

29 de diciembre de 2015

EXPLORACIÓN, ENSAYOS DE LABORATORIO Y RECOMENDACIÓN GEOTÉCNICA
REQUERIDA PARA LAS AMPLIACIONES DE LOS COLEGIOS DEL PROYECTO, JORNADA
ÚNICA DEL MINISTERIO DE EDUCACIÓN- MODULO 2.
INSTITUCIÓN EDUCATIVA ECOTURÍSTICA LITORAL DEL PACÍFICO. MUNICIPIO DE NUQUÍ,
DEPARTAMENTO DEL CHOCÓ.
VERSIÓN Nº 02

IVICSA INGENIEROS CONSULTORES, SUCURSAL COLOMBIA S.A

GEOZAM LABORATORIO Y CONSULTORÍA S.A.S

SANTIAGO DE CALI, DICIEMBRE DE 2015

29 de diciembre de 2015

TABLA DE CONTENIDO

1.	INT	RODUCCION	4
2.	DE	SCRIPCIÓN GENERAL DEL PROYECTO	5
	2.1	LOCALIZACIÓN	5
3.	AC	TIVIDADES DE INVESTIGACIÓN	6
	3.1	PERFORACIONES	6
	3.2	ENSAYO DE PENETRACIÓN ESTÁNDAR (SPT)	6
	3.3	TOMA DE MUESTRAS Y ENSAYOS DE LABORATORIO	
4.	EV	ALUACIÓN GEOTÉCNICA	
	4.1	DESCRIPCIÓN DEL TERRENO	
	4.2	EVALUACIÓN GEOTÉCNICA	
	4.3	GEOLOGÍA REGIONAL Y LOCAL	
	4.4	GEOMORFOLOGÍA	
	4.5	PERFIL ESTRATIGRÁFICO	
	4.6	NIVEL FREÁTICO	
		OPIEDADES DEL SUELO	
6.		PECTOS SÍSMICOS	
	6.1	MOVIMIENTO SÍSMICO	
	6.2	EFECTOS LOCALES	14
		PERFIL DEL SUELO	
		COEFICIENTE DE AMPLIACIÓN Fa y Fv	
		COEFICIENTE DE IMPORTANCIA	
7.		GULO DE FRICCIÓN INTERNA Y COHESIÓN	
8.	DE	SCRIPCIÓN SUELO	17
9.		CALIZACIÓN PERFORACIONES	
10		TENCIAL DE EXPANSIÓN	
11		TENCIAL DE LICUACIÓN	
12		PACIDAD PILOTES	
13		ENTAMIENTOS	
14	. RE	GISTRO FOTOGRÁFICO	28

15.	MÓDULOS DE REACCIÓN DEL SUELO	30
	COEFICIENTES DE PRESIÓN	
	CONCLUSIONES Y RECOMENDACIONES	
	LIMITACIONES	

29 de diciembre de 2015

1. INTRODUCCIÓN

Atendiendo la amable invitación de IVICSA INGENIEROS CONSULTORES, SUCURSAL COLOMBIA S.A, se ha realizado el presente estudio de suelos, en el Municipio de NUQUÍ, Departamento del Chocó, para la ampliación de la Institución Educativa ECOTURÍSTICA Litoral del Pacífico. El estudio, se ha ejecutado con la finalidad de examinar las propiedades geotécnicas del suelo y aplicarlas de manera eficiente para la construcción de dichas obras.

Para lograr el objetivo propuesto, se realizó una investigación con toma de muestras en sitio, mediante la realización de cuatro (4) perforaciones, las cuales permitieron identificar la estratigrafía, la posición del nivel freático y las propiedades del suelo, parámetros necesarios para calcular la capacidad portante del suelo y, así concluir y emitir las correspondientes recomendaciones.

Agradecemos a IVICSA INGENIEROS CONSULTORES, SUCURSAL COLOMBIA S.A, la confianza depositada para la realización de este estudio y esperamos cumplir de manera satisfactoria con los objetivos propuestos.

29 de diciembre de 2015

2. DESCRIPCIÓN GENERAL DEL PROYECTO

El proyecto a desarrollarse en el Municipio de Nuquí, consiste en la construcción de una edificación de un piso para salones de clase, conforme a la norma NSR -10 y demás normas existentes.

2.1 LOCALIZACIÓN

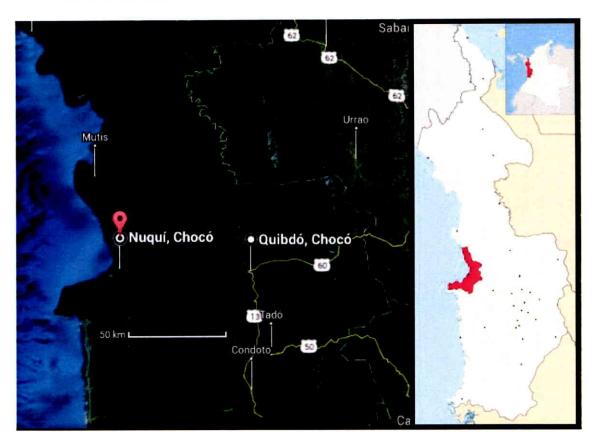


Fig. 1. Localización geográfica

LÍMITES DEL MUNICIPIO DE NUQUÍ

Limita al norte con el municipio de Bahía Solano, Al sur con el Municipio del Bajo Baudó, Al Oriente con el Alto Baudó, Al occidente con el Océano Pacifico.

29 de diciembre de 2015

3. ACTIVIDADES DE INVESTIGACIÓN

De acuerdo con el área comprometida por el proyecto y la magnitud de los trabajos proyectados, se planificó y ejecutó la serie de exploraciones descritas a continuación:

3.1 PERFORACIONES

Sobre el nivel (N=0,0) del terreno se ejecutaron cuatro perforaciones proyectadas a -6,0m de profundidad, lo cual solo fue posible en el sondeo No.1 tal y como se describe más adelante.

Para realizar el sondeo se utilizó el método de perforación a percusión, sin lavado, con un equipo mecánico accionado manualmente.

3.2 ENSAYO DE PENETRACIÓN ESTÁNDAR (SPT)

El ensayo de penetración estándar es una prueba dinámica, que permite obtener la resistencia del suelo en sitio. La metodología de la prueba y el equipo utilizado se describen en la norma ASTM D 1586-67 y en resumen consiste en hincar en el estrato de interés un muestreador del tipo cuchara partida (split spoon sampler) de 2" de diámetro, golpeándolo con un martillo de 140 Lb de peso, que se deja caer en forma libre desde 30" de altura, contando el número de golpes necesarios para una penetración de 1 pie. Este número, se anota como N y es el resultado de la prueba. El ensayo se repitió en cada una de las perforaciones a intervalos de 1,0 m de profundidad.

3.3 TOMA DE MUESTRAS Y ENSAYOS DE LABORATORIO

Se lograron extraer muestras de tipo alterado del recobro de la cuchara partida estándar, asociando a cada prueba de penetración una muestra.

Las muestras recuperadas se llevaron al Laboratorio de Suelos en donde se desarrollaron los siguientes ensayos (ver anexo 1):

- Humedad Natural.
- Límites de Atterberg.
- Gradación por Tamiz.

29 de diciembre de 2015

Compresión Simple y pesos unitarios

El ensayo de consolidación y el ensayo corte directo no fue posible realizarse por ser materiales arenosos limosos con gravas no plásticas.

4. EVALUACIÓN GEOTÉCNICA

4.1 DESCRIPCIÓN DEL TERRENO

El proyecto a realizarse está enmarcado en un terreno plano tal y como se puede apreciar en el registro fotográfico.

4.2 EVALUACIÓN GEOTÉCNICA

El área de Chocó está ubicada en el margen convergente de las placas Nazca-Suramérica, que actualmente convergen a una tasa de 50-64 km/my (Kellogg y Vega, 1995). Esta convergencia parece ser un proceso que se inicia en el Jurásico cuando el borde NW de Suramérica sufrió la subducción de la placa Farallón, originando la fosa del Valle del Cauca a lo largo del antiguo borde occidental de la Cordillera Central de Colombia. Durante el Cretácico Tardío al Neógeno, ocurrieron acreciones regionales sucesivas de la corteza oceánica Mesozoica, en el margen de la placa Suramérica, las cuales controlaron el desarrollo de las sub-cuencas Atrato y San Juan y del Arco de Panamá, hasta cerrar la comunicación entre el Océano Pacífico y el Mar Caribe (Aspden et al., 1984; Estrada, 1995; Nivia, 1996). En el Neógeno la convergencia tuvo una reorganización importante con la separación de la placa Farallón en las placas Nazca y Cocos, a través de una serie de crestas y fallas transformantes (Barckhausen y Mescheden, 2000; Ben-Avraham y McGeary, 1985; Duque-Caro, 1990ª y 1990b; Mountney y Westbrook, 1997).

4.3 GEOLOGÍA REGIONAL Y LOCAL

GEOLOGÍA REGIONAL

El Municipio de Nuquí se localiza al occidente del Departamento Del Chocó, frente a la costa del Océano Pacifico, en la Unidad geomorfológica denominada Serranía del Baudó principalmente. Esta unidad de características litoestratigráficas y morfológicas particulares, se caracteriza por estar constituida por basaltos de ambiente oceánico, aglomerados tobas y lavas basálticas almohadilladas intercaladas con sedimentos de origen marino de edad Coniaciano Maastrichtiano (Cretácico). En el

29 de diciembre de 2015

área de Cabo Corrientes afloran calizas de carácter arrecifal junto a chert y areniscas de edad Mioceno medio.

La parte más oriental del Municipio presenta algunas formaciones pertenecientes a la unidad geomorfológica Cuenca del Atrato-San Juan de edad terciaria, en contacto fallado con los basaltos de la Serranía del Baudó.

Las rocas que conforman la Unidad geotectónica Serranía del Baudó en el Municipio de Nuquí son de edad cretácica, terciaria y cuaternaria. El Cuaternario está constituido por depósitos aluviales recientes formados a partir de la meteorización y erosión de las rocas del flanco occidental de la Serranía del Baudó.

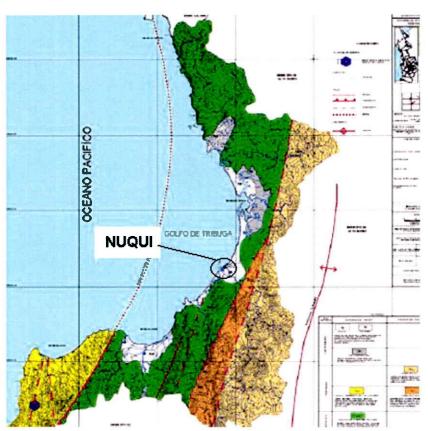


Fig. 2. Geología.

29 de diciembre de 2015

GEOLOGÍA LOCALSERRANÍA DEL BAUDÓ

La serranía del Baudó es quizá la parte del territorio nacional más desconocida geológicamente debido a lo inaccesible y selvático del área. Los pocos trabajos realizados son de zonas muy restringidas y aisladas y de carácter regional.

Las rocas que constituyen la serranía del Baudó pertenecen al cretácico y al terciario, y se encuentran en contacto fallado, en algunas zonas se encuentran sedimentos del cuaternario como en los lechos de los ríos y en las playas marinas.

4.4 GEOMORFOLOGÍA

Los procesos morfodinámicos exógenos determinan la morfología actual con relieves característicos y contrastantes, generados a través de procesos de gradación y agradación.

De acuerdo con la clasificación de Zinck (1987). En el municipio de Nuquí se identificaron paisajes de montaña denudacional, montaña estructural, lomerío denudacional, valles y planicie fluvio marina. (Ver Fig. 3. Geomorfología).

Las geoformas que constituyen el relieve del Municipio de Nuquí, son las siguientes. Ver tabla página siguiente, Geoformas Municipales.

29 de diciembre de 2015

Geoformas Municipales

Espinazo Monoclinal y /o anticlinal compuesto	En rocas volcánicas máficas de la Serranía del Baudó y sedimentarias calcáreas de la Formación Uva, con pendientes muy fuertes originados por procesos de meteorización física en rocas ígneas volcánicas
Montañas erosiónales ramificadas	En rocas volcánicas de la Serranía de Baudó
Montañas ramificadas	En rocas Volcánicas y calcáreas de Cabo Corrientes
Montañas y colinas ramificadas	En rocas Volcánicas de Cabo Corrientes
Piedemonte Aluvio Coluvial	En depósitos que han sido formados por procesos gravitacionales y aluviales en las cuencas de las corrientes que descienden del flanco Occidental de la Serranía del Baudó y de las partes altas de cabo Corrientes.
Lianura de marea con esteros	Formadas por depósitos sedimentarios formados por las mareas del Océano Pacifico, constituidos por arenas finas y sedimentos limosos
Playas , Barras de playa y cordones litorales	Comprende las zonas litorales producto de los procesos de sedimentación y agradación marina o mixta aluvial y marina
Valle aluvial inundable de río Meåndrico	Estos valles están formados por depósitos sedimentarios producidos por sedimentación de materiales arenolimosos en las llanuras de inundación de los principales ríos. Están constituidas por superficies planas y plano cóncavas correspondientes a diferentes niveles de terrazas, planos de inundación y depresiones cenagosas y pantanosas producidas por la depositación de sedimentos aluviales, bajo condiciones de bajo gradiente hidráulico.
Valle Coluvio - Aluvial	Se encuentra en los valles aluviales y depósitos coluviales de los ríos menores que descienden de la Serranía del Baudó en Nuquí

29 de diciembre de 2015

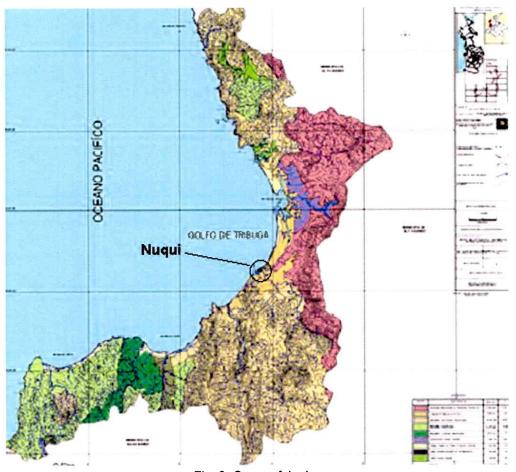


Fig. 3. Geomorfología.

