

PROYECTO REDES ELÉCTRICAS

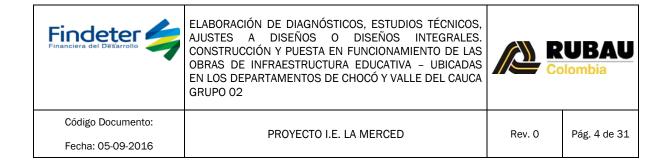
INSTITUCION EDUCATIVA LA MERCED CALI - VALLE

	Comentado Por:					
No.	Nombre	Cargo	Firma			
1						
	RUBAU CONSTRUCCIONES					

Rev.	Fecha	Descripción de revisión	Elaboró	Revisó	Aprobó
0	20/11/2016	Emitido para información del cliente	Gustavo		
			Arboleda C.		
B1		Emitido para comentarios del cliente			
A1		Emitido para revisión interna			
	Liberó				

Código Documento:

Fecha: 05-09-2016


PROYECTO I.E. LA MERCED

Rev. 0

Pág. 3 de 31

CONTENIDO

<u>1.</u>	NORMATIVIDAD APLICADA	4
<u>2.</u>	DESCRIPCIÓN DEL PROYECTO ELÉCTRICO	
<u>3.</u>	CUADROS DE CARGA INICIALES Y FUTURAS	4
<u>3.1</u>	CUADROS DE CARGA	4
	CUADROS DE CARGA INICIALES	4
<u>3.1.2.</u>	CUADROS DE CARGA FUTUROS	5
<u>4.</u>	CALCULO DE REGULACIÓN	
<u>5.</u>	CALCULO DE PÉRDIDAS	5
<u>6.</u>	ANÁLISIS DE RIESGOS DE ORIGEN ELÉCTRICO Y MEDIDAS PARA MITIGARLO	5
<u>7.</u>	ANÁLISIS DEL NIVEL DE TENSIÓN REQUERIDO	6
<u>8.</u>	CALCULO DE CAMPOS ELECTROMAGNÉTICOS	e
<u>9.</u>	CALCULO ECONÓMICO DE CONDUCTORES	ϵ
<u>10.</u>	VERIFICACIÓN DE CONDUCTORES	8
<u>10.1.</u>	EN ALIMENTADORES	8
10.1.1	CONDUCTORES DE FASE	8
10.1.2	CONDUCTORES DE NEUTRO	.5
10.1.3	CONDUCTORES DE TIERRA	.5
10.1.3	.1. CONDUCTOR DEL ELECTRODO DE PUESTA A TIERRA	.5
10.1.3	.2. CONDUCTORES DE PUESTA A TIERRA DE LOS EQUIPOS	.5
<u>11.</u>	CÁLCULO MECÁNICO DE ESTRUCTURAS	.5
<u>12.</u>	CALCULO DE CANALIZACIONES	.6
<u>12.1.</u>	CALCULO EN ALIMENTADORES Y RAMALES	Э.
<u>13.</u>	PÉRDIDAS DE ENERGÍA	.9
<u>13.1.</u>	EN ALIMENTADORES	.9
<u>14.</u>	CALCULO DE REGULACIÓN	.9
<u>14.1.</u>	CALCULO DE REGULACIÓN ALIMENTADORES Y RAMALES	.9
<u>15.</u>	COORDINACIÓN DE PROTECCIONES	:0
<u>16.</u>	CLASIFICACIÓN DE ÁREAS	:9
<u>17.</u>	DISTANCIAS DE SEGURIDAD REQUERIDA	:9
<u>18.</u>	DESVIACIÓN DE LA NTC 2050	17
19.	ANÁLISIS DEL NIVEL DE RIESGO POR RAYOS	

1. Normatividad Aplicada

NTC 2050 RETIE NTC4550 NTC 4595 RETILAP

2. Descripción Del Proyecto Eléctrico

La institución educativa cuenta con una acometida aérea por baja tensión para la institución, con un medidor de energía trifásico, un tablero de distribución de 30 circuitos, lo cual no es suficiente para atender la demanda existente más la proyectada, por consiguiente se requiere de un transformador de energía de 75 KVA. Se debe instalar grupo de medida y TGA.

En cuanto a la carga tenemos el siguiente análisis: La carga existente instalada es de 21.79 KVA. La carga instalada proyectada aproximada es de 53.83KVA. Por lo cual se debe proyectar un transformador de 75 KVA.

3. Análisis y Cuadros de Carga iniciales y futuras.

3.1. Cuadros de Carga

3.1.1. Cuadros de Carga Iniciales

Para el análisis de cargas iniciales se solicitó a la institución educativa el suministro de planos eléctricos con cuadros de cargas, al no poseer esa información la institución, se procedió a realizar levantamiento de las cargas existentes.

Donde se concluye que la carga máxima existente instalada es de 21.79 KVA.

