN/m²
1,4D	0,46
1,2D+0,5Lr	0,65
1.2D+0.5G	0,90
1,2D+1,6Lr+0,8W	1,20
1.2D+1.6G+0.8W	2,32
1,2D+1,6W+0,5Lr	1,29
1,2D+1,0E	0,40
0,9D+1,6W	0,94
0,9D+1,0E	0,30

Gobierna la combinación 1,2D+1,6G+0,8W

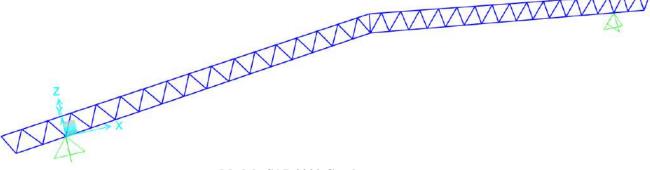
MUERTA	GRANIZO	VIENTO		
1,2D	1,6G	0,8W	Wtotal	
0,40	1,60	0,32	2,32	KN/m ²

Se calcula la resultante carga muerta, según la inclinación de cul 7,56

Wu muerta 0,40 KN/m² Wu resulta 2,32 KN/m²

Con una separacion maxima entre correas de 1,67 m, se calculan las cargas totales SIN MAYORAR:

W D =	0,56	"KN/m	W Lr =	0,84	KN/m
W G =	1,67	KN/m	W w =	0,67	KN/m
W T =	3,87	KN/m			


43.5 RESULTADOS DEL ANÁLISIS

Modelo SAP 2000 Correa

(423)

Modelo SAP 2000 Cercha

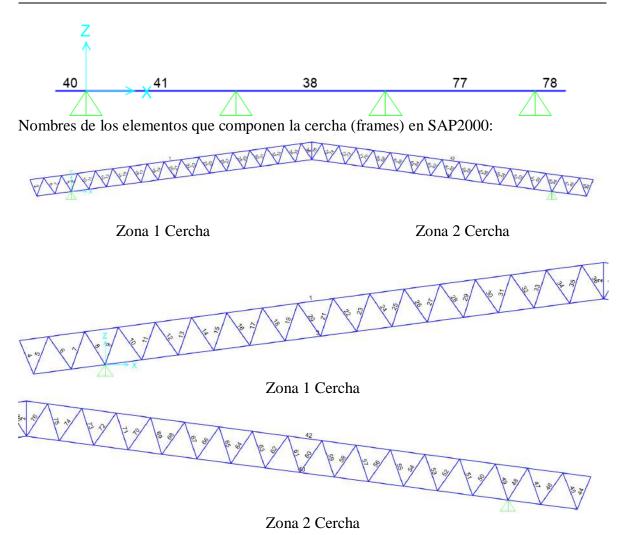
43.6 REACCIONES MAXIMAS EN LOS APOYOS

Reacciones máximas Correas- Cercha Dirección Z

REACCIONES			
CORREAS (KN)			
Lr	4,50		
D	3,00		
W	3,60		
G	9,00		

Reacciones máximas Cercha- Apoyos Dirección Z

	00101150			
REACCIONES				
CERCHA (KN)				
Lr	18,00			
D	12,68			
W	14,40			
G	36,00			


43.7 VERIFICACIÓN ESTRUCTURA EXISTENTE

Nombres de los elementos que componen la correa (frames) en SAP2000:

(424)

43.7.1 Valores de momentos máximos (KN-M) y cortantes máximos (KN) combinación 1.2D+1.6G+0.8W, en la correa:

TABLE: Element Forces - Frames						
Frame	OutputCase	Р	V2	M3		
Text	Text	KN	KN	KN-m		
38	1.2D+1.6G+0.8W	0,00	9,84	-9,41		
40	1.2D+1.6G+0.8W	0,00	4,09	-2,13		
41	1.2D+1.6G+0.8W	0,00	11,30	-9,41		
77	1.2D+1.6G+0.8W	0,00	-11,30	-9,41		
78	1.2D+1.6G+0.8W	0,00	-4,09	-2,13		

(425)