4.5 PERFIL ESTRATIGRÁFICO

En el anexo No.1 se muestran los perfiles estratigráficos de cada uno de los sondeos, según estos sondeos se pueden establecer los siguientes perfiles:

SONDEO 1

ESTRATO A

Inicialmente y hasta una profundidad de -0,50m se presenta una capa vegetal con arena de color gris.

29 de diciembre de 2015

ESTRATO B

Después de la cota -0,50m y hasta una profundidad de -1,50m se presenta un estrato de arena limosa sin plasticidad color gris oscuro, humedad natural alta, compacidad muy suelta

ESTRATO C

Después de la cota -1,50m y hasta una profundidad de -6,0m se presenta un estrato de arena limosa con algo de gravillas sin plasticidad color café humedad natural alta, compacidad suelta.

SONDEO 2

ESTRATO A

Inicialmente y hasta una profundidad de -0,50m se presenta una capa vegetal con arena de color gris.

ESTRATO B

Después de la cota -0,50m y hasta una profundidad de -2,5m se presenta una arena limosa sin plasticidad color gris oscuro, humedad natural alta compacidad suelta.

ESTRATO C

Después de la cota -2,5m y hasta una profundidad de -5,50m se presenta un estrato de arena limosa sin plasticidad color gris oscuro, humedad natural alta compacidad mediana.

SONDEO 3

ESTRATO A

Inicialmente y hasta una profundidad de -0,50m se presenta una capa vegetal con arena de color gris.

ESTRATO B

Después de la cota -0,50m y hasta una profundidad de -1,50m se presenta una arena limosa con algo de gravillas sin plasticidad color gris humedad natural alta, compacidad suelta.

ESTRATO C

Después de la cota -1,50m y hasta una profundidad de -2,5m se presenta una arena limosa sin plasticidad color gris, humedad natural alta, compacidad suelta.

ESTRATO D

Después de la cota -2,5m y hasta una profundidad de -4,0m se presenta un estrato de arena limosa con algo de gravillas sin plasticidad color gris oscuro humedad natural alta, compacidad suelta.

29 de diciembre de 2015

SONDEO 4

ESTRATO A

Inicialmente y hasta una profundidad de -0,50m se presenta una capa vegetal con rastros de basura.

ESTRATO B

Después de la cota -0,50m y hasta una profundidad de -2,5m se presenta una arena gravo limosa sin plasticidad color gris, humedad natural alta, compacidad suelta.

ESTRATO C

Después de la cota -2,5m y hasta una profundidad de - 4,20m se presenta un estrato de arena limosa sin plasticidad color gris, humedad natural alta, compacidad suelta. Se presenta rechazo a la profundidad de -4,20m

4.6 NIVEL FREÁTICO

En el sondeo No.1 se registra nivel freático a la profundidad de -1,0 metro.

En el sondeo No.2 se registra nivel freático a la profundidad de -0,65metros.

En el sondeo No.3 se registra nivel freático a la profundidad de -0,50metros.

En el sondeo No.4 se registra nivel freático a la profundidad de -0,70 metros.

5. PROPIEDADES DEL SUELO

En el anexo No. 1 aparece una tabla con los resultados de laboratorio donde se contemplan los contenidos de humedad, clasificación de los diferentes estratos, compresión inconfinada, límites de Atterberg y porcentajes de la curva estratigráfica.

6. ASPECTOS SÍSMICOS

6.1 MOVIMIENTO SÍSMICO

El Proyecto se encuentra dentro de una zona de amenaza sísmica alta, zona 8

Aa coeficiente que representa la aceleración horizontal pico efectiva (zona 8) Aa= 0,45

Av. coeficiente que representa la velocidad horizontal pico efectiva (zona 8) Av= 0,4

La sección A.3.6.4.2 de las Normas de Construcciones Sismo Resistentes NSR-10 establece que los elementos de cimentación, tales como zapatas, dados de pilotes, pilas o "Caissons", etc., deben

29 de diciembre de 2015

amarrarse por medio de elementos capaces de resistir en tensión o compresión una fuerza no menor de (0,25 Aa) veces la Carga Vertical Total de elementos que tenga la mayor carga entre los que interconecta, además de las fuerzas que le transmita la superestructura. Para efectos del diseño de la cimentación debe cumplirse lo prescrito en A.3.7.

6.2 EFECTOS LOCALES

6.2.1 PERFIL DEL SUELO

Según los sondeos se observa que N promedio tiende a ser menor que 15 y las cohesiones de las compresiones inconfinadas son menores a 0,5 kgf/cm², se homologa perfil Suelo Tipo E.

6.2.2 COEFICIENTE DE AMPLIACIÓN Fa y Fv

Conociendo el perfil del suelo como perfil tipo E, se obtiene: Coeficiente Fa para periodos cortos **Fa=0.9**Coeficiente Fv para periodos intermedios **Fv= 2,4**

6.2.3 COEFICIENTE DE IMPORTANCIA

GRUPO DE USO

Use grupo de uso III, edificaciones de atención a la comunidad. Para un grupo de uso III, se obtiene un coeficiente de importancia (I = 1,25).

Conociendo los Parámetros de Diseño se calcula la aceleración espectral que junto con las características vibratorias y la masa de la estructura, se puede calcular el cortante sísmico en la base.

29 de diciembre de 2015

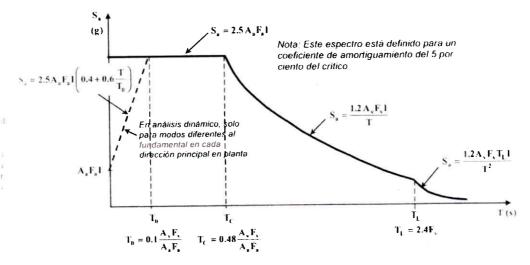


Figura A.2.6-1 — Espectro Elástico de Aceleraciones de Diseño como fracción de g

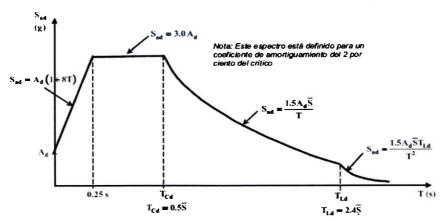


Figura A.12.3-1 — Espectro de aceleraciones horizontales elástico del umbral de daño

Para umbral de daño use Ad = 0,1

7. ANGULO DE FRICCIÓN INTERNA Y COHESIÓN

Se usan las siguientes fórmulas en función del número de golpes para hallar el ángulo de fricción interna y cohesión, para Colombia se trabaja con N₄₅.

Peck: $\phi = 28.5 + 0.25 * N1_{45}$ Peck , Hanson y Thornsburg

29 de diciembre de 2015

$$\phi = 26,25 \times \left[2 - e^{(-\frac{Nc}{39})} \right]$$

Khishida

$$\phi = \sqrt{12,5*N1_{45}} + 15$$

Donde

Ø` = ángulo de fricción interna

N45 = es igual al número de golpes de ensayo usado para Colombia.

C = cohesión

C= K*N60 donde N varia de 3,5 a 6,5 (Stroud 1974)

Use N= 4,4

C=4,4*N45 *45/60

$$N_{60} * Er_{60} = N_{45} * Er_{45}$$

ANG. FRIC. 1 = Peck feq = 28.5 + 0.25 N145

ANG. FRIC. 2 = Peck, Hanson y Thomburn feq = 26.25 ' (2 - exp(-N145 / 62)

ANG. FRIC. 3 = Kishida f'eq = 15 +(12.5 ' N145)

SONDEO	N	z	z	PESO ESP.	q	ANG FRIC	ANG FRIC	ANG FRIC	PROMEDIO	Q	Cohesión
		m	cm	Kn/m3	Kn/m2	1	2	3	ANG FRIC		kg-f/cm2
P1	4	0,70	70	18,0	12,6	29,9	28,8	22,1	26,93		0,13
P1	14	1,70	170	18,0	30,6	30,4	34,2	28,2	30,94	123	0,46
P1	14	2,70	270	18,0	48,6	30,4	34,2	28,2	30,94	8.1	0,46
P1	14	3,70	370	18,0	66,6	30,4	34,2	28,2	30,94		0,46
P1	14	4,70	470	18,0	84,6	30,4	34,2	28,2	30,94		0,46
P2	6	0,70	70	18,0	12,6	30,1	30,0	23,7	27,91		0,20
P2	9	1,70	170	18,0	30,6	30,2	31,7	25,6	29,17		0,30
P2	12	2,70	270	18,0	48,6	30,4	33,2	27,2	30,27		0,40
P2	18	3,70	370	18,0	66,6	30,6	36,0	30,0	32,17		0,59
P2	14	4,70	470	18,0	84,6	30,4	34,2	28,2	30,94		0,46
P3	4	0,70	70	18,0	12,6	29,9	28,8	22,1	26,93		0,13
P3	5	1,70	170	18,0	30,6	30,0	29,4	22,9	27,44		0,17
Р3	9	2,70	270	18,0	48,6	30,2	31,7	25,6	29,17		0,30
P4	6	0,70	70	18,0	12,6	30,1	30,0	23,7	27,91	-	0,20
P4	6	1,70	170	18,0	30,6	30,1	30,0	23,7	27,91		0,20
P4	5	2,70	270	18.0	48,6	30,0	29,4	22,9	27,44		0,17

29 de diciembre de 2015

8. DESCRIPCIÓN SUELO

El proyecto a realizarse se compone de una edificación de un piso para salones de clase en estructura puntual, lo cual sugiere cimentos individuales.

Los sondeos han reportado suelos granulares en matriz de limos no cohesiva que homologan en los estratos de interés trabajar con condición drenada; Se trabajan con ecuaciones de capacidad portante desarrolladas por Jumikis (1969) Ko and Davidson (1973) soportadas y ampliadas en el libro Foundation Analysis and Design fifth edition Joseph E. Bowles pág. 218;

En términos generales se establecen los siguientes resultados

PROFUNDIDAD (m)	TIPO DE SUELOS	N Golpes /pie	Cohesión aparente Kgf/cm²
0-0,50m	Capa vegetal con arena de color gris y rastros de basura		
0,50m-1,50m	Arena limosa y gravo limosa	5	0,17
1,5m-2,0m	compacidad suelta	8,5	0,28
2,0m-3,0m		10	0,33
3,0m-4,0m	Arena limosa con algo de gravillas	16	0,53
4,0m-5,0m	compacidad suelta a mediana	14	0,46
5,0m-6,0m			

Capa vegetal con arena de color gris y rastros de basura	
Arena limosa y gravo limosa compacidad suelta Npromedio = 6,8. Cohesión = 0,23 Kgf/cm²	-0,5m -2,0m
Arena limosa con algo de gravillas compacidad suelta a median Npromedio = 13. Cohesión = 0,44 Kgf/cm²	

29 de diciembre de 2015

FORMULACIÓN Jumikis (1969) Ko and Davidson.

$$qult = c * \left(\frac{2\sqrt{Kp}}{\cos \phi} + \sqrt{Kp} \right) + \overline{q} \frac{\sqrt{Kp} Kp}{\cos \phi} + \frac{\gamma B}{4} \left(\frac{Kp^2}{\cos \phi} - \sqrt{Kp} \right)$$

Kp: es el coeficiente de presión pasiva que es igual a

 $Kp = tan2 (45 + \emptyset/2)$

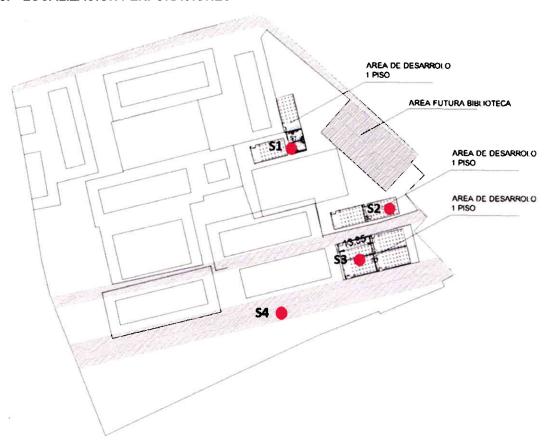
C= cohesión (calculada de la tabla anterior)

Ø= ángulo de fricción interno (calculado de la tabla anterior)

Q= esfuerzo geo estático efectivo.

¥ peso específico del suelo.