Findeter Financiera del Desarrollo	ELABORACIÓN DE DIAGNÓSTICOS, ESTUDIOS TÉCNICOS, AJUSTES A DISEÑOS O DISEÑOS INTEGRALES. CONSTRUCCIÓN Y PUESTA EN FUNCIONAMIENTO DE LAS OBRAS DE INFRAESTRUCTURA EDUCATIVA - UBICADAS EN LOS DEPARTAMENTOS DE CHOCÓ Y VALLE DEL CAUCA GRUPO 02	R	UBAU
Código Documento:	PROYECTO I.E. LA MERCED	Rev. 0	Pág. 5 de 31
Fecha: 05-09-2016	PROTECTO I.E. LA WIERCED	Rev. 0	Pag. 5 de 51

3.1.2. Cuadros de Carga Futuros

El proyecto nuevo contempla los siguientes tableros futuros:

- Tablero TGA principal para toda la institución educativa.
- Tablero de distribución para el edificio nuevo.
- Tableros Piso 1, Piso 2, Piso 3.
- Tablero Regulado, alimentado por UPS de 10 KVA trifásica.
- Tablero de Emergencia.
- Tablero de Bombas.
- Tablero de Cocina.

Se detallan los cuadros de cargas de tableros en anexo.

4. Calculo de Regulación

La regulación tanto para alimentadores como para ramales la presenta cada cuadro de cargas presentado en el anexo "Cuadro Cargas IE La Merced.xls". Los valores límites para un alimentador y ramal fueron tomados de la NTC 20560 artículo 215-2 b) Nota 2. La carga de los circuitos ramales se asumió uniformemente distribuida por todo el circuito. La caída de tensión de los alimentadores de cada tablero se calculó tomando los valores y recomendaciones de la tabla 9 Nota 2 del capítulo 9 de la NTC 2050.

5. Calculo de Pérdidas

Las pérdidas de potencia se calcularon para cada alimentador de acuerdo a los valores de resistencia de cada cable presentados en la tabla 9 del capítulo 9 de la NTC 2050. Se anexa cálculos de pérdidas en potencia activa en cuadro de cargas (anexo # 1).

6. Análisis de Riesgos de Origen Eléctrico y medidas para Mitigarlo

De acuerdo al RETIE, todo proyecto debe de tener una evaluación de riesgo eléctrico y sus medidas para mitigarlo. En anexo # 2 se describen los eventos que se pueden presentar.

Findeter Financiera del Desarrollo	ELABORACIÓN DE DIAGNÓSTICOS, ESTUDIOS TÉCNICOS, AJUSTES A DISEÑOS O DISEÑOS INTEGRALES. CONSTRUCCIÓN Y PUESTA EN FUNCIONAMIENTO DE LAS OBRAS DE INFRAESTRUCTURA EDUCATIVA - UBICADAS EN LOS DEPARTAMENTOS DE CHOCÓ Y VALLE DEL CAUCA GRUPO 02	R	UBAU
Código Documento:	PROYECTO I.E. LA MERCED	Rev. 0	Pág. 6 de 31
Fecha: 05-09-2016	THOTESTO I.E. EA WIENGED	Nev. 0	Tag. O de 31

7. Análisis del nivel de tensión requerido

Los equipos que se conectarán en el proyecto funcionan a 120-208V. Por lo tanto el sistema de distribución será en nivel 1 de baja tensión.

8. Calculo de campos electromagnéticos

De acuerdo al artículo 14 del Retie los campos electromagnéticos de baja frecuencia (0 a 300 Hz) no producen efectos nocivos en los seres vivos. Adicionalmente el artículo 14.3 del mismo reglamento establece los valores límites de exposición a campos electromagnéticos para una exposición ocupacional de 8 horas al igual que para el público en general. En las zonas en donde se encuentra las instalaciones eléctricas del proyecto no se tiene una permanencia igual a ocho horas.

Finalmente basados en el artículo 14.4 se hace claridad que para los diseños de líneas y subestaciones con valores de tensión de nivel IV deben contemplar un análisis de campos electromagnéticos.

Dado que el proyecto tiene un punto de conexión en el nivel I de tensión se puede prescindir del cálculo de exposición a campos electromagnéticos.

9. Calculo económico de conductores

Cálculo económico de conductores de acometida Tablero distribución edificio nuevo:

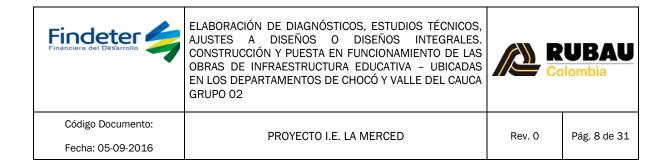
Cálculo Económico de Conductore	Descripción	Unidad	Cantidad	Vr/Unit	Vr/Total
Equivalencia Cobre	3#4/0+1#4/0+1#2/0T Cobre	m	20	\$133.500	\$ 2.670.000
Equivalencia Aluminio	2x(3#1/0+1#1/0)+1#1/0T Aluminio	m	20	\$ 42.500	\$ 850.000