43.7.2 Valores de momentos máximos (KN-M) y cortantes máximos (KN) combinación 1.2D+1.6G+0.8W, en la cercha:

	TABLE: Element Forces - Frames						
Frame	OutputCase	Р	V2	M3			
Text	Text	KN	KN	KN-m			
1	1.2D+1.6G+0.8W	-153,90	15,41	1,05			
2	1.2D+1.6G+0.8W	20,59	0,00	0,00			
3	1.2D+1.6G+0.8W	-221,17	-2,56	-0,68			
4	1.2D+1.6G+0.8W	-21,58	0,01	0,00			
5	1.2D+1.6G+0.8W	24,03	0,00	0,00			
6	1.2D+1.6G+0.8W	-22,71	0,00	0,00			
7	1.2D+1.6G+0.8W	19,53	0,00	0,00			
8	1.2D+1.6G+0.8W	-19,32	0,00	0,00			
9	1.2D+1.6G+0.8W	-42,72	0,00	0,00			
10	1.2D+1.6G+0.8W	41,05	0,00	0,00			
11	1.2D+1.6G+0.8W	-42,60	0,00	0,00			
12	1.2D+1.6G+0.8W	45,73	0,00	0,00			
13	1.2D+1.6G+0.8W	-44,84	0,00	0,00			
14	1.2D+1.6G+0.8W	28,94	0,00	0,00			
15	1.2D+1.6G+0.8W	-29,59	0,00	0,00			
16	1.2D+1.6G+0.8W	18,84	0,00	0,00			
17	1.2D+1.6G+0.8W	-18,37	0,00	0,00			
18	1.2D+1.6G+0.8W	20,40	0,00	0,00			
19	1.2D+1.6G+0.8W	-20,09	0,00	0,00			
20	1.2D+1.6G+0.8W	19,59	0,00	0,00			
21	1.2D+1.6G+0.8W	-19,13	0,00	0,00			
22	1.2D+1.6G+0.8W	20,88	0,00	0,00			
23	1.2D+1.6G+0.8W	-20,38	0,00	0,00			
24	1.2D+1.6G+0.8W	13,38	0,00	0,00			
25	1.2D+1.6G+0.8W	-13,64	0,00	0,00			
26	1.2D+1.6G+0.8W	-4,84	0,00	0,00			
27	1.2D+1.6G+0.8W	4,69	0,00	0,00			
28	1.2D+1.6G+0.8W	-3,27	0,00	0,00			
29	1.2D+1.6G+0.8W	3,56	0,00	0,00			

(426)

30	1.2D+1.6G+0.8W	-3,96	0,00	0,00
31	1.2D+1.6G+0.8W	3,76	0,00	0,00
32	1.2D+1.6G+0.8W	-3,76	0,00	0,00
33	1.2D+1.6G+0.8W	4,29	0,00	0,00
34	1.2D+1.6G+0.8W	-4,67	0,00	0,00
35	1.2D+1.6G+0.8W	3,12	0,00	0,00
36	1.2D+1.6G+0.8W	-18,62	0,00	0,00
42	1.2D+1.6G+0.8W	-153,90	15,41	1,05
43	1.2D+1.6G+0.8W	-221,17	-2,56	-0,68
44	1.2D+1.6G+0.8W	-21,58	0,01	0,00
45	1.2D+1.6G+0.8W	24,03	0,00	0,00
46	1.2D+1.6G+0.8W	-22,71	0,00	0,00
47	1.2D+1.6G+0.8W	19,53	0,00	0,00
48	1.2D+1.6G+0.8W	-19,32	0,00	0,00
49	1.2D+1.6G+0.8W	-42,72	0,00	0,00
50	1.2D+1.6G+0.8W	41,05	0,00	0,00
51	1.2D+1.6G+0.8W	-42,60	0,00	0,00
52	1.2D+1.6G+0.8W	45,73	0,00	0,00
53	1.2D+1.6G+0.8W	-44,84	0,00	0,00
54	1.2D+1.6G+0.8W	28,94	0,00	0,00
55	1.2D+1.6G+0.8W	-29,59	0,00	0,00
56	1.2D+1.6G+0.8W	18,84	0,00	0,00
57	1.2D+1.6G+0.8W	-18,37	0,00	0,00
58	1.2D+1.6G+0.8W	20,40	0,00	0,00
59	1.2D+1.6G+0.8W	-20,09	0,00	0,00
60	1.2D+1.6G+0.8W	19,59	0,00	0,00
61	1.2D+1.6G+0.8W	-19,13	0,00	0,00
62	1.2D+1.6G+0.8W	20,88	0,00	0,00
63	1.2D+1.6G+0.8W	-20,38	0,00	0,00
64	1.2D+1.6G+0.8W	13,38	0,00	0,00
65	1.2D+1.6G+0.8W	-13,64	0,00	0,00
66	1.2D+1.6G+0.8W	-4,84	0,00	0,00
67	1.2D+1.6G+0.8W	4,69	0,00	0,00
68	1.2D+1.6G+0.8W	-3,27	0,00	0,00
69	1.2D+1.6G+0.8W	3,56	0,00	0,00
70	1.2D+1.6G+0.8W	-3,96	0,00	0,00
71	1.2D+1.6G+0.8W	3,76	0,00	0,00
72	1.2D+1.6G+0.8W	-3,76	0,00	0,00

73	1.2D+1.6G+0.8W	4,29	0,00	0,00
74	1.2D+1.6G+0.8W	-4,67	0,00	0,00
75	1.2D+1.6G+0.8W	3,12	0,00	0,00
76	1.2D+1.6G+0.8W	-18,62	0,00	0,00

43.7.3 Verificación solicitaciones correa existente

AISC360-05/IBC2006 STEEL SECTION CHECK (Summary for Combo and Station)