B= ancho de cimentación.


														qadm	qadm
Sond.	Cohe.	PROF.	peso esp	cimiento	ang	cos	kp^0.5	kp	Nc	Nq	Nn	quit	qadm	Cond.	Cond. No
	kg/cm2	cm	kg/cm ³	cm	fricción	ang					gamma	kg/cm2		Dren.	Drenada
													kg/cm ²	kg/cm ²	kg/cm ²
P1	0,13	70	0,00180	100	26,93	0,89	1,63	2,66	5,29	4,85	1,57	1,59	0,53	0,30	0,33
P1	0,46	170	0,00180	100	30,94	0,86	1,77	3,12	5,88	6,42	2,39	5,11	1,70	0,80	1,05
P1	0,46	270	0,00180	100	30,94	0,86	1,77	3,12	5,88	6,42	2,39	6,27	2,09	1,18	1,05
P1	0,46	370	0,00180	100	30,94	0,86	1,77	3,12	5,88	6,42	2,39	7,42	2,47	1,57	1,05
P1	0,46	470	0,00180	100	30,94	0,86	1,77	3,12	5,88	6,42	2,39	8,58	2,86	1,95	1,05
P2	0,20	70	0,00180	100	27,91	0,88	1,66	2,76	5,42	5,19	1,74	2,04	0,68	0,32	0,46
P2	0,30	170	0,00180	100	29,17	0,87	1,70	2,90	5,60	5,66	1,98	3,75	1,25	0,70	0,67
P2	0,40	270	0,00180	100	30,27	0,86	1,74	3,03	5,77	6,12	2,23	5,66	1,89	1,12	0,90
P2	0,59	370	0,00180	100	32,17	0,85	1,81	3,28	6,09	7,01	2,72	8,77	2,92	1,72	1,37
P2	0,46	470	0,00180	100	30,94	0,86	1,77	3,12	5,88	6,42	2,39	8,58	2,86	1,95	1,05
P3	0,13	70	0,00180	100	26,93	0,89	1,63	2,66	5,29	4,85	1,57	1,59	0,53	0,30	0,33
P3	0,17	170	0,00180	100	27,44	0,89	1,65	2,71	5,35	5,02	1,66	2,72	0,91	0,61	0,39
P3	0,30	270	0,00180	100	29,17	0,87	1,70	2,90	5,60	5,66	1,98	4,77	1,59	1,04	0,67
P4	0,20	70	0,00180	100	27,91	0,88	1,66	2,76	5,42	5,19	1,74	2,04	0,68	0,32	0,46
P4	0,20	170	0,00180	100	27,91	0,88	1,66	2,76	5,42	5,19	1,74	2,97	0,99	0,63	0,46
P4	0,17	270	0,00180	100	27,44	0,89	1,65	2,71	5,35	5,02	1,66	3,62	1,21	0,91	0,39

29 de diciembre de 2015

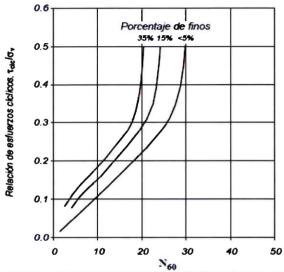
9. LOCALIZACIÓN PERFORACIONES

10. POTENCIAL DE EXPANSIÓN

Los estratos con suelos granulares en matriz de limos no cohesiva, este tipo de suelos no son susceptibles de expansión

11. POTENCIAL DE LICUACIÓN

Los suelos encontrados son suelos granulares en matriz de limos pero en algunos sectores reportó que no había cohesión.


Se evaluara la relación de esfuerzos cíclicos resistentes vrs la actuante, buscando un factor de seguridad mayor que uno preferiblemente mayor que 1,2.

29 de diciembre de 2015

$$REC = \frac{\tau_{cic}}{\sigma_{VO}^{\prime}} = 0.65 \frac{a_{max}}{g} \frac{\sigma_{V}}{\sigma_{Vo}^{\prime}} r_{d}$$

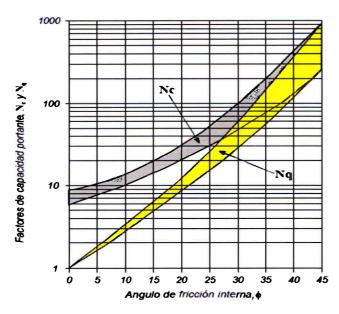
				00									
sondeo	profundidad m	n70	n60	nivel freático	porcentaje de finos	relación de esfuerzos cíclicos resistentes	esfuerzo total	esfuerzo efectivo	relación de esfuerzos actuantes	relación de esfuerzo cíclico actuantes	rd	factor de seguridad	diagnóstico
1	1	4	4,67	1,00	7,7%	0,9	1880	1880	1,00	0,159	0,980	5,651	no licuable
1	1,7	14	16,33	1,00	14,8%	0,22	3196	2496	1,28	0,204	0,980	1,079	no licuable
1	3,7	14	16,33	1,00	17,5%	0,24	6956	4256	1,63	0,260	0,980	0,922	si licuable
2	1,7	9	10,50	0,65	30,5%	0,18	3196	2146	1,49	0,237	0,980	0,759	si licuable
2	2,7	12	14,00	0,65	31,9%	0,22	5076	3026	1,68	0,267	0,980	0,824	si licuable
2	3,7	18	21,00	0,65	16,0%	0,31	6956	3906	1,78	0,284	0,980	1,093	no licuable
3	1	4	4,67	0,50	8,3%	0,17	1880	1380	1,36	0,217	0,980	0,784	si licuable
3	2,7	9	10,50	0,50	14,4%	0,17	5076	2876	1,76	0,281	0,980	0,605	si licuable
4	1,7	6	7,00	0,70	22,6%	0,14	3196	2196	1,46	0,232	0,980	0,604	si licuable
4	2,7	5	5,83	0,70	25,7%	0,14	5076	3076	1,65	0,263	0,980	0,533	si licuable

Los estratos son licuables.

29 de diciembre de 2015

Se hace necesario cimentación profunda.

12. CAPACIDAD PILOTES


Capacidad de pilotes Qo = Qp + Qs

Qp = Capacidad por punta. Qp = Ab[C Nc + σ 'os Nq]

Qs = Capacidad por fuste. Qsi = Σ As[α C + K σ 'os tan δ]

Para el sector en consideración se establece condición drenada despreciando los primeros 4m claramente licuables.

Se usan las correlaciones y gráficas de la norma sismo resistente.

El valor Nq para cimentaciones profundas según la norma NSR 98 varía entre 55 y 110; según Jambu y Vesic varía entre 23 y 48 .se trabaja con 30

CAF	ACII	DAD POR	FUSTE		POR	FRIC	CION LA	TERA	\L	DIAMET	TRO	0,6]
	C	ONDICION	N DRENAL	OA (MÉ) ALI	FA)			NF	1	m]
ESTR	ESP	PROF,TOTA L	Peso ESP.HU M.	esf efectiv o prom	esfuerz o efectvo total	Ø	ø.	ko	ð	As(m2)	BETA	Qsi(Ton)	CAPAC
	(m)		(ton/m3)										TON
1	1	1	1,7	1,7	1,7								
2	1	2	1,7	3,4	3,4								
3	1	3	1,7	5,1	5,1								
4	1	4	1,7	6,8	3,8								
5	1	5	1,7	8,5	4,5	34	31	0,48	23,25	1,88	0,21	1,77	1,8
6	, 1	6	1,7	10,2	5,2	35	32	0,47	24	1,88	0,21	2,05	2,1
CAP	ACII	C DAD POR	APACIDAI PUNTA	O POR	FRIC	CION	I LATERA	L FUS	STE				3,8
	Áı	rea base r	m2=				0,283						
	Cor	relaciones	s Nq=				30						
		o. por punt					44,11						
		C	APACIDA	D PILC	TE						47.9	TON.	

CAP	ACI	DAD POR	FUSTE		POR	FRIC	CION L	ATER#	\L	DIAMET	TRO .	0,8	
	C	ONDICION	N DRENA	OA (ME	TODO esfuerz) ALI	FA)			NF	1	m]
STR	ESP	PROF.TOTA	Peso.ESP.HU M.	esf efectiv o prom	o efectvo total	Ø	ø.	ko	ð	As(m2)	BETA	Qsi(Ton)	CAPAC
	(m)		(ton/m3)	·									TON
1	1	1	1,7	1,7	1,7								
2	1	2	1,7	3,4	3,4								
3	1	3	1,7	5,1	5,1								
4	1	4	1,7	6,8	3,8								
5	1	5	1,7	8,5	4,5	34	31	0,48	23,25	2,51	0,21	2,36	2,
6	1	6	1,7	10,2	5,2	35	32	0,47	24	2,51	0,21	2,74	2,
		C	APACIDAI) POR	FRIC	CION	I LATER/	AL FUS	STE				5,
CAP	ACII	DAD POR	PUNTA										
		rea base r					0,503						
	Cor	relaciones	s Nq=				30						
	cap	o. por puni	ta ton				78,41	J					
		С	APACIDA	D PILC	TE						-	TON.	
		CAPACI	DAD ADMI	SIBLE	PILO [*]	ΓΕ					27,8		

CON	IDIC	ION DREI	NADA										
CAP	ACII	DAD POR	FUSTE		POR	FRIC	CION L	ATER#	\L	DIAMET	ro	1]
	C	ONDICION	N DRENA	DA (ME	TODO) ALI	FA)			NF	1	m	
ESTR	ESP	PROF,TOTA L	Peso.ESP.HU M.	esf efectiv o prom	esfuerz o efectvo total	ø	ø.	ko	ð	As(m2	BETA	Qsi(Ton)	CAPAC
	(m)		(ton/m3)										TON
1	1	1	1,7	1,7	1,7								
2	1	2	1,7	3,4	3,4								
3	1	3	1,7	5,1	5,1								
4	1	4	1,7	6,8	3,8								
5	1	5	1,7	8,5	4,5	34	31	0,48	23,25	3,14	0,21	2,95	2,9
6	1	6	1,7	10,2	5,2	35	32	0,47	24	3,14	0,21	3,42	3,4
CAP	'ACII	C DAD POR	APACIDAI PUNTA) POR	FRIC	CION	I LATER/	AL FUS	STE				6,4
	Áı	rea base r	m2=				0,785	5					
	Cor	relaciones	s Nq=				30						
		o. por punt	•				122,52	2					
			APACIDAI								-	TON.	
		CAPACI	DAD ADMI	SIBLE	PILO	ΓΕ					43,0		

29 de diciembre de 2015

CAF	ACI	DAD POR	FUSTE		POR	FRIC	CION L	ATERA	۱L	DIAMET	rro	1,2	1
	C	ONDICION	N DRENAI	OA (MÉ	ÉTODO) ALI	FA)			NF	1	m	
ESTR	ESP	PROF.TOTA L	Peso.ESP.HU M.	esf efectiv o prom	esfuerz o efectvo total	Ø	ø.	ko	ð	As(m2	BETA	Qsi(Ton)	CAPAC
	(m)		(ton/m3)										TON
1	1	1	1,7	1,7	1,7								
2	1	· 2	1,7	3,4	3,4								
3	1	3	1,7	5,1	5,1								
4	1	4	1,7	6,8	3,8								
5	1	5	1,7	8,5	4,5	34	31	0,48	23,25	3,77	0,21	3,53	3,5
6	1	6	1,7	10,2	5,2	35	32	0,47	24	3,77	0,21	4,10	4,
		С	APACIDAL) POR	FRIC	CION	I LATER	AL FUS	STE				7,6
CAP	ACII	DAD POR	PUNTA										
		rea base r					1,13						
	Cor	relaciones	s Nq=				30						
	cap	o. por punt	ta ton				176,43	3					
		С	APACIDA	D PILC	TE						184,1	TON.	
		CAPACI	DAD ADMI	SIBLE	PILO ¹	ΓΕ					61,4		

La norma sismoresistente especifica un factor de seguridad indirecto de 3,0 para carga muerta normal +carga viva normal tabla h.6.9-1 referenciando tabal H-4.7-1 NSR-10.

La capacidad ultima del pilote que es la suma de la capacidad del fuste por fricción más la capacidad de punta, se suman y se dividen entre tres siendo esta la capacidad admisible del pilote reportada.

29 de diciembre de 2015

13. ASENTAMIENTOS.

Se verificaron los asentamientos (formulación de Vesic 1977)

$$S_1 = (Q_P + a_s Q_s) \frac{L}{AE_s}$$
 (3.27)

Donde:

 Q_p = Carga real de punta.

Q_c = Carga real de fricción.

L = Longitud

A = Área de la sección transversal

E_n = Módulo elástico del fuste.

a = Coeficiente adimensional que depende de la distribución de la fricción en el fuste.

$$S_2 = \frac{C_P Q_p}{Bq_{op}}$$
 (3.32)
$$S_3 = \frac{C_p Q_p}{Lq_{op}}$$
 (3.33)

Vesic (1977)

$$S_3 = \frac{C_2Q_3}{Lq_{ab}}$$
 (3.33)

Donde:

q_{op} = resistencia última de punta del pilote.

Q_n = carga neta de punta.

Q_s = carga tomada por fricción sobre el fuste.

C_p y C_s = coeficientes empíricos que dependen del tipo de suelo y del método de instalación del pilote.

 $S = S_1 + S_2 + S_3$

29 de diciembre de 2015

ASENTAMIENTO DE PILOTES INDIVIDUALES					
Dato					
Qp: Carga real de punta	14,7	Ton			
Qs: Carga real de fricción	1,3	Ton			
L: Longitud	7	metro			
Diámetro pilote	0,6	metro			
Área de la sección transversal	0,28				
Ep: Modulo elástico del fuste	1900000	Ton/m2			
as: Coef. Adimensional	0,5				
S1	0,000	metro			

Qp: Carga neta de punta	14,7	Ton
carga de punta ultima	44,11	Ton
qop: resistencia ultima de punta del pilote	156,0073438	t/m2
Qs: Carga tomada por fricción sobre el fuste	1,3	Ton
Cp : Coeficientes	0,135	
S2	0,021200925	metro
Cs: Coeficientes	0,204	
S3	0,00021	metro

C total: C1:C2:C2	0.022	metro
S total: S1+S2+S3	0,022	metro

Reporte:

reporte.			
Pilote diámetro	Carga admisible pilote	asentamientos	Carga admisible pilote para asentamiento de 1"
0,6m	16 t	2,2cm	16 t
0,8m	27,8 t	2,9cm	24,7 t
1,0m	43 t	3,6cm	30,1 t
1,2m	61,4t	4,3cm	36,5 t

29 de diciembre de 2015

14. REGISTRO FOTOGRÁFICO

En el anexo No.1 se muestra un registro fotográfico ampliado.