Findeter Financiera del Desarrollo	ELABORACIÓN DE DIAGNÓSTICOS, ESTUDIOS TÉCNICOS, AJUSTES A DISEÑOS O DISEÑOS INTEGRALES. CONSTRUCCIÓN Y PUESTA EN FUNCIONAMIENTO DE LAS OBRAS DE INFRAESTRUCTURA EDUCATIVA - UBICADAS EN LOS DEPARTAMENTOS DE CHOCÓ Y VALLE DEL CAUCA GRUPO 02	R	UBAU
Código Documento:	PROYECTO I.E. LA MERCED	Day O	Dág 7 do 24
Fecha: 05-09-2016	PROTECTO I.E. LA MERCED	Rev. 0	Pág. 7 de 31

Análisis de Consumo Promedio Mensual:

				Consun	no Promedio		
Item	Descripción	Potencia	Uso Diario	Diario	Mensual	Vr Unit. Aprox.	Vr Parcial Aprox.
		(KW)	(Horas)	(KWH)	(KWH)	KWH (\$) Oficial	KWH (\$)
1	Tablero 1º Piso	5,1	0,5	3	51	\$ 437	\$ 22.182
2	Tablero 2º Piso	9,4	0,5	5	94	\$ 437	\$ 41.200
3	Tablero 3º Piso	7,7	0,5	4	77	\$ 437	\$ 33.562
4	Tablero Cocina	17,7	0,5	9	177	\$ 437	\$ 77.314
5	Tablero Regulado	9,0	0,5	5	90	\$ 437	\$ 39.330
6	Tablero Emergencia	5,0	0,5	2	50	\$ 437	\$ 21.632
	TOTAL KWH MES				538		\$ 235.220

Análisis de Utilización Energía Solar con Paneles Solares:


Se incorporan criterios de bioclimática relacionados con la iluminación natural y artificial de bajo consumo energético y contaminación ambiental en áreas representativas de mayor uso, eficiencia del sistema. Se analiza un modelo de sostenibilidad de energía renovable basado en la luz solar, de tal manera que permita su implementación para la red de iluminación del proyecto, si así lo define el contratante. Se incluirá en las memorias de cálculo en el **Análisis de Utilización Energía Solar con Paneles Solares.**

Aprovechando las condiciones climáticas se puede hacer uso de paneles solares para el sistema de iluminación de la I.E.:

La Energía solar es un sistema de energía limpia, la cual se basa en la instalación de un sistema fotovoltaico con paneles solares enlazado a la red normal:

Se utiliza kit solar completo de los KW indicados, el cual incluye paneles Renogy 250 vatios solares, Enphase Microinverters, cables troncales, las tapas de terminación y el equipo de montaje que necesitará para configurar su sistema. Para este análisis se propone una (1) alternativa:

Para servicio parcial, sólo del sistema de alumbrado por 16.36 KVA/ 14.73 KW: 5 unidad de Kit solar de 3 KW * \$ 5,700 US = \$ 28,500 US

De acuerdo a la tasa representativa TRM al día de hoy viernes 11 de Noviembre de 2016 por \$ 3.100, tenemos:

Valor aproximado de Implementación Sistema Paneles Solares para el alumbrado:

\$ 28,500 US * \$ 3.100 = **\$ 88, 350,000.**

10. Verificación de conductores

10.1. En Alimentadores

10.1.1. Conductores de Fase

Los conductores se han seleccionado para soportar la corriente que generan las cargas respectivas. Las protecciones de los alimentadores y de los ramales se dimensionaron multiplicando el valor de la corriente demanda por 1.25 tal y como lo exigen los artículos 220-3 a) para los ramales y 220-10 b) para el caso de los alimentadores de la NTC 2050.

Los cuadros de carga presentados en el anexo "Cuadro de Cargas IE Julio Arce.xls" presentan el alimentador seleccionado para cada tablero y el calibre de los conductores de los circuitos ramales.

A continuación se presentan los cálculos para los diversos tableros de breakers, con cálculo de alimentador, protección, canalización y regulación de tensión:

Código Documento:

Fecha: 05-09-2016

PROYECTO I.E. LA MERCED

Rev. 0

Pág. 9 de 31

Cálculos TGA Proyectado		
Carga Instalada TGA Proyectado :	77596	VA
Calculo Corriente = (S / (208*1,73)) =	215,6	A
Longitud Alimentador =	20	
Cálculo Regulación Tensión:		
Zef (#4/0)=	0,259	Ohmio-m
Vfn = (Zef x L x I) =	1,12	V
$Vff = Vfn \times 1,73$	1,93	V
% Reg= (Vff/Vnom)x100 =	0,93	%
Por ser menor al 3% Cumple.		
Luego el Alimentador:	3#4/0+1#4/0+1#2T	
Cálculo Protección (Inom x 1,25):	269,6	Α
	3x225A	
Cálculo Canalización para Alimentador:		
Aréa Ocupación Conductores en mm2		
Cable Cu #4/0:	238,09	
Cable Cu #2:	88,53	mm2
Área interior ducto 3" imc:	5114	mm2
% Ocupación Ducto (Á. Conduct./Á interior Ducto)x100 =	20,35	%
Cumple por ser menor o igual al 40%		
Ducteria imc:	3"	