Units : KN, m, C

X Mid: 2,500 Frame : 41 Combo: 1.2D+1.6G+0.8W Design Type: Beam

Frame Type: Special Moment Frame Length: 5,000 Y Mid: 1,000 Shape: 2L 1x1/8

Loc : 5,000 Z Mid: 0,000 Class: Non-Compact Princpl Rot: 0,000 degrees

Provision: LRFD Analysis: Direct Analysis

D/C Limit=1,000 2nd Order: General 2nd Order Reduction: Tau-b Fixed

AlphaPr/Py=0,000 AlphaPr/Pe=0,000 Tau_b=1,000 EA factor=0,800 EI factor=0,800

PhiTY=0,900 PhiTF=0,750 PhiB=0,900 PhiC=0,900

PhiS=0,900 PhiS-RI=1,000 PhiST=0,900

A=3,046E-04 I33=1,405E-06 r33=0,068 S33=1,874E-05 Au3=1,473E-04 122=0,000 r22=0,008 S22=1,018E-06 Av2=3,046E-04 J=0,000

fy=227527,010 E=199947978,8 Ry=1,000 z33=2,056E-05

RLLF=1,000 z22=1,835E-06 Fu=351632,652

DESIGN MESSAGES

Error: Section overstressed Warning: k1/r > 200 (AISC E2)

STRESS CHECK FORCES & MOMENTS (Combo 1.2D+1.6G+0.8W)

Location Mu33 Mu22 Um2 Um3 TII PII 5,000 0,000 0,000 -9,412 0,000 11,297 0,000

PMM DEMAND/CAPACITY RATIO (H1-1b)

D/C Ratio: 2,453 = 0,000 + 2,453 + 0,000 = (1/2)(Pr/Pc) + (Mr33/Mc33) + (Mr22/Mc22)

AXIAL FORCE & BIAXIAL MOMENT DESIGN (H1-1b)

Factor K1 K2 **B1 B2** Cm Major Bending Minor Bending 1,000 1,000 1,000 1,000 1.000 1,000 1,000 1,000 1,000 1,000 1,000 1,000

L1tb K1tb Cb 1,000 LTB 1,000 1,689

	Pu	phi*Pnc	phi*Pnt	
	Force	Capacity	Capacity	
Axial	0,000	1,134	62,382	
	Mu	phi*Mn	phi*Mn	
	Moment	Capacity	No LTB	
Major Moment	-9,412	3,837	3,837	
Minor Moment	0,000	0,209		
SHEAR CHECK				
	Vu	phi*Vn	Stress	Status
	Force	Capacity	Ratio	Check
Major Shear	11,297	37,429	0,302	ОК
Minor Shear	0,000	18,100	0,000	ОК
CONNECTION SHEAR	FORCES FOR BE	AMS		
	VMajor	VMajor		
	Left	Right		
Major (V2)	8,384	11,297		

43.7.4 Verificación solicitaciones cercha existente

AISC360-05/IBC2006 STEEL SECTION CHECK (Summary for Combo and Station)

Units : KN, m, C

Frame: 3 X Mid: 1,784 Combo: 1.2D+1.6G+0.8W Design Type: Brace

Length: 4,810 Y Mid: 0,000 Shape: 2L 2x1/8 Inf B37 Frame Type: Special Moment Frame

Loc : 4,205 Z Mid: 0,235 Class: Non-Compact Princpl Rot: 0,000 degrees

Provision: LRFD Analysis: Direct Analysis

D/C Limit=1,000 2nd Order: General 2nd Order Reduction: Tau-b Fixed

AlphaPr/Py=1,550 AlphaPr/Pe=6,826 Tau_b=-3,409 EA factor=0,800 EI factor=0,800

PhiB=0,900 PhiC=0,900 PhiTY=0,900 PhiTF=0,750

PhiS=0,900 PhiS-RI=1,000 PhiST=0,900

alpha=90,000 E=199947978,8 fy=227527,010 Ry=1,000 z33=7,707E-06

DESIGN MESSAGES

Error: Section overstressed

STRESS CHECK FORCES & MOMENTS (Combo 1.2D+1.6G+0.8W)

Location Pu Mu33 Mu22 Vu2 Vu3 Tu 4,205 -221,169 -0,676 0,000 1,889 0,000 0,000

PMM DEMAND/CAPACITY RATIO (H1-1a)

D/C Ratio: 9,333 = 8,648 + 0,686 + 0,000

= (Pr/Pc) + (8/9)(Mr33/Mc33) + (8/9)(Mr22/Mc22)

AXIAL FORCE & BIAXIAL MOMENT DESIGN (H1-1a)

Factor K2 **B1 B2** Cm K1 Major Bending 0,066 1,000 1,000 1,000 1,000 1,000 1,000 Minor Bending 1,000 1,000 1,000 1,000 1,000

L1tb K1tb Cb LTB 1,000 1,000 1,438

	Pu	phi*Pnc	phi*Pnt	
Axial	Force -221,169	Capacity 25,576	Capacity 128,434	
	Mu	phi∗Mn	phi∗Mn	
Major Moment	Moment -0,676	Capacity 0,876	No LTB 0,876	
Minor Moment	0,000	1,399		
SHEAR CHECK	Vu	phi*Vn	Stress	Status
Major Shear	Force 1,889	Capacity 35,197	Ratio 0,054	Check OK
Minor Shear	0,000	53,425	0,000	ОК