PERFORACIÓN No. 1

PERFORACIÓN No. 2

Calle 35 AN No 3N – 131 Prados del Norte Santiago de Cali – Colombia Teléfono (2) 6616621 – 316 2810925 e-mail: <u>gerencia@geozam.com.co</u>

29 de diciembre de 2015

PERFORACIÓN No. 3

PERFORACIÓN No. 4

29 de diciembre de 2015

15. MÓDULOS DE REACCIÓN DEL SUELO

50% Kv

					30/0111	
profundidad	qa kgf- /cm2	qa kn/m2	kv (kn/m3)	Kv(kg-f/m3)	kh Kn/m3	KH kg-f/m3
1,00	0,30	30	3600	360000	1800	180000
2,00	0,69	69	8280	828000	4140	414000
3,00	1,06	106	12720	1272000	6360	636000
4,00	1,65	165	19800	1980000	9900	990000
5,00	1,80	180	21600	2160000	10800	1080000
6,00	2,00	200	24000	2400000	12000	1200000
7,00	2,50	250	30000	3000000	15000	1500000

Kv= módulo de reacción vertical Kh= módulo de reacción horizontal

16. COEFICIENTES DE PRESIÓN

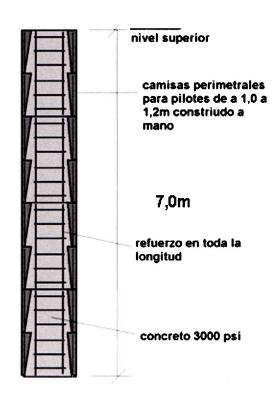
Hasta una profundidad de 4,0m, se establece usar el siguiente valor de coeficiente de presión correspondiente a 30°. De 4 a 7m use 31°

Ka= 0,333 Coeficiente de presión activa para 30º.

Ka= 0,32 Coeficiente de presión activa para 30º.

17. CONCLUSIONES Y RECOMENDACIONES

- La estratigrafía del suelo reporto nivel freático alto para suelos granulares en matriz de limos no cohesivos; reportaron ser estratos licuables; se deben usar cimentaciones profundas; siendo esta la única opción de cimentación viable.
- Se recomienda cimentar con pilotes los cuales se ha de empotrar hasta una cota de -7,0m
 (1 m de empotramiento) con las siguientes capacidades:



29 de diciembre de 2015

Diámetro pilote	Capacidad admisible	Capacidad tracción (no incluye peso propio)
60cm	16 t	1,3t
80cm	24,7t	1,7t
100cm	30,1	2,2t
120cm	36,5t	2,5t

Las capacidades de los pilotes la controlaron los asentamientos.

 Se suministrar módulos laterales para la modelación de los pilotes; se especifica condición crítica que a una profundidad de 4,0m el suelo es totalmente licuable sin ofrecer soporte lateral al mismo.

29 de diciembre de 2015

 Queda a criterio del diseñador usar pilotes de mayor diámetro o grupo de pilotes; para el caso de grupo de pilotes se debe tener en cuenta el factor de eficiencia Eg

$$E_g = \frac{Q_g}{NO}$$

Donde:

N = Número de pilotes en el grupo.

Q_a = Capacidad del grupo

Q = Capacidad individual

$$E_g = 1 - \left[tan^{-1} \frac{B}{s} \right] \left[\frac{m(n-1) + n(m-1)}{90mn} \right]$$

Donde:

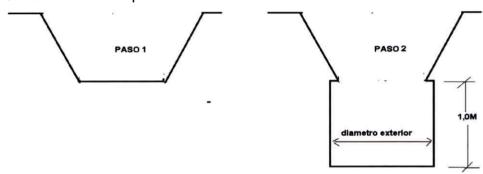
B =Diámetro de los pilotes.

s = Distancia centro a centro entre pilotes.

m = Número de filas de pilotes.

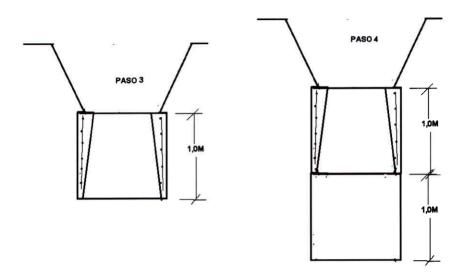
n = Número de columnas de pilotes.

 $\left[\tan^{-1}\frac{B}{s}\right]$ debe expresarse en grados


- Para pilotes de 1,0m a 1,2m se podrían realizar a mano (método del indio) siempre y cuando se tomen las precauciones del caso:
 - -uso de camisas reforzadas
 - -abatimiento del nivel freático
 - -adecuada ventilación
 - -protocolos de seguridad adecuados
 - -personal competente.

29 de diciembre de 2015

- -dirección ingenieril competente.
- Para pilotes de 0,6m, 0,8m. e incluso 1,0m se especifica sean pre barrenados; para lo cual se han de conseguir equipo y personal competente.
- Los pilotes pre barrenados implican el uso de bentonita para estabilizar paredes.
- Los pilotes deben tener refuerzo en toda su longitud.
- Se debe empotrar el pilote hasta el estrato -8,0m.
- Para las vigas de amarre, se recomiendan estén puenteadas entre columnas.
- Proceso constructivo pilotes a mano.
 - Paso 1: Excavación inicial donde ha de quedar el dado cabezal del pilote.
 - Paso 2: Excavación del primer tramo de 1m.


Paso 3: Colocación de la formaleta troncocónica, incorporación de malla y vaciado

Paso 4. Desencofrado y excavación de siguiente sector para repetir proceso, hasta llegar a la cota final..

29 de diciembre de 2015

Paso 5: colocación de el refuerzo y vaciado final

Se debe garantizar un sistema de bombas permanentes para abatir el novel freático permanentemente.

Los materiales de rellenos son con las siguientes especificaciones(norma Invias2012)

29 de diciembre de 2015

Tabla 311 - 1. Requisitos de los agregados para afirmados

CARACTERÍSTICA Dureza (O)	NORMA DE ENSAYO INV	REQUISITO	
Desgaste en la máquina de los Ángeles (Gradación A), máximo (%) - 500 revoluciones	E-218	50	
Durabilidad (O)			
Pérdidas en ensayo de solidez en sulfatos, máximo (%) - Sulfato de sodio - Sulfato de magnesio	E-220	12 18	
Limpieza (F)			
Límite líquido, máximo (%)	€-125	40	
Índice de plasticidad (%)	E-125 y E-126	4 - 9	
Contenido de terrones de arcilla y partículas deleznables, máximo (%)	E-211	2	
Contracción lineal	E-127 o E-129	Tabla 311 - 3	
Resistencia del material (F)		2018年1月1日	
CBR (%): porcentaje asociado al grado de compactación mínimo especificado (numeral 311.5.2.2.2); el CBR se medirá sobre muestras sometidas previamente a cuatro días de inmersión.	E-148	≥ 15	

Tabla 311 - 2. Franjas granulométricas del material de afirmado

		TAMIZ (mm / U.S. Standard)						
TIPO DE	37.5	25.0	19.0	9.5	4.75	2.00	0.425	0.075
GRADACIÓN	1 %"	1"	3/4"	3/8"	No. 4	No. 10	No. 40	No. 200
		% PASA						
A-38	100	-	80-100	60-85	40-65	30-50	13-30	9-18
A-25	-	100	90-100	65-90	45-70	35-55	15-35	10-20
Tolerancias en producción sobre la fórmula de trabajo (±)	0%		7%			6%	50	3%

 Se rechazan materiales con contenido de materia orgánica, raíces, arcillas expansivas, material granular de más de 4", escombros, basuras, suelos con limites líquidos mayor a 50% y humedad natural por exceso que no permita obtener adecuada compactación.

29 de diciembre de 2015

17. LIMITACIONES

Las conclusiones y recomendaciones anotadas en este informe se basan en los resultados de las excavaciones y ensayos de laboratorio efectuados.

Si existiesen condiciones menos favorables durante la construcción se deberá verificar si las recomendaciones aquí expuestas son aplicables a dichos sitios.

En el caso que se presente variaciones en el diseño o en la etapa constructiva de las características del subsuelo o del proyecto, se deberá consultarnos para evaluar nuevamente el suelo de cimentación y emitir las recomendaciones adicionales.

Maunicio fain Dinos S. cc. 16'784.869. Mat 7670765457 valle

MAURICIO JAIR DRADA SALAZAR Ing. Civil M.P. No. 7620265457VLL

CARLOS AVENDAÑO M.

Ingeniero Civil TP: 05202-182816 ANT. Ingeniero Geólogo T.P: 05223-37833 ANT. Especialista en Geotecnia-Universidad de Caldas.

EXPLORACIÓN, ENSAYOS DE LABORATORIO Y RECOMENDACIÓN GEOTÉCNICA. AMPLIACIONES DE LOS COLEGIOS DEL PROYECTO, JORNADA ÚNICA DEL MINISTERIO DE EDUCACIÓN- MODULO 2. INSTITUCIÓN EDUCATIVA ECOTURÍSTICA LITORAL DEL PACÍFICO MUNICIPIO DE NUQUÍ- DEPARTAMENTO DEL CHOCÓ

29 de diciembre de 2015

ANEXO No. 1

REGISTRO DE PERFORACIONES Y ENSAYOS DE LABORATORIO

REGISTRO DE EXPLORACIÓN DEL SUBSUELO

Código	R-4-052
Versión	003
Fecha	02/07/201

ágina 1 de 1

CLIENTE:

IVICSA INGENIEROS CONSULTORES, SUCURSAL COLOMBIA S.A.
EXPLORACION, ENSAYOS DE LABORATORIO Y RECOMENDACION GEOTECNICA REQUERIDA PARA LAS AMPLIACIONES DE LOS

FECHA: dic-15

ESTUDIO:		EXPLORACION, ENSAYOS DE LABORATORIO Y RECOMENDACION GEOTECNICA REQUERIDA PARA LAS AMPLIACIONES DE LOS COLEGIOS DEL PROVECTO, JORNADA ÚNICA DEL MINISTERIO DE EDUCACIÓN- MODULO 2. INSTITUCIÓN EDUCATIVA ECOTURÍSTICA LITORAL DEL PACÍFICO DE NUQUÍ - CHOCÓ PERFORACION No. 1 1					
LOCALIZA	ICIÓN:	INSTITUCIÓN EDUCA	ATIVA ECOTU	RÍSTICA LITORAL DEL PAC	ÍFICO DE NUQUÍ - CHOCÓ		
PROF m	MUESTRA	MUESTRA PROF-m.	SPT	AVANCE	DESCRI	PCIÓN	OBSERVACIONES
_		0.50			CAPA VEGETAL CON AR	RENA DE COLOR GRIS	DESCRIPCIÓN VISUAL
0.50			0.07				
	MUESTRA No. 1.1	0.50	SPT 2-2-2				
				AVANCE A PERCUSIÓN	ARENA LIMOSA SIN PLASTICIDAD COLOR G COMPACIDAD	RIS OSCURO, HUMEDAD NATURAL ALTA, MUY SUELTA	
_							
1.50	MUESTRA	1.50	SPT				
	No. 1.2	1.95	3-7-7		ARTHA LINADO A CONTAL CO DE CRAVILLAS CINTRA	ACTICIDAD COLOD CAFÉ ULIMEDAD NATI IDAL	
				AVANCE A PERCUSIÓN	ARENA LIMOSA CON ALGO DE GRAVILLAS SIN PI ALTA, COMPACI	IDAD SUELTA	
2.50							
	MUESTRA	2.50	SPT				
_	No. 1.3	2.95	8-7-7	AVANCE A PERCUSIÓN	ARENA LIMOSA CON ALGO DE GRAVILLAS SIN PI	LASTICIDAD COLOR GRIS HUMEDAD NATURAL	DESCRIPCIÓN VISUAL
3 				AVAILUE AT ENGOSION	ALTA, COMPAC	IDAD SUELTA	22001 0.0 0.00.1.2
3.50							
_	MUESTRA No. 1.4	3.50 3.95	8PT 6-7-7				
		0.50		AVANCE A PERCUSIÓN	DE A PERCUSIÓN ARENA LIMOSA CON ALGO DE GRAVILLAS SIN PLASTICIDAD COLOR GRIS HUMEDAD NATURAL ALTA, COMPACIDAD SUELTA		
_							
4.50	MUESTRA	4.50	SPT				
_	No. 1.5	4.95	6-7-7				
_				AVANCE A PERCUSIÓN	ARENA LIMOSA CON ALGO DE GRAVILLAS SIN P	LASTICIDAD COLOR GRIS HUMEDAD NATURAL	-
×				AVANCE A PERCUSION	ALTA, COMPACIDAD SUELTA	DESCRIPCIÓN VISUAL	
						FONDO EXPLORADO	
6.00							8,00 m
-							
-							
_							
_							
_							
-							
_							
_							
_							
_							
_							
_							
_							
OBSERVA	ACIONES	REGISTRA NIVEL F	REÁTICO A LA	PROFUNDIDAD DE 1,00 n	n		
				LABORATORIO		RECIBIDO	
		6 E. Gehol			-3-		
REALIZÒ				APROBÓ	CLIENTE		

Código	R-4-006
Versión	005
Fecha	25/05/2015
Págir	na 1 de 1

INV E - 123 - 13 - INV E - 125 -13 - INV E - 126 - 13

~	 - 1	TF	

IVICSA INGENIEROS CONSULTORES, SUCURSAL COLOMBIA S.A

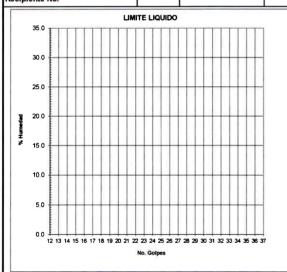
FECHA: dic-15

ESTUDIO:

EXPLORACIÓN, ENSAYOS DE LABORATORIO Y RECOMENDACIÓN GEOTÉCNICA REQUERIDA PARA LAS AMPLIACIONES DE LOS COLEGIOS DEL PROYECTO, JORNADA ÚNICA DEL MINISTERIO DE EDUCACIÓN- MODULO 2.