Cálculos Tablero De Distribucion Proyectado		
Carga Instalada	53826	VA
Calaula Camianta - (C / (200*1.72)) -	140.6	Δ.
Calculo Corriente = (S / (208*1,73)) =	149,6 85	
Longitud Alimentador =	85	m
Cálculo Regulación Tensión:		
Zef (#4/0)=	0,259	Ohmio-m
Vfn = (Zef x L x I) =	3,29	V
Vff = Vfn x 1,73	5,70	V
% Reg= (Vff/Vnom)x100 =	2,74	%
Por ser menor al 3% Cumple.		
Luego el Alimentador:	3#4/0+1#4/0+1#2T	
Cálculo Protección (Inom x 1,25):	187,0	Α
	3x200A	
Cálculo Canalización para Alimentador:		
Aréa Ocupación Conductores en mm2		
Cable Cu #4/0:	238,09	
Cable Cu #2:	88,53	mm2
Área interior ducto 3" pvc:	5114	mm2
% Ocupación Ducto (Á. Conduct./Á interior	20,35	%
Ducto)x100 =		
Cumple por ser menor o igual al 40%		
Ducteria pvc:	3"	

Código Documento:

Fecha: 05-09-2016

PROYECTO I.E. LA MERCED

Rev. 0

Pág. 10 de 31

Cálculos Tablero De Distribucion Existente		
Carga Instalada Tablero General De Distribucion :	23770	VA
Calcula Comicanto - (5 / /1 72*200) -	66.1	۸
Calculo Corriente = (S / (1,73*208) = Longitud Alimentador =	66,1	
Cálculo Regulación Tensión:		
Zef (#4)=	0,99	Ohmio-m
$Vf = (Zef \times L \times I) =$	4,53	V
% Reg= (Vff/Vnom)x100 =	2,18	%
Por ser menor al 3% Cumple.		
Luego el Alimentador:	3#4+1#4+1#6T	
Cálculo Protección (Inom x 1,25):	82,6	Α
	3x70A	
Cálculo Canalización para Alimentador:		
Aréa Ocupación Conductores en mm2		
Cable Cu #4:	64,94	
Cable Cu #6:	48,70	mm2
Área interior ducto 1-1/2" pvc:	1534	mm2
% Ocupación Ducto (Á. Conduct./Á interior	20.11	0/
Ducto)x100 =	20,11	%
Cumple por ser menor o igual al 40%		
Ducteria pvc:	1-1/2"	

Cálculos Tablero Bombas		
Carga Instalada:	2488	VA
Luego Carga Total=	2488	VA
Calculo Corriente = (S / (208*1,73)) =	6,9	Α
Longitud Alimentador =	7	m
Cálculo Regulación Tensión:		
Zef (#10)=	3,6	Ohmio-m
Vfn = (Zef x L x I) =	0,17	V
Vff = Vfn x 1,73	0,30	V
% Reg= (Vff/Vnom)x100 =	0,14	%
Por ser menor al 3% Cumple.		
Luego el Alimentador:	3#10+1#10+1#10T	
Cálculo Protección (Inom x 2,5):	17,3	Α
	3x20A	
Cálculo Canalización para Alimentador:		
Aréa Ocupación Conductores en mm2		
Cable Cu #10:	19,54	mm2
Área interior ducto 3/4" emt:	428	mm2
% Ocupación Ducto (Á. Conduct./Á interior Ducto)x100 =	22,83	%
Cumple por ser menor o igual al 40%		
Ducteria Emt:	3/4"	

Código Documento:

Fecha: 05-09-2016

PROYECTO I.E. LA MERCED

Rev. 0

Pág. 11 de 31

Cálculos Tablero Emergencia		
Carga Instalada:	4950	VA
Luego Carga Total=	4950	VA
Calculo Corriente = (S / (208*1,73)) =	13,8	Δ
Longitud Alimentador =		m
Longitud Alimentador =	/	111
Cálculo Regulación Tensión:		
Zef (#10)=	3,6	Ohmio-m
Vfn = (Zef x L x I) =	0,35	V
Vff = Vfn x 1,73	0,60	
% Reg= (Vff/Vnom)x100 =	0,29	
Por ser menor al 3% Cumple.	0,23	70
Luego el Alimentador:	3#10+1#10+1#10T	_
Cálculo Protección (Inom x 2,5):	34,4	Α
	3x20A	
Cálculo Canalización para Alimentador:		
Aréa Ocupación Conductores en mm2		
Cable Cu #10:	19,54	mm2
Área interior ducto 3/4" pvc:	439	mm2
% Ocupación Ducto (Á. Conduct./Á interior		
Ducto)x100 =	22,26	%
Cumple por ser menor o igual al 40%		
Durata da musa.	2/4"	
Ducteria pvc:	3/4"	
Cálculos Tablero Cocina		
Carga Instalada:	17692	\/ Δ
carga installada.	17032	VA
Luego Carga Total=	17692	VA
Calculo Corriente = (S / (208*1,73)) =	49,2	Δ
Longitud Alimentador =	31	
Cálculo Regulación Tensión:		
Zef (#6)=	1,52	Ohmio-m
Vfn = (Zef x L x I) =	2,32	V
Vff = Vfn x 1,73	4,01	
% Reg= (Vff/Vnom)x100 =	1,93	
Por ser menor al 3% Cumple.		-,0
Lucas al Alimontadom	246144614407	
Luego el Alimentador:	3#6+1#6+1#8T	۸
Cálculo Protección (Inom x 1,25):	61,5 3x60A	Α
	SXOUA	
Cálculo Canalización para Alimentador:		
Aréa Ocupación Conductores en mm2		
Cable Cu #6:	48,70	mm2
Cable Cu #8:	32,82	mm2
Área interior ducto 1 1/2" pvc:	1534	mm2
% Ocupación Ducto (Á. Conduct./Á interior	14,84	%
Ducto)x100 =	14,04	-70
Cumple por ser menor o igual al 40%		