PERFORACIÓN No.

MUESTRA No:


LOCALIZACIÓN:

INSTITUCIÓN EDUCATIVA ECOTURÍSTICA LITORAL DEL PACÍFICO DE NUQUÍ -CHOCÓ.

PROFUNDIDAD:

0,50-1,00 m

LIMITES DE ATTERBERG		% DE HUMEDAD	LIMITE LÍQUIDO	LIMITE PLÁSTICO
No golpes				
Peso recipiente + suelo húmedo	g	67.70		
Peso recipiente + suelo seco	g	53.90		
Peso recipiente	g	6.7	NL	NP
Peso del agua en el suelo	g	13.8		
Peso del suelo seco	g	47.2		
Contenido de humedad	%	29.2		
Recipiente No.				

REALIZÓ

eso Seco	Antes de L	.avar (g) =	606.8	Peso seco después de lavar (g) = % Retenido		560.5
Tar	niz	Peso Ret (g)	%			
(Pulg.)	(mm)		Retenido	Acumulad o	% P	asa
3/8"	9.5	0.0	0.0	0.0	100	0.0
#4	4.75	7.7	1.3	1.3	98	.7
#10	2.00	3.4	0.6	1.8	98	.2
#40	0.420	141.0	23.2	25.1	74	.9
#200	0.075	407.7	67.2	92.3	7.	7
Pasa	#200	47.0	7.7			

CLIENTE

% LIMITE LIQUIDO:	NL	% DE GRAVAS	1.3	CLASIFICACION SUCS	SP-SM
% LIMITE PLASTICO: % INDICE DE PLASTICIDAD :	NP N-IP	% DE ARENAS % DE FINOS	91.0 7.7	CLASIFICACION AASHTO	A-3
OBSERVACIONES:					
	LABO	RATORIO		RECIBIO	00
Pablo E. Gat	102	7	2		

R-4-006
005
25/05/2015

INV E - 123 - 13 - INV E - 125 -13 - INV E - 126 - 13

CLIENTE:	
----------	--

IVICSA INGENIEROS CONSULTORES, SUCURSAL COLOMBIA S.A

FECHA:

dic-15

ESTUDIO:

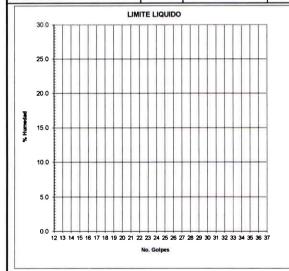
EXPLORACIÓN, ENSAYOS DE LABORATORIO Y RECOMENDACIÓN GEOTÉCNICA REQUERIDA PARA LAS AMPLIACIONES DE LOS COLEGIOS DEL PROYECTO,

PERFORACIÓN No.

1.2

JORNADA ÚNICA DEL MINISTERIO DE EDUCACIÓN- MODULO 2.

INSTITUCIÓN EDUCATIVA ECOTURÍSTICA LITORAL DEL PACÍFICO DE NUQUÍ-


MUESTRA No:
PROFUNDIDAD:

1,50-2,00 m

LOCALIZACIÓN:

CHOCÓ.

LIMITES DE ATTERBERG		% DE HUMEDAD	LIMITE LÍQUIDO	LIMITE F	PLÁSTICO
No golpes					
Peso recipiente + suelo húmedo	g	75.10			
Peso recipiente + suelo seco	g	60.70			
Peso recipiente	g	6.8	NL		NP .
Peso del agua en el suelo	g	14.4			
Peso del suelo seco	g	53.9			
Contenido de humedad	%	26.7			
Recipiente No.					

		GR	ANULOMETR	IA		
eso Seco	Antes de L	_avar (g) =	446.4	Peso seco de de lavar (g) =	- 2	381.2
Tar	niz	Peso Ret	%	% Retenido	10000000	
(Pulg.)	(mm) (g)		Retenido	Acumulad	% Pa	asa
3/8"	9.5	0.0	0.0	0.0	100	0.0
#4	4.75	19.7	4.4	4.4	95	.6
#10	2.00	24.4	5.5	9.9	90	.1
#40	0.420	124.1	27.8	37.7	62	.3
#200	0.075	212.0	47.5	85.2	14	.8
Pasa	#200	66.2	14.8			

%	LIMITE	LIQUIDO:

NL

% DE GRAVAS

4.4

SM

% LIMITE PLASTICO:

% INDICE DE PLASTICIDAD :

NP

% DE ARENAS % DE FINOS 80.8 14.8

CLASIFICACION AASHTO

CLASIFICACION SUCS

A-2-4

OBSERVACIONES:

LABOR	RATORIO	RECIBIDO
Poblo E. Getrol	E	
REALIZÓ	APROBÓ	CLIENTE

REALIZÓ

ANÁLISIS GRANULOMÉTRICO DE SUELOS POR TAMIZADO

Código	R-4-006
Versión	005
Fecha	25/05/2015
	La Carlo Barrier

			V .						AET.	EDI	14184	ACH	140	DEI		MIT	re 1 1		\sim	I IMITE DI	1 40	TICOE	INDICE DE	DI ACTICII	AD DE		
GEOZAM					CION DEL LIMITE LIQUIDO, LIMITE PLASTICO E INDICE DE PLASTICIDAD DE LOS SUELOS								JAD DE	Fecha	25/05/2015												
	_	9E	O.		741			L					IM	V E	. 12	3	13.	INV F	. 12	25 -13 - IN	V F	. 126 . 13				Pagin	a 1 de 1
_														_	- 12.				-	10 - 10 - 110		- 120 - 10					
CLIENTE: IVICSA INGENIEROS CONSULTORES, SUCURS						RS/	AL COLOMBIA S.A						-	FECHA:		di	c-15										
ESTU	DIO:																			ACIÓN GE				PERFORA	CIÓN No.		1
2310	DIO.																	MODU			LUI	Ο,	_	MUESTRA	No:	1	1.4
LOCA	LIZA	CIÓ	N:		ISTI HOC		ÓN	EDL	ICA ⁻	TIVA	EC	оти	RÍS	TIC	A LI	то	RAL	DEL P	AC	ÍFICO DE I	NUC	2UÍ -		PROFUNDI	DAD:	3,50-	4,00 m
-																											
		LIM	ITES	DE	ATI	ERE	BERG	G			-	% D	E HI	UME	EDA	D		LIMIT	EL	ÚQUIDO	T				LIMITE P	LÁSTICO	
No go	lpes										T																
Peso	recip	ient	e + s	suel	o hú	med	0		g		Г		72	2.70													
Peso	recip	ient	e + s	suel	o se	со			g		Г		61	1.80	Ì												
Peso	recip	ient	e						g				6	8.6					N	L	1				N	NP	
Peso	del a	gua	en e	l su	elo				g				1	0.9							1						
Peso	del s	uelo	sec	0				Т	g		Г		5	5.0			Т				1						
Conte	enido	de l	hum	eda	i				%	69			1	9.8													
Recip	iente	No.																									
							LIN	IITE	LIQI	JIDO													GR	ANULOMETR	A		
	25.0					681.2	Peso seco de lavar (563.0																		
		ŀ		П				Ш	Н					Н					ı	Ta	amiz	z	Dana Bat		%		
	20.0	Ť		П	Ħ		T	I	П			Ħ			T				Į	(Pulg.)		(mm)	Peso Ret (g)	% Retenido	Retenido Acumulad o	% I	Pasa
				Н					Н			Н		П							L						
3	15.0	· [Ħ	Ħ	11	1	H	Ħ	+	П	11	T	Ħ			1		-								
% Humedad				Н					П					П					1								
*	10.0	L		Ц	Ш			Ш	Ш			Ш		Ш					1								
				П					П					П					1		_						
				П		Ш		Ш						П					ļ		_						
	5.0	1	-	H	+	+	+	H	H	+		+	+	H	+	-	-		1	3/8"	_	9.5	0.0	0.0	0.0	10	0.0
				Ш				П						П					1	#4	_	4.75	20.1	3.0	3.0	9	7.0
				Ш	Н				П					П					ļ	#10	_	2.00	27.1	4.0	6.9	- 27	3.1
	0.0	12 1	3 14 1	15 16	17 18	19 20	21 2	2 23	24 25	5 26 2	7 28	29 30	31 3	32 33	34 3	5 36	37		1	#40		0.420	119.3	17.5	24.4	- 50	5.6
								No. C	Golpe	\$									1	#200		0.075	395.5	58.1	82.5	1	7.5
_																			L	Pasa	a #2	.00	119.2	17.5			
% LIM	IITE I	.IQU	IIDO:	:					NL					%	DE (GR/	AVAS	\$		3.0			CLASIFICA	CION SUCS	;	SM	
% LIM	IITE F	PLAS	STIC	0:					NP	•				%	DE /	٩RE	ENAS	3		79.6							
% INI	DICE	DE	PLAS	STIC	IDAI	D :			N-IF	P				%	DE I	=IN	os			17.5			CLASIFICA	CION AASH	ITO	A-2-4	
OBS	ERV	ACIO	ONES	3:					_																		•
										1.4	ABO	RAT	ORI	0									г —		RECIBIDO		
		7			200				_		T		514	_			_	,	>						RECIBIDO		
	2	20	16	E	-	5	h	02			1					-	2	4	-								

CLIENTE

REALIZÒ

REGISTRO DE EXPLORACIÓN DEL SUBSUELO

Código	R-4-052
Versión	003
Fecha	02/07/2014

Página 1 de 1

CLIENTE:	
ESTUDIO:	

IVICSA INGENIEROS CONSULTORES, SUCURSAL COLOMBIA S.A EXPLORACION, ENSAYOS DE LABORATORIO Y RECOMENDACION CEDITECTURA PARA LAS AMPLIACIONES DE LOS COLEGIOS DEL PROYECTO. JORNADA LÁNICA DEL IMINISTERIO DE EDUCACIÓN - MODULO 2.

INSTITUCIÓN EDUCATIVA ECOTURISTICA LITORAL DEL PACÍFICO DE NUQUÍ - CHOCÓ.

FECHA: dic-15 PERFORACION No.

CLIENTE

LOCALIZA	CIÓN.
LOCALIZA	CION:

LOCALIZA	CIÓN:	INSTITUCIÓN EDUC	ATIVA ECOTU	RÍSTICA LITORAL DEL PAC	ÍFICO DE NUQUÍ - CHOCÓ,		
PROF m	MUESTRA	MUESTRA PROF-m.	SPT	AVANCE	DESCRIF	CIÓN	OBSERVACIONES
		0.50			CAPA VEGETAL CON AR	ENA DE COLOR GRIS	DESCRIPCIÓN VISUAL
	MUESTRA	0.50	SPT				
-	No. 2.1	0.95	2-3-3	AVANCE A PERCUSIÓN	ARENA LIMOSA SIN PLASTICIDAD COLOR G COMPACIDA		DESCRIPCIÓN VISUAL
					COMIT ACIDA	D GOLLIA	
1.50	MUESTRA	1.50	SPT				
_	No. 2.2	1,95	2-4-5	AVANCE A PERCUSIÓN	ARENA LIMOSA SIN PLASTICIDAD COLOR G COMPACIDAI	RIS OSCURO, HUMEDAD NATURAL ALTA	
=					COMPACIDA	J G G E I A	
2.50	MUESTRA	2.50	SPT				
	No. 2.3	2.95	6-7-5	AVANCE A PERCUSIÓN	ARENA LIMOSA SIN PLASTICIDAD COLOR G	RIS OSCURO, HUMEDAD NATURAL ALTA	
_				AVAIGE AT ENGOSION	COMPACIDA	D SUELTA	
3.50	MUESTRA	3.50	SPT				
_	No. 2.4	3.95	10-10-8	AVANCE A PERCUSIÓN	ARENA LIMOSA SIN PLASTICIDAD COLOR G	RIS OSCURO, HUMEDAD NATURAL ALTA	
				AVANCE A PERCUSION	COMPACIDAD SUE		
4.50		4.50	SPT				
_	MUESTRA No. 2.5	4.95	7-6-8		ARENA LIMOSA SIN PLASTICIDAD COLOR G	IDIS OSCUIDO HUMEDAD MATURAL ALTA	
_				AVANCE A PERCUSIÓN	COMPACIDA	D SUELTA	DESCRIPCIÓN VISUAL
5.50							FONDO EXPLORADO 5,50 m
=							RECHAZO
_							
_							
, 							
_				5			
_							
-							
_							
_							
_							
OBSERVA	ACIONES	REGISTRA NIVEL F	REÁTICO A LA	A PROFUNDIDAD DE 0,85m	<u>)</u>		
		**		LABORATORIO		RECIBIDO	
	Poli	6 6. Gatol			-24-		

Código	R-4-006
Versión	005
Fecha	25/05/2015
Págir	na 1 de 1

L	IEN	TE:	

IVICSA INGENIEROS CONSULTORES, SUCURSAL COLOMBIA S.A

FECHA:

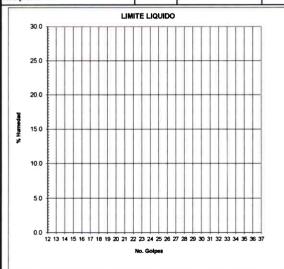
dic-15

ESTUDIO:

EXPLORACIÓN, ENSAYOS DE LABORATORIO Y RECOMENDACIÓN GEOTÉCNICA REQUERIDA PARA LAS AMPLIACIONES DE LOS COLEGIOS DEL PROYECTO, JORNADA ÚNICA DEL MINISTERIO DE EDUCACIÓN - MODULO 2.

PERFORACIÓN No.

MUESTRA No:


LOCALIZACIÓN:

INSTITUCIÓN EDUCATIVA ECOTURÍSTICA LITORAL DEL PACÍFICO DE NUQUÍ -CHOCÓ.

PROFUNDIDAD:

1,50-2,00 m

LIMITES DE ATTERBERG	ii.	% DE HUMEDAD LIMITE LÍQUIDO		LIMITE PLÁSTICO		
No golpes						
Peso recipiente + suelo húmedo	g	60.80				
Peso recipiente + suelo seco	g	49.20				
Peso recipiente	g	6.8	NL	NP		
Peso del agua en el suelo	g	11.6				
Peso del suelo seco	g	42.4				
Contenido de humedad	%	27.4				
Recipiente No.						

Peso Seco Antes de Lavar (g) =			400.3	Peso seco después de lavar (g) =		279.1	
Tamiz Peso		Peso Ret	%	% Retenido		2002-21	
(Pulg.)	(mm)	(g)	Retenido	Acumulad o	% P	asa	
3/8"	9.5	0.0	0.0	0.0	100	0.0	
#4	4.75	3.4	0.8	0.8	99	.2	
#10	2.00	4.3	1.1	1.9	98	.1	
#40	0.420	13.0	3.2	5.2	94	.8	
#200	0.075	257.4	64.3	69.5	30	.5	
Pasa	#200	122.2	30.5				

GRANULOMETRIA

% LIMITE LIQUIDO:	NL	% DE GRAVAS
% LIMITE PLASTICO:	NP	% DE ARENAS
% INDICE DE PLASTICIDAD :	N-IP	% DE FINOS

8.0 **CLASIFICACION SUCS** 68.6

CLASIFICACION AASHTO

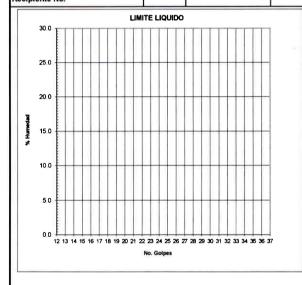
OBSERVACIONES:

LA	RECIBIDO	
Pablo E. Gatral	=	
REALIZÓ	APROBÓ	CLIENTE

30.5

LOCALIZACIÓN:

ANÁLISIS GRANULOMÉTRICO DE SUELOS POR TAMIZADO DETERMINACION DEL LIMITE LIQUIDO, LIMITE PLASTICO E INDICE DE PLASTICIDAD DE LOS SUELOS


R-4-006
005
25/05/2015

2,50-3,00 m

INV E - 123	- 13 -	INV E -	125 -13	- INV E -	· 126 -	13
-------------	--------	---------	---------	-----------	---------	----

CLIENTE:	IVICSA INGENIEROS CONSULTORES, SUCURSAL COLOMBIA S.A	FECHA:	dic-15
ESTUDIO:	EXPLORACIÓN, ENSAYOS DE LABORATORIO Y RECOMENDACIÓN GEOTÉCNICA REQUERIDA PARA LAS AMPLIACIONES DE LOS COLEGIOS DEL PROYECTO,	PERFORACIÓN No	2
LOTODIO.	JORNADA ÚNICA DEL MINISTERIO DE EDUCACIÓN - MODULO 2.	MUESTRA No:	2.3
	INSTITUCIÓN EDUCATIVA ECOTURÍSTICA LITORAL DEL PACÍFICO DE NUQUÍ -	· ··	

LIMITES DE ATTERBERG		% DE HUMEDAD	LIMITE LÍQUIDO	LIMITE PLÁSTICO
No golpes				
Peso recipiente + suelo húmedo	g	67.50		
Peso recipiente + suelo seco	g	54.70		
Peso recipiente	9	6.7	NL	NP
Peso del agua en el suelo	g	12.8		
Peso del suelo seco	g	48.0		
Contenido de humedad	%	26.7		
Recipiente No.				

GRANULOMETRIA								
Peso Seco	Antes de l	_avar (g) =	415.1	Peso seco después de lavar (g) =		283.5		
Tamiz Peso Ret		%	% Retenido					
(Pulg.)	(mm)	(g)	Retenido	Acumulad o				
3/8"	9.5	0.0	0.0	0.0	100	0.0		
#4	4.75	5.6	1.3	1.3	98	.7		
#10	2.00	9.5	2.3	3.6	96	.4		
#40	0.420	4.1	1.0	4.6	95	.4		
#200	0.075	263.5	63.5	68.1	31	.9		
Pasa	#200	132.4	31.9					

GRANIII OMETRIA

PROFUNDIDAD:

% LIMITE LIQUIDO:	NL	% DE GRAVAS	1.3	CLASIFICACION SUCS	SM
% LIMITE PLASTICO:	NP	% DE ARENAS	66.8		
% INDICE DE PLASTICIDAD :	N-IP	% DE FINOS	31.9	CLASIFICACION AASHTO	A-2-4

OBSERVACIONES:

LABORA	TORIO	RECIBIDO
Pablo E. Gatol	F	
REALIZÓ	APROBÓ	CLIENTE

Código	R-4-006
Versión	005
Fecha	25/05/2015
Págir	na 1 de 1

INV E - 123 - 13 - INV E - 125 -13 - INV E - 1	Z6 - 1	13
--	--------	----

CLIENTE:

IVICSA INGENIEROS CONSULTORES, SUCURSAL COLOMBIA S.A

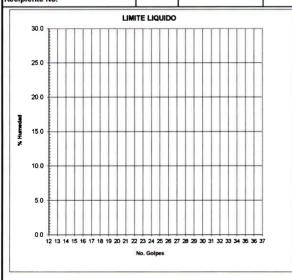
FECHA: dic-15

ESTUDIO:

EXPLORACIÓN, ENSAYOS DE LABORATORIO Y RECOMENDACIÓN GEOTÉCNICA REQUERIDA PARA LAS AMPLIACIONES DE LOS COLEGIOS DEL PROYECTO, JORNADA ÚNICA DEL MINISTERIO DE EDUCACIÓN - MODULO 2.

MUESTRA No:

LOCALIZACIÓN:


INSTITUCIÓN EDUCATIVA ECOTURÍSTICA LITORAL DEL PACÍFICO DE NUQUÍ -CHOCÓ.

PROFUNDIDAD:

PERFORACIÓN No.

3,50-4,00 m

LIMITES DE ATTERBERG	MITES DE ATTERBERG % DE HUMEDAD LIMITE LÍQUIDO		LIMITE PLÁSTICO	
No golpes				
Peso recipiente + suelo húmedo	g	77.00		
Peso recipiente + suelo seco	g	62.60		
Peso recipiente	g	6.8	NL	NP
Peso del agua en el suelo	g	14.4		
Peso del suelo seco	g	55.8		
Contenido de humedad	%	25.8		
Recipiente No.				

Peso Seco Antes de Lavar (g) = Tamiz Peso Ret		Peso seco des de lavar (g) =			276.3	
		Peso Ret	%	% Retenido		0.25000
(Pulg.)	(mm)	(g)	Retenido	Acumulad 0	% P	asa
3/8"	9.5	0.0	0.0	0.0	10	0.0
#4	4.75	5.6	1.7	1.7	98	1.3
#10	2.00	10.5	3.2	4.9	95	i.1
#40	0.420	83.1	25.4	30.3	69	.7
#200	0.075	176.2	53.8	84.0	16	.0
Pasa	#200	52.3	16.0			

GRANULOMETRIA

% LIMITE LIQUIDO:
% LIMITE PLASTICO:

NL

% DE GRAVAS

CLASIFICACION SUCS

SM

% INDICE DE PLASTICIDAD :

N-IP

% DE ARENAS % DE FINOS

1.7 82.3 16.0

CLASIFICACION AASHTO

A-2-4

OBSERVACIONES:

LABORA	RECIBIDO	
Pablo E. Getral	2	
REALIZÓ	APROBÓ	CLIENTE

REALIZÒ

REGISTRO DE EXPLORACIÓN DEL SUBSUELO

R-4-052 Código Versión 003 Fecha 02/07/2014

dic-15

CLIENTE: ESTUDIO:

IVICSA INGENIEROS CONSULTORES, SUCURSAL COLOMBIA S A EXPLORACIÓN, ENSAYOS DE LABORATORIO Y RECOMENDACIÓN GEOTECNICA REQUERIDA PARA LAS AMPLIACIONES DE LOS COLEGIOS DEL PROYECTO, JORNADA ÚNICA DEL MINISTERIO DE EDUCACIÓN- MODULO 2.

FECHA: PERFORACION No.

CLIENTE

OCALIZACIÓN: INSTITUCIÓN EDUCATIVA ECOTURÍSTICA LITORAL DEL PACÍFICO DE NUQUÍ - CHOCÓ.							
PROF m	MUESTRA	MUESTRA PROF-m.	SPT	AVANCE	DESCRI	PCIÓN	OBSERVACIONES
		0 50			CAPA VEGETAL CON AR	ENA DE COLOR GRIS	DESCRIPCIÓN VISUAL
0.50	MUESTRA No. 3.1	0.50 0.95	SPT 2-2-2				
_				AVANCE A PERCUSIÓN	ARENA LIMOSA CON ALGO DE GRAVILLAS SIN P ALTA, COMPACI	LASTICIDAD COLOR GRIS HUMEDAD NATURAL IDAD SUELTA	
1.50	MUESTRA No. 3.2	1.50 1.95	SPT 4-3-2				
=				AVANCE A PERCUSIÓN	ARENA LIMOSA SIN PLASTICIDAD COLOR GRIS SUEL	S, HUMEDAD NATURAL ALTA, COMPACIDAD TA	DESCRIPCIÓN VISUAL
2.50	MUESTRA	2.50	SPT				
	No. 3.3	2.95	3-4-5	AVANCE A PERCUSIÓN	ARENA LIMOSA CON ALGO DE GRAVILLAS SIN P NATURAL ALTA, COM	PLASTICIDAD COLOR GRIS OSCURO HUMEDAD	
4.00					NATORAL ALTA, COM	IF ACIDAD GOLLIA.	FONDO EXPLORADO 4,90 m
_							RECHAZO GRAVAS ARENAS GRUESAS
_							
_							
=							
_							
_							
_							
_							
_							
_		¥ï					
_							
_							
DBSERVA	CIONES	REGISTRA NIVEL FI	REATICO 0,50	METROS.			
				LABORATORIO		RECIBIDO	
Pollo 6. Gahal					Annoné		

Código	R-4-006
Versión	005
Fecha	25/05/2015
Págir	na 1 de 1

INV	E٠	123 -	13 -	INV E	125 -13	- INV E - 126 - 1	3

IVICSA INGENIEROS CONSULTORES, SUCURSAL COLOMBIA S.A.

FECHA: dic-15

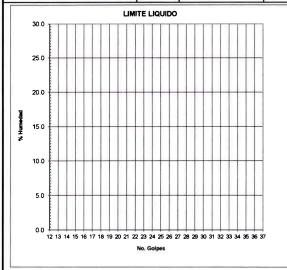
ESTUDIO:

EXPLORACIÓN, ENSAYOS DE LABORATORIO Y RECOMENDACIÓN GEOTÉCNICA

REQUERIDA PARA LAS AMPLIACIONES DE LOS COLEGIOS DEL PROYECTO, JORNADA ÚNICA DEL MINISTERIO DE EDUCACIÓN- MODULO 2.

PERFORACIÓN No.

3.1


INSTITUCIÓN EDUCATIVA ECOTURÍSTICA LITORAL DEL PACÍFICO DE NUQUÍ -

MUESTRA No: PROFUNDIDAD:

0,50-1,00 m

LOCALIZACIÓN:

LIMITES DE ATTERBERG No golpes		% DE HUMEDAD LIMITE LÍQUIDO		LIMITE PLÁSTICO
Peso recipiente + suelo húmedo	g	85.60		
Peso recipiente + suelo seco g		68.50	68.50	
Peso recipiente	g	6.7	NL	NP
Peso del agua en el suelo	g	17.1		
Peso del suelo seco	g	61.8		
Contenido de humedad	%	27.7		
Recipiente No.				

eso Seco Antes de Lavar (g) =			383.6	Peso seco después de lavar (g) =		352.6
Tamiz		Peso Ret	%	% Retenido	% Pasa	
(Pulg.)	(mm)	(g)	Retenido	Acumulad 0	355.52	
3/8"	9.5	0.0	0.0	0.0	100	0.0
#4	4.75	15.1	3.9	3.9	96	.1
#10	2.00	26.7	7.0	10.9	89	.1
#40	0.420	141.2	36.8	47.7	52	.3
#200	0.075	168.6	44.0	91.7	8.	3
Pasa	#200	32.0	8.3			

GRANULOMETRIA

NL

% DE GRAVAS

3.9

SP-SM

% LIMITE PLASTICO: % INDICE DE PLASTICIDAD : N-IP

% DE ARENAS % DE FINOS

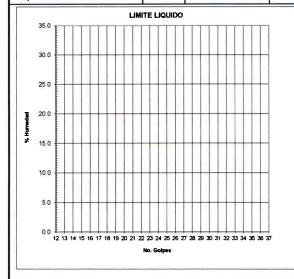
87.7

CLASIFICACION AASHTO

CLASIFICACION SUCS

A-3

OBSERVACIONES:


LABORA	RECIBIDO	
Pablo E. Gatol	2	
REALIZÓ	APROBÓ	CLIENTE

Código	R-4-006							
Versión	005							
Fecha	25/05/2015							
Dágina 1 de 1								

		INV E - 123 - 1	3 - INV E - 125 -13 - INV	E - 126 - 13		
CLIENTE:	IVICSA INGENIEROS CON		FECHA:	dic-15		
ESTUDIO:	EXPLORACIÓN, ENSAYOS REQUERIDA PARA LAS AI				PERFORACIÓN No.	3
LOTODIO.	JORNADA ÚNICA DEL MIN				MUESTRA No:	3.3
LOCALIZACIÓN:	INSTITUCIÓN EDUCATIVA CHOCÓ.	ECOTURÍSTICA LITOR	IUQUÍ -	PROFUNDIDAD:	2,50-3,00 m	
LIMITES	S DE ATTERBERG	% DE HUMEDAD	LIMITE LÍQUIDO		LIMITE	PLÁSTICO
No goines						

LIMITES DE ATTERBERG	;	% DE HUMEDAD	LIMITE LÍQUIDO	LIMITE F	PLÁSTICO	
No golpes						
Peso recipiente + suelo húmedo	g	80.70				
Peso recipiente + suelo seco g		64.10				
Peso recipiente g		6.6	NL	N	NP	
Peso del agua en el suelo	g	16.6				
Peso del suelo seco	g	57.5				
Contenido de humedad	%	28.9				
Recipiente No.						