Código Documento:

Fecha: 05-09-2016

PROYECTO I.E. LA MERCED

Rev. 0

Pág. 12 de 31

Cálculos Tablero 1ºPiso		
Carga Instalada:	5076	VA
Luego Carga Total=	5076	VA
Calculo Corriente = (S / (208*1,73)) =	14,1	Α
Longitud Alimentador =		m
zongituu / iiiii ontuuor =		
Cálculo Regulación Tensión:		
Zef (#10)=	3,6	Ohmio-m
Vfn = (Zef x L x I) =	0,36	V
Vff = Vfn x 1,73	0,50	
% Reg= (Vff/Vnom)x100 =	0,30	
Por ser menor al 3% Cumple.	0,30	70
roi sei menoi ai 5 % cumpie.		
Luego el Alimentador:	3#10+1#10+1#10T	
Cálculo Protección (Inom x 2,5):	35,3	Α
	3x20A	
Cálculo Canalización para Alimentador:		
Aréa Ocupación Conductores en mm2		
Çable Cu #10:		
Área interior ducto 3/4" pvc:	439	mm2
% Ocupación Ducto (Á. Conduct./Á interior	22,26	%
Ducto)x100 =	,	
Cumple por ser menor o igual al 40%		
Ductoria musi	3/4"	
Ducteria pvc:	3/4	
Cálculos Tablero 2ºPiso		
Carga Instalada:	9428	\/Δ
carga Instalada.	5120	V/1
Luego Carga Total=	9428	VA
Calculo Corriente = (S / (208*1,73)) =	26,2	Α
Longitud Alimentador =	12	m
Cálculo Regulación Tensión:		
Zef (#8)=	2,36	Ohmio-m
(7.6.1.7)	0.74	
Vfn = (Zef x L x I) =	0,74	
Vff = Vfn x 1,73	1,28	
% Reg= (Vff/Vnom)x100 = Por ser menor al 3% Cumple.	0,62	70
Por ser menor at 3% Cumple.		
Luego el Alimentador:	3#8+1#8+1#10T	
Cálculo Protección (Inom x 1,25):	32,8	Α
culculo i rotocción (mom x 1/15).	3x40A	, ,
	SA 1011	
Cálculo Canalización para Alimentador:		
Aréa Ocupación Conductores en mm2		
Cable Cu #8:	32,82	
Cable Cu #10:	19,54	mm2
Área interior ducto 1" pvc:	724	mm2
% Ocupación Ducto (Á. Conduct./Á interior	20,83	%
Ducto)x100 =	20,03	70
Cumple por ser menor o igual al 40%		
Ducteria pvc:	1"	

Código Documento:

Fecha: 05-09-2016

PROYECTO I.E. LA MERCED

Rev. 0

Pág. 13 de 31

Cumple por Ser menor o Igual al 40%		
Ducto)x100 = Cumple por ser menor o igual al 40%	, -	
% Ocupación Ducto (Á. Conduct./Á interior	22,26	%
Área interior ducto 3/4" pvc:	439	mm2
Cable Cu #10:	19,54	mm2
Aréa Ocupación Conductores en mm2	10.54	2
Cálculo Canalización para Alimentador:		
Cálaula Camalina alán maus Albus susta desus		
	3x30A	
Cálculo Protección (Inom x 2,5):	62,5	Α
Luego el Alimentador:	3#10+1#10+1#10T	
1.41.	0,140,17,10,17,17	
Por ser menor al 3% Cumple.		
% Reg= (Vff/Vnom)x100 =	0,52	%
Vff = Vfn x 1,73	1,09	
Vfn = (Zef x L x I) =	0,63	
/fm /7af v.l. v.T)	0.53	\/
Zef (#10)=	3,6	Ohmio-m
Cálculo Regulación Tensión:	2.6	Ohmai
Cálcula Dagulacián Tancián		
Longitud Alimentador =	/	m
Calculo Corriente = (S / (208*1,73)) =	25,0	
Calcula Comionto - (6 / (200*4 72)) -	35.0	^
Luego Carga Total=	9000	VA
		1/4
Carga Instalada:	9000	VA
Cálculos Tablero Regulado		
•	-	
Ducteria pvc:	3/4"	
Cumple por ser menor o igual al 40%		
Oucto)x100 =	22,26	%
% Ocupación Ducto (Á. Conduct./Á interior		
Área interior ducto 3/4" pvc:	439	mm2
Cable Cu #10:	19,54	mm2
Aréa Ocupación Conductores en mm2		
Cálculo Canalización para Alimentador:		
	SASON	
Carcaro i roccoción (anom x 2,3).	3x30A	, ,
Cálculo Protección (Inom x 2,5):	53,4	Α
Luego el Alimentador:	3#10+1#10+1#10T	
. o. oo. menor aro 70 campier		
Por ser menor al 3% Cumple.	0,50	,0
% Reg= (Vff/Vnom)x100 =	0,96	
Vff = Vfn x 1,73	1,13	
Vfn = (Zef x L x I) =	1,15	V
Zei (#10)=	3,0	OHHIO-HI
Zef (#10)=	2.6	Ohmio-m
Cálculo Regulación Tensión:		
Longitud Alimentador =	15	m
Calculo Corriente = (S / (208*1,73)) =	21,3	
		_
Luego Carga Total=	7680	VA
Carga Instalada:	7680	VA