OBSERVACIONES:

Peso Seco Antes de Lavar (g) = 459.1 Peso seco después de lavar (g) = 394.0 Tamiz Peso Ret (g) % Retenido Retenido o % Pasa (Pulg.) (mm) 0 0 0 0 100.0 0 100.0 0 100.0												
Peso Ret (g) Retenido Retenido Retenido	Peso Seco	Antes de L	avar (g) =	459.1			394.0					
(Puig.) (mm) (g) Retenido Acumulad o	Tai	miz	Peso Ret	%		Retenido Acumulad % Pasa						
1/2" 12.5 17.9 3.9 3.9 96.1 3/8" 9.5 12.0 2.6 6.5 93.5 #4 4.75 44.4 9.7 16.2 83.8 #10 2.00 60.3 13.1 29.3 70.7	(Pulg.)	(mm)	(g)	Retenido	Acumulad							
1/2" 12.5 17.9 3.9 3.9 96.1 3/8" 9.5 12.0 2.6 6.5 93.5 #4 4.75 44.4 9.7 16.2 83.8 #10 2.00 60.3 13.1 29.3 70.7												
1/2" 12.5 17.9 3.9 3.9 96.1 3/8" 9.5 12.0 2.6 6.5 93.5 #4 4.75 44.4 9.7 16.2 83.8 #10 2.00 60.3 13.1 29.3 70.7												
1/2" 12.5 17.9 3.9 3.9 96.1 3/8" 9.5 12.0 2.6 6.5 93.5 #4 4.75 44.4 9.7 16.2 83.8 #10 2.00 60.3 13.1 29.3 70.7												
1/2" 12.5 17.9 3.9 3.9 96.1 3/8" 9.5 12.0 2.6 6.5 93.5 #4 4.75 44.4 9.7 16.2 83.8 #10 2.00 60.3 13.1 29.3 70.7												
3/8" 9.5 12.0 2.6 6.5 93.5 #4 4.75 44.4 9.7 16.2 83.8 #10 2.00 60.3 13.1 29.3 70.7	3/4"	19	0.0	0.0	0.0	10	0.0					
#4 4.75 44.4 9.7 16.2 83.8 #10 2.00 60.3 13.1 29.3 70.7	1/2"	12.5	17.9	3.9	3.9	96	3.1					
#10 2.00 60.3 13.1 29.3 70.7	3/8"	9.5	12.0	2.6	6.5	9:	3.5					
#10 2.00 000 101 201	#4	4.75	44.4	9.7	16.2	8:	3.8					
#40 0.400 87.7 10.1 48.4 51.6	#10	2.00	60.3	13.1	29.3	70	0.7					
#40 0.420 07.7 19.1 48.4 31.3	#40	0.420	87.7	19.1	48.4	5	1.6					
#200 0.075 170.7 37.2 85.6 14.4	#200	0.075	170.7	37.2	85.6	14	1.4					
Pasa #200 66.1 14.4	Pasa	#200	66.1	14.4								

GRANULOMETRIA

% LIMITE LIQUIDO:	NL	% DE GRAVAS	16.2	CLASIFICACION SUCS	SM
% LIMITE PLASTICO:	NP	% DE ARENAS	69.4		
% INDICE DE PLASTICIDAD :	N-IP	% DE FINOS	14.4	CLASIFICACION AASHTO	A-2-4

LAE	BORATORIO	RECIBIDO
Peblo E. Getral	E	
REALIZÓ	APROBÓ	CLIENTE

REALIZÒ

REGISTRO DE EXPLORACIÓN DEL SUBSUELO

 Código
 R-4-052

 Versión
 003

 Fecha
 02/07/2014

ágina 1 de 1

CLIENTE: ESTUDIO: IVICSA INGENIEROS CONSULTORES, SUCURSAL COLOMBIA S A
EXPLORACIÓN, ENSAYOS DE LABORATORIO Y RECOMENDACIÓN GEOTECNICA REQUERIDA PARA LAS AMPLIACIONES DE LOS
COLEGIOS DEL PROYECTO, JORNADA ÚNICA DEL MINISTERIO DE EDUCACIÓN - MODULO 2.

 FECHA:
 dic-15

 PERFORACION No.
 4

CLIENTE

LOCALIZACIÓN: INSTITUCIÓN EDUCATIVA ECOTURÍSTICA LITORAL DEL PACÍFICO DE NUQUÍ - CHOCÓ

PROF m	MUESTRA	MUESTRA PROF-m.	SPT	AVANCE	DESCRI	PCIÓN	OBSERVACIONES
0.50		0.50			CAPA VEGETAL CON RA	ASTROS DE BASURA	DESCRIPCIÓN VISUAL
	MUESTRA	0.50	SPT				
-	No. 4.1	0.95	2-3-3	AVANCE A PERCUSIÓN	ARENA GRAVO LIMOSA SIN PLASTICIDAD (COMPACIDA)		DESCRIPCIÓN VISUAL
1.50							
1.50	MUESTRA	1.50	SPT				
	No. 4.2	1.95	3-3-3		ARENA GRAVO LIMOSA SIN PLASTICIDAD COLOR GRIS, HUMEDAD NATURAL ALTA,		
				AVANCE A PERCUSIÓN	ARENA GRAVO LIMOSA SIN PLASTICIDAD (COMPACIDA)	D SUELTA.	
2.50							
	MUESTRA	2.50	SPT				
_	No. 4.3	2.95	3-3-2	AVANCE A PERCUSIÓN	ARENA LIMOSA SIN PLASTICIDAD COLOR GRIS, HUMEDAD NATURAL ALTA, COMPACIDAD SUELTA		
4.35							FONDO EXPLORAD 4,35 m
_					RECH	AZO	4,35 m RECHAZO GRAVAS ARENAS GRUESAS
_							
_							
=							
_							
_							
-							
_							
_							
			14				
-							
-							
_							
_							
_							
_							
_							
SERVA	CIONES	REGISTRA NIVEL FI	REÁTICO 0.70	METROS.			
				LABORATORIO		RECIBIDO	
	Poli	6 6. Gahal			-24-		

Código	R-4-006
Versión	005
Fecha	25/05/2015
200	Management to

		GEZ	OZA	M																			Dágina	1 de 1
		JEC.						_		_	IN	V E	- 12	23 -	13 -	INV E	- 125 -13	- INV	E - 126 - 1	3			, agiin	
	or ot						_																V2/1990	
CLIEN	ITE:																MBIA S.A			FECHA:		dic-15		
ESTU	DIO:	:	R	EXPLORACIÓN, ENSAYOS DE LABORATORIO Y REC REQUERIDA PARA LAS AMPLIACIONES DE LOS CO JORNADA ÚNICA DEL MINISTERIO DE EDUCACIÓN								s co	LEGIC	GIOS DEL PROYECTO,				PERFORACIÓN No.			4			
			_											_	MUESTRA No: 4.2			.2						
LOCA	LIZ	INSTITUCIÓN EDUCATIVACIÓN: CHOCÓ.				TIV	A EC	от —	JRIS	STIC	A L	OTI.	RAL	DEL P	PACIFICO	DEN	IUQUI -		PROFUND	IDAD:	1,50-2	2,00 m		
									_						_						,			
		LIMIT	res de	ATT	ERBE	RG			á	% D	ΕH	UMI	EDA	AD		LIMIT	TE LÍQUID	0				LIMITE P	LÁSTICO	
No go	lpes	3				_			L															
Peso i	reci	piente	+ suel	o hún	nedo	\perp	g				7	1.40	8		\perp									
	_		+ suel	o sec	0	+	g		┺	_		6.60	0		\perp				1					
_	_	piente				+	g		-	_		6.7			\perp		NL		1			N	IP	
_		_	n el su	elo		+	g		\perp	_		4.8			+									
gasto recta		suelo		_		+	g	_	┾	_		9.9			+									
	-	TO STORY	umeda	1		+	%	•	┢		2	9.7			+									
Recip	lent	e No.		_		_	_	_	_	_			_							GR	ANULOMETR	IA.		
	35	0 1			L	IMITE	E LIQ	UID) 						_								o después	
											Peso	Seco	Antes de l	_avar (g) =	540.8	de lavar (419.5						
25 0				П						Ħ		Ħ		1		Та	miz	Peso Ret	%	% Retenido				
							_		(Pu	lg.)	(mm)	(g)	Retenido	Acumulad o	% F	Pasa								
								П		П														
3	20	0	+++					++	+		H	+	H	1										
% Humedae									П								_	_		_	-			
*	15	0	111	\top	Ш	Т	Т	T	Ħ	П		П	Ť	Ħ			-			1				
	10	۰		1	Ш	\perp	4	Ц	Ш	Ш		Н	1	Н										
																	3/	8"	9.5	0.0	0.0	0.0	10	0.0
	5	0	+++	+		+	+	+	+	+		H	+	Н			#	4	4.75	15.0	2.8	2.8	97	7.2
												П		П			#	10	2.00	21.8	4.0	6.8		3.2
	0	0 12 13	14 15 16	17 18	19 20 21	22 2	3 24 2	5 26	27 28	29 3	0 31	32 33	3 34	35 36	37		#-	10	0.420	40.7	7.5	14.3	550	5.7
No. Golpes												#2	00	0.075	341.0	63.1	77.4	22	2.6					
_																		Pasa	#200	122.3	22.6			
% LIM	IITE	LIQUII	DO:				NI	L				%	DE	GR	AVA	s	2	.8		CLASIFICA	ACION SUC	S	SM	
% LIMITE PLASTICO: NP						%	DE	ARI	ENA	S	74	.6												
% INE	DICE	DE P	LASTIC	IDAD	:		N-I	P						FIN			22	2.6		CLASIFICA	ACION AASI	нто	A-2-4	
OBS	ER\	/ACIOI	NES: _																					
																								· 7
		_	_				_	L	ABC	RA1	OR	O	_		STEEL STEEL					-		RECIBIDO		
	2	260	6 €	:6	G A	20	2							-	2	4								
			RE	ALIZÓ											- 9	PROB	Ó					CLIENTE		

Código R-4-006								
Versión	005							
Fecha	25/05/2015							
Página 1 de 1								

INV E - 123 - 13	8 - INV E - 125	5 -13 - INV E -	126 - 13
------------------	-----------------	-----------------	----------

CLIENTE:

IVICSA INGENIEROS CONSULTORES, SUCURSAL COLOMBIA S.A

FECHA:

dic-15

ESTUDIO:

EXPLORACIÓN, ENSAYOS DE LABORATORIO Y RECOMENDACIÓN GEOTÉCNICA

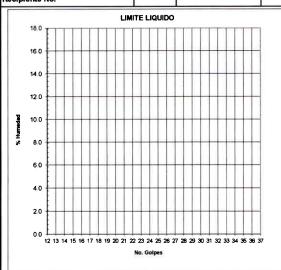
PERFORACIÓN No.

REQUERIDA PARA LAS AMPLIACIONES DE LOS COLEGIOS DEL PROYECTO, JORNADA ÚNICA DEL MINISTERIO DE EDUCACIÓN - MODULO 2.

MUESTRA No:

4.2 B

LOCALIZACIÓN:


OBSERVACIONES:

INSTITUCIÓN EDUCATIVA ECOTURÍSTICA LITORAL DEL PACÍFICO DE NUQUÍ -CHOCÓ.

PROFUNDIDAD:

1,50-2,00 m

LIMITES DE ATTERBERO	;	% DE HUMEDAD	LIMITE LÍQUIDO	LIMITE PLÁSTICO			
No golpes							
Peso recipiente + suelo húmedo	g	339.40					
Peso recipiente + suelo seco	g	297.40					
Peso recipiente	g	37.5	NL	NP			
Peso del agua en el suelo	g	42					
Peso del suelo seco	g	259.9					
Contenido de humedad	%	16.2					
Recipiente No.							