Código Documento:

Fecha: 05-09-2016

PROYECTO I.E. LA MERCED

Rev. 0

Pág. 14 de 31

	5.F.A
	VA
/UKVA	
/0000	VA
70000	1/4
70000	VA
194,5	Α
243,2	Д
3×250A	
9950	VA
9950	VA
165,9	Д
20	m
0.41	Ohmio-m
5,15	
1.36	V
2,35	V
1,13	
3#1/0+1#8+1#2T	A
3x180A,MAGNETICO	
142,06	mm2
32,82	mm3
88,53	mm2
5114	mm2
10,71	%
3"	
	243,2 3×250A 9950 9950 165,9 20 0,41 1,36 2,35 1,13 3#1/0+1#8+1#2T 3×180A,MAGNETICO 142,06 32,82 88,53 5114 10,71

Findeter Financiera del Desarrollo	ELABORACIÓN DE DIAGNÓSTICOS, ESTUDIOS TÉCNICOS, AJUSTES A DISEÑOS O DISEÑOS INTEGRALES. CONSTRUCCIÓN Y PUESTA EN FUNCIONAMIENTO DE LAS OBRAS DE INFRAESTRUCTURA EDUCATIVA - UBICADAS EN LOS DEPARTAMENTOS DE CHOCÓ Y VALLE DEL CAUCA GRUPO 02	R	UBAU
Código Documento:	PROYECTO I.E. LA MERCED	Rev. 0	Pág. 15 de 31
Fecha: 05-09-2016	PROTECTO I.E. LA MERCED	Rev. U	rag. 13 de 31

10.1.2. Conductores de Neutro

De acuerdo al artículo 15.1 d) del RETIE los conductores del neutro en un sistema trifásico de instalación de uso final con cargas no lineales deben de dimensionarse por lo menos al 173% de la corriente de fase. De esta manera se dimensionaron los conductores del neutro de los alimentadores de este proyecto. Cada cuadro de cargas presenta el neutro seleccionado.

10.1.3. Conductores de Tierra

10.1.3.1. Conductor del Electrodo de Puesta a Tierra

De acuerdo al artículo 15.3.2 del RETIE este conductor se debe seleccionar de acuerdo a la tabla 250-94 de la NTC 2050. Cada cuadro de cargas presenta el conductor de puesta a tierra que acompaña al alimentador.

10.1.3.2. Conductores de Puesta a Tierra de los Equipos

Los conductores de los ramales, conocidos también como conductores de puesta a tierra de los equipos, se seleccionaron según la tabla 250-95 de la NTC 2050.

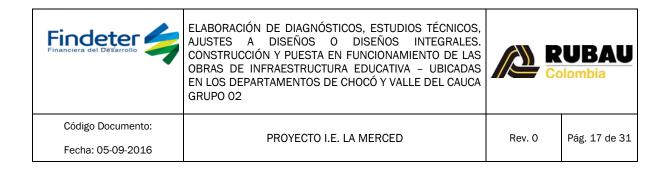
11. Cálculo mecánico de estructuras

El sistema es subterráneo, por lo tanto no aplica este estudio.

Findeter Financiera del Desarrollo	ELABORACIÓN DE DIAGNÓSTICOS, ESTUDIOS TÉCNICOS, AJUSTES A DISEÑOS O DISEÑOS INTEGRALES. CONSTRUCCIÓN Y PUESTA EN FUNCIONAMIENTO DE LAS OBRAS DE INFRAESTRUCTURA EDUCATIVA - UBICADAS EN LOS DEPARTAMENTOS DE CHOCÓ Y VALLE DEL CAUCA GRUPO 02	R	UBAU
Código Documento:	PROYECTO I.E. LA MERCED	Rev. 0	Pág. 16 de 31
Fecha: 05-09-2016	PROTECTO I.E. LA WIERCED	Rev. 0	Pag. 16 de 31

12. Calculo de canalizaciones

Se debe calcular la fracción de ocupación de la ducteria conduit; dividiendo la sumatoria de las áreas de ocupación de los conductores entre el área interior de la ducteria.


a) Según tabla No 1 del Capítulo 9 NTC2050, Porcentaje de la sección transversal en tubos conduit y tuberías, para el llenado de conductores:

Capitulo 9 Tablas y Ejemplos NTC2050 (pág. 915).						
Tabla 1. Porcentaje de la seccion transversal en tubos conduit y tuberias,						erias,
para el llenado de co						
Numero de conductores 1 2 Mas de 2						
Todos los tipos de con	ductores	53%	31%	40%		

Nota: Sin embargo, en determinadas condiciones se podrá ocupar una parte mayor o menor de los tubos conduit.

Tabla de Área interior mm2 para Ducterias conduit:

Diámetro	Diámetro interior (m.m.)			Área Interior mm²			Diámetro
Nomin. Pulg.	Metál. Pesada	Metáli. Liviana	P.V.C.	Pesada	Liviana	P.V.C.	Exterior (m.m.)
1/2	17.45	18.00	18.30	239	254	263	21.3
3/4	22.78	23.34	23.63	408	428	439	26.7
1	28.65	28.95	30.36	645	658	724	33.4
1 1/4	37.38	38.76	38.60	1097	1180	1170	42.2
1 ½	42.62	44.95	44.20	1427	1587	1534	48.3
2	54.74	56.51	55.25	2353	2508	2397	60.3
2 ½	64.84			3301			72.6
3	80.69		82.54	5114		5351	88.4
4	105.18		107.34	8689		9049	113.7

Tabla de Área ocupación Conductores en mm2: Tabla de Diámetro Conductores en mm:

Calibre AWG	Área ocup	ación mm²	•
	Desnudo	THW	THHN/THWN
14	2.08	12.74	6.82
12	3.31	15.56	9.36
10	5.26	19.54	14.95
8	8.37	32.82	26.01
6	17.42	48.70	35.98
4	27.10	64.94	58.57
2	43.23	88.53	82.48
1/0	70.32	142.06	132.39
2/0	88.39	167.81	158.48
3/0	111.61	199.51	190.57
4/0	141.29	238.09	230.13
MCM			
250	167.74	295.75	282.27
300	201.29	340.00	327.57
350	234.84	383.49	372.21
400	268.39	426.06	416.31
500	334.83	508.70	503.29

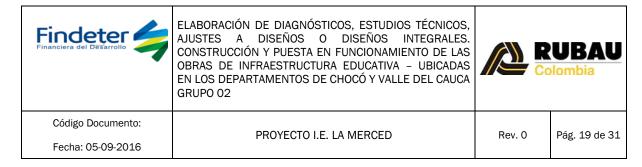

Findeter Financiera del Desarrollo	ELABORACIÓN DE DIAGNÓSTICOS, ESTUDIOS TÉCNICOS, AJUSTES A DISEÑOS O DISEÑOS INTEGRALES. CONSTRUCCIÓN Y PUESTA EN FUNCIONAMIENTO DE LAS OBRAS DE INFRAESTRUCTURA EDUCATIVA - UBICADAS EN LOS DEPARTAMENTOS DE CHOCÓ Y VALLE DEL CAUCA GRUPO 02	R	UBAU
Código Documento:	PROYECTO I.E. LA MERCED	Rev. 0	Dág 19 do 21
Fecha: 05-09-2016	PROTECTO I.E. LA MERCED	Rev. U	Pág. 18 de 31

Tabla de Diámetro Conductores en mm:

1. C	onductor							
Calibre	No Hilos	Diámetro	2. Aislamiento Espesor	3. Chaqueta Espesor	Resistencia DC a 20°C	Diámetro Exterior	Peso Total Aproximado	Capacidad de Corriente (*)
AWG/kcmil	NO TINOS	mm	mm	mm	ohm/km	mm	Kg/Km	A
14	1	1,63	0,38	0,10	8,28	2,73	23,4	25
12	1	2,05	0,38	0,10	5,21	3,15	35,2	30
10	1	2,59	0,51	0,10	3,28	3,95	55,8	40
8	1	3,26	0,76	0,13	2,06	5,2	91,1	55
14	7	1,79	0,38	0,10	8,44	2,89	24,5	25
12	7	2,26	0,38	0,10	5,31	3,36	36,9	30
10	7	2,85	0,51	0,10	3,34	4,21	58,6	40
8	7	3,59	0,76	0,13	2,10	5,53	95,7	55
6	7	4,53	0,76	0,13	1,32	6,47	145	75
4	7	5,71	1,02	0,15	0,832	8,23	232	95
2	7	7,20	1,02	0,15	0,523	9,72	356	130
14	19	1,81	0,38	0,10	8,44	2,91	24,3	25
12	19	2,28	0,38	0,10	5,31	3,38	36,6	30
10	19	2,88	0,51	0,10	3,34	4,24	58,1	40
8	19	3,53	0,76	0,13	2,10	5,47	94,4	55
6	19	4,45	0,76	0,13	1,32	6,39	143	75
4	19	5,61	1,02	0,15	0,832	8,13	229	95
2	19	7,08	1,02	0,15	0,523	9,6	351	130
1	19	7,95	1,27	0,18	0,415	11,05	449	150

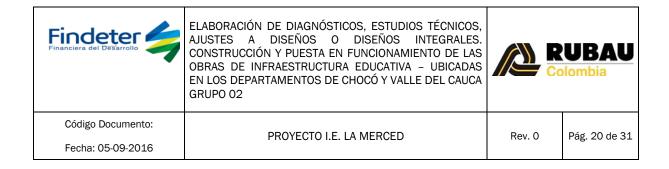
El cálculo de canalizaciones de alimentadores y ramales se realizó según el capítulo de la NTC 2050 asumiendo que todos los conductores son de la misma sección transversal, de esta manera se seleccionó el calibre más grueso para cada alimentador y ramal.