Peso Seco	Antes de L	.avar (g) =	1900.3	Peso seco de lavar (g		1867.6
Tar	miz	Peso Ret	%	% Retenido		Pasa
(Pulg.)	(mm)	(g)	Retenido	Acumulad o	76 1	-asa
1"	25.4	0.0	0.0	0.0	10	0.0
3/4"	19	84.1	4.4	4.4	9	5.6
1/2"	12.5	207.1	10.9	15.3	8-	4.7
3/8"	9.5	156.7	8.2	23.6	7	6.4
#4	4.75	435.2	22.9	46.5	5	3.5
#10	2.00	444.2	23.4	69.8	3	0.2
#40	0.420	313.4	16.5	86.3	1:	3.7
#200	0.075	225.9	11.9	98.2	1	.8
Pasa	#200	33.7	1.8			

GRANULOMETRIA

% LIMITE LIQUIDO:	NL	% DE GRAVAS	46.5	CLASIFICACION SUCS	SP
% LIMITE PLASTICO:	NP	% DE ARENAS	51.8		
% INDICE DE PLASTICIDAD :	N-IP	% DE FINOS	1.8	CLASIFICACION AASHTO	A-1-a

LA	ABORATORIO	RECIBIDO
Pablo E. Gatol	7	
REALIZÓ	APROBÓ	CLIENTE

REALIZÓ

ANÁLISIS GRANULOMÉTRICO DE SUELOS POR TAMIZADO DETERMINACION DEL LIMITE LIQUIDO, LIMITE PLASTICO E INDICE DE PLASTICIDAD DE LOS SUELOS

Н		•
	Fecha	25/05/2015
L	Versión	005
L	Código	R-4-006

	- 1			П			1											LOS SUEL	os					Fecha	25/05/201
	G	EO	ZΑ	M																				Página	a 1 de 1
												IN	ΝE	- 1	23 -	- 13	INV E	- 125 -13 - IN	₩ E	- 126 - 13	3				
CLIEN	NTE:		IV	/ICS	A INC	GEN	IIER	os	100	NSU'	LTO	RE	S, S	UC	UR	SAL	OLOM	BIA S.A				FECHA:		dic	c-15
ESTU	IDIO:																	NDACIÓN GE S DEL PROY			-	PERFORA	CIÓN No.		4
ESTU	DIO.																- MOD		120	.10,		MUESTRA	No:	4	1.3
LOCA	LIZAC	IÓN:		ISTI		ÓN	EDU	JCA	TIVA	\ EC	от	URÍ	STIC	CA	LIT	ORA	DEL P	ACÍFICO DE	NU	IQUÍ -	-X	PROFUND		5- SSK	3,00 m
			-																		•				
	L	IMITE	S DE	AT	TERB	BER	G				% C)E H	HUM	ED.	AD		LIMIT	E LÍQUIDO					LIMITE P	PLÁSTICO	
No go	200						_			L									-51						
	recipie				_	0	╀	g		╄		-	9.60			-			-						
	recipie		suel	o se	со		╀	g	_	┾			5.60	0	_	-		NII .	-					<u> </u>	
	recipie del ag		.l	ala			╀	9		╁		- 2	6.6		_	-		NL	4					IP.	
	del su			610			┿	9		╁			49.0			-			4						
aller es	nido d		-	1			+	9 %	_	╁		_	28.6	_		-			-						
E-2000	iente l		cuac	•		_	╁	- /		╁		-	.0.0		_	_			+			-			
		2.75					L AITE			<u>+</u>											GR	ANULOMETR	IA		
	30.0			TT			AITE			TT	T	П	П	П	T	П		Peso Sec	:o A	antes de L	avar (g) =	408.1	Peso seco	o después	304.3
																					т		%	9, -	
	25.0						П	T		Ħ			T			П		(Pulg.)	am	(mm)	Peso Ret (g)	% Retenido	Retenido Acumulad	% F	Pasa
	20.0		$^{+}$	H		-	H	+	H	H	+	H	+	H	+	H		1.57.53.2	+				0		
8																			1						
% Humeda	15.0	\vdash	1	+	-	-	+	+	H	\perp		H	+	Н	+	H									
*							П							П		П			1						
	10.0	\Box	1	Н		4	H	4	Н	H	1	Н	\perp	Н	+	Н			4						
				П			Н												+						
	5.0			Ш			Ш	1		Ш				Ц		Ц		3/8"	+	9.5	0.0	0.0	0.0		0.0
			Ш				П			Н				П				#4	+	4.75	4.3	1.1	1.1	730	8.9
			Ш	П			Ш		Ш	Ц						Ш		#10	+	2.00	5.2	1.3	2.3	-	7.7 3.2
	0.0	12 13 14	15 16	17 18	19 20	21 2	22 23	24 2	5 26	27 28	29 3	30 31	32 3	3 34	35 :	36 37		#40	+	0.420	18.2 275.6	4.5 67.5	6.8 74.3		5.7
							No.	Golp	rs									#200	sa #	0.075	104.8	25.7	14.3	2.	5.1
L						_		_						_	_				ou m	200	104.0	25.7			
	ITE LI							NI					%	DE	GI	RAV	s	1.1			CLASIFICA	ACION SUC	3	SM	
	IITE PL							Ni					%	DE	AF	REN	s	73.3							
% INI	DICE D	DE PLA	STIC	IDA	D:			N-I	P				%	DE	FI	NOS		25.7			CLASIFICA	ACION AASI	то	A-2-4	
OBS	ERVA	CIONE	S:																						
																									56
							_		L	ABO	RA	TOF	OIS										RECIBIDO		
	TE	616	E	- 6	Se	h	2	8								_	+	<u>-</u>							

CLIENTE

REGISTRO FOTOGRÁFICO

• Perforación No. 1

Imagen 1. Identificación Perforación

Imagen 2. Vista Panorámica

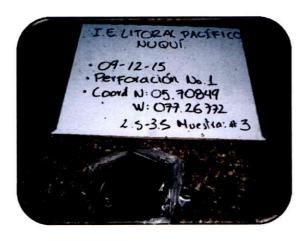


Imagen 3. Muestra No. 1

Imagen 4. Muestra No. 2

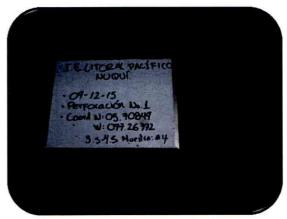


Imagen 5. Muestra No. 3

Imagen 6. Muestra No. 4

Imagen 7. Muestra No. 5

REGISTRO FOTOGRÁFICO

• Perforación No. 2

Imagen 1. Identificación Perforación

Imagen 2. Vista Panorámica

Imagen 3. Muestra No. 1



Imagen 4. Muestra No. 2

E-mail: gerencia@geozam.com.co

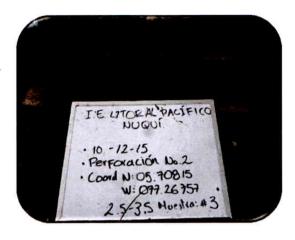


Imagen 5. Muestra No. 3

Imagen 6. Muestra No. 4

Imagen 7. Muestra No. 5

REGISTRO FOTOGRÁFICO

· Perforación No. 3

Imagen 1. Identificación Perforación

Imagen 2. Vista Panorámica

Imagen 3. Muestra No. 1

Imagen 4. Muestra No. 2

Imagen 5. Muestra No. 3

REGISTRO FOTOGRÁFICO

· Perforación No. 4

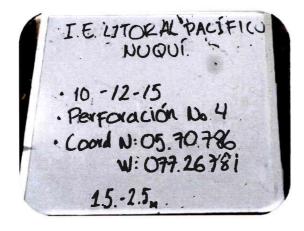
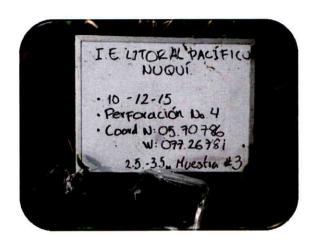


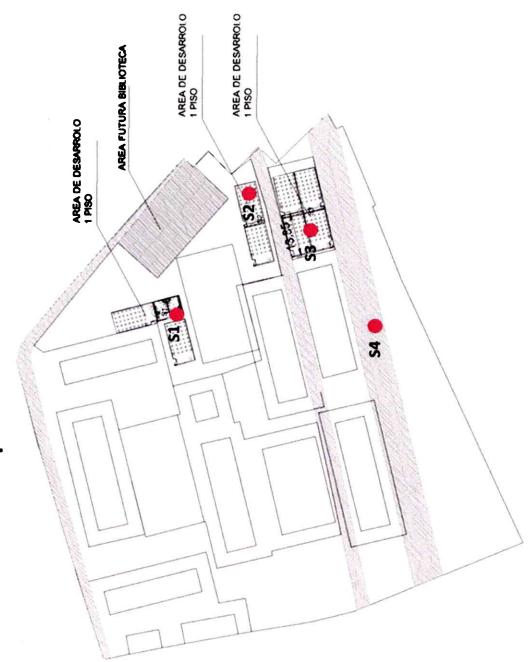
Imagen 1. Identificación Perforación

Imagen 2. Vista Panorámica

Imagen 3. Muestra No. 1

Imagen 4. Muestra No. 2




Imagen 5. Muestra No. 3

																					8	cópigo	2	R-4-090
	1									20.00	N.	II.	A N	NO.	JE I AF	CHADBO BESHMEN DE ENSAVOS DE LABORATORIO					VER	VERSIÓN	ő	100
	_	7													į	5	2				l iii	FECHA	15/08	15/09/2015
	GEO	GEOZAM																				Pag. 1 de	1 de 1	
CLIENTE:		VICSA INGENIEROS CONSULTORES, SUCURSAL COLOMBIA S.A EXPLORACIÓN, ENSAYOS DE LABORATORIO Y RECOMENDACIÓN GEOTÉCNICA REQUERIDA PARA LAS AMPLIACIONES DE LOS COLEGIOS DEL PROYECTO.	ON, ENS	CONSUL AYOS DI	TORES, E LABOR	SUCURS	AL COL	MENDAC	A ION GEC	TECNICA	REQUE	RIDA PA	RA LAS A	MPLIACIO	ONES DE	TOS COLE	GIOS DEL	. PROYEC	ТО,		_FECHA DI	FECHA DE ENSAYO:		dic-15
		JORNADA ÚNICA DEL MINISTERIO DE EDUCACIÓN- MODULO 2.	NICA DE	EL MINIS	TERIOD	EEDUCA	CIÓN- N	ODOLLO	2 2		1										1			
LOCALIZACION	<u> </u>	INSTITUCE.	N EDOC	AIIVAE	0000	E L	ORAL D	E PACI	200	- 1000	9										Opti			
		_			ANÁ	NÁLIBIS GRANULOMÉTRICO - % QUE PASA	NULOMÉ	TRICO - %	QUE PAS			1				Humedad	_							
Perforación No.	Muestra No.	Profundidad m.	Ш			GRAVA			H	11	ARENA	Arcillas	_	Limites de Atterberg	Briberg	Nat	_	Clasificacación	_	Sumengir	Sumergido	CBR al 90% del PM	CBR 96% del PM	Cono Dinám.%
	2	0.50-1.00	ðo .	2.	1×1	-	ż		100	4 687	10 40	9 7.7	+	+	ª d-	29.2	SP-SM	AASHTO A-3	Kg/cm2	NA.	NA NA	N.	4/Z	4×Z
ī	1.2	1,50-2,00	L				T	T	₩	+	90.1 62.3	⊢	ž	Ž	₫Ż	26.7	WS.	Ľ		¥/¥	Ą	4×2	ΥN	Š
	4	3,50-4,00	Ц					\parallel	Н	97.0	93.1 75.6	6 17.5	H	Н	ď	19.8	NS S	A-2-4		A/A	ΑN	ΑN	A/A	¥.
	3		1				1	+	+	+	+	-	+	+	1	į	į]]
P.2	23	250.300	\downarrow				1	\dagger	3 5	7 20 30 40 30 40 30 30 30 30 30 30 30 30 30 30 30 30 30	2 2	3 200	2 2	2		2,5	8	A24		ž ž	¥ 2	4 2	Z Z	2 2
!	3.5	3,504,00	1				1	\dagger	+	+	+	+	╪	+	2	3,00	5 8			٤			2	
	•	On't On't						+	+	-	+	+	+	+		900	5	5						
	3.1	0,50-1,00						H	100	_	89.1 52.3	-	ž	ď	ā	27.7	SP-SM	\mathbf{L}		WA	ΝA	N/A	NA	ΑN
2	3.3	2,50-3,00					001	1.96	Н	83.8 70	Н	.6 14.4	H	Н	ď	28.9	WS	A-2-4		ΑN	A/A	ΝA	NA	ΑVA
									\rightarrow	-	-	-	=	-										
i	4.2	1,50-2,00	4				1	-	9	97.2 93	93.2 85.7	+	z :	2	<u>a</u>	29.7	NS I	A-2-4		¥.	¥.	Y.	ΨŽ.	¥.
1	4.28	1,50-2,00	1			2	98	7	+	-	4	+	#	+	Ž	162	ds	<u> </u>		§	¥	≨	§	₹ Ž
	5	2,50-3,00	1				1	+	8	98.9	97.7 93.2	2 25.7	ž	N N	<u>a</u>	28.6	SM	A-2-4						
			1				T	t	\dagger	+	+	-	+	-										
			L					T	H	+	\vdash	-	F											
			Ц				П	H	H	H	Н	Н												
			1							+	+	-	+	1										
							T	T	+	+	+		+	-										
							T	\dagger	T	+	+	+	-											
			Ц					\forall	\forall	H	\dashv	\dashv	\parallel											
			1					\dagger	+	+	+	+	+	1										
								T	t	+	+	+	H										le age	
			Ц					H	H	H	${\mathbb H}$	H	H	Ц										
			1					+	+	+	+	1	+	1										
			-					t	+	+	+	+	+	-										
			Ц	Ц			Ħ	H	H	H	H	H		\coprod					\bigsqcup					
OBSERVACIONES	NES:																							
							1	Cidotadour												ľ	o di di di			
				,			Š	JKA LOK	,												KECIBIDO			
				10 mg									中											
			1	REALIZO					+				REALIZO								CLIENTE			
									1															

Cil 35 AN No 3N-131 Prados del Norte Santiago de Cali – Colombia. Tel. (2) 6616621 – 316 2810925.

E-mail: controldecalidad@geozam.com.co. Servicio al Cliente: servicioakliente@geozam.com.co
"CALIDAD ES NUESTRO RESULTADO"

Esquema de localización