• El cálculo de canalizaciones en alimentadores está incluido en el ítem 10.

13. Pérdidas de Energía

13.1. En Alimentadores

Las pérdidas de potencia se calcularon para cada alimentador de acuerdo a los valores de resistencia de cada cable presentados en la tabla 9 del capítulo 9 de la NTC 2050. Está incluido el cálculo de las pérdidas en potencia activa en cada cuadro de cargas.


14. Calculo de Regulación

14.1. Calculo de Regulación alimentadores y ramales

La regulación tanto para alimentadores como para ramales la presenta cada cuadro de cargas presentado en el anexo "Cuadro de Cargas # 1 - IE La Merced.xls". Los valores límites para un alimentador y ramal fueron tomados de la NTC 20560 artículo 215-2 b) Nota 2. La carga de los circuitos ramales se asumió uniformemente distribuida por todo el circuito. La caída de tensión de los alimentadores de cada tableros se calculó tomando los valores y recomendaciones de la tabla 9 Nota 2 del capítulo 9 de la NTC 2050.

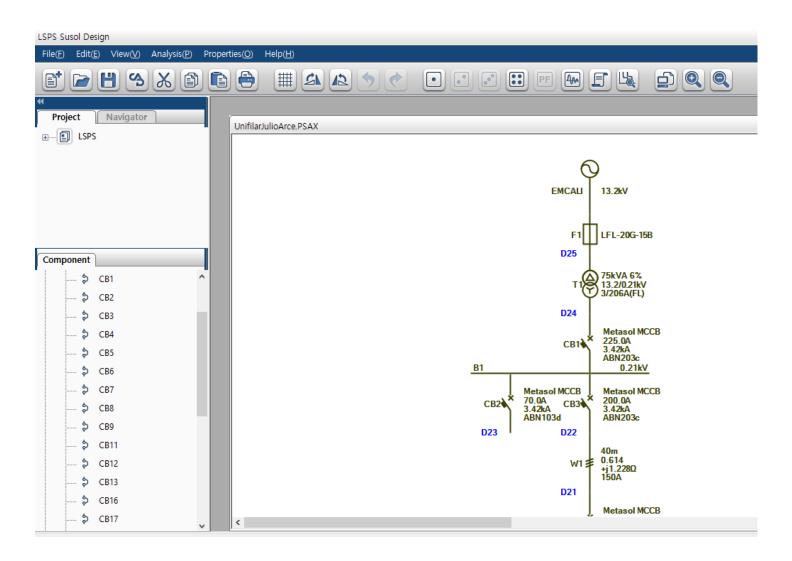
El cálculo de regulación para alimentadores está incluido en el ítem 10 de estas memorias de cálculo.

El cálculo de regulación para circuitos ramales está incluido en los cuadros de carga.

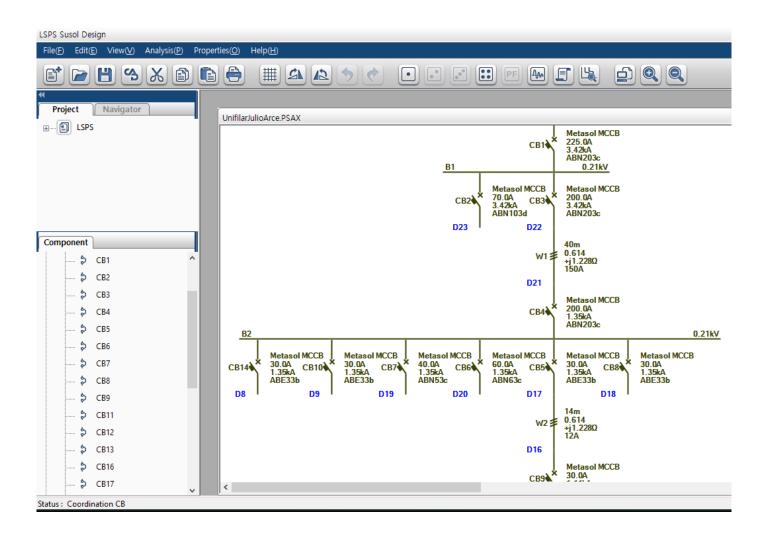
15. Coordinación de protecciones

En el siguiente informe se presentan los cálculos y curvas obtenidas como resultado de las simulaciones en el Software LSPS para cálculo de corrientes de cortocircuito en cada uno de los ramales y barrajes del sistema; además del estudio de coordinación de protecciones donde se evidencia de forma gráfica el comportamiento termomagnético de las curvas asociadas a los diferentes tipos de Interruptores ACB, MCCB y MCB de la marca LS de LG mediante el software LSPS de este fabricante; el cual se ha seleccionado como referencia para este informe.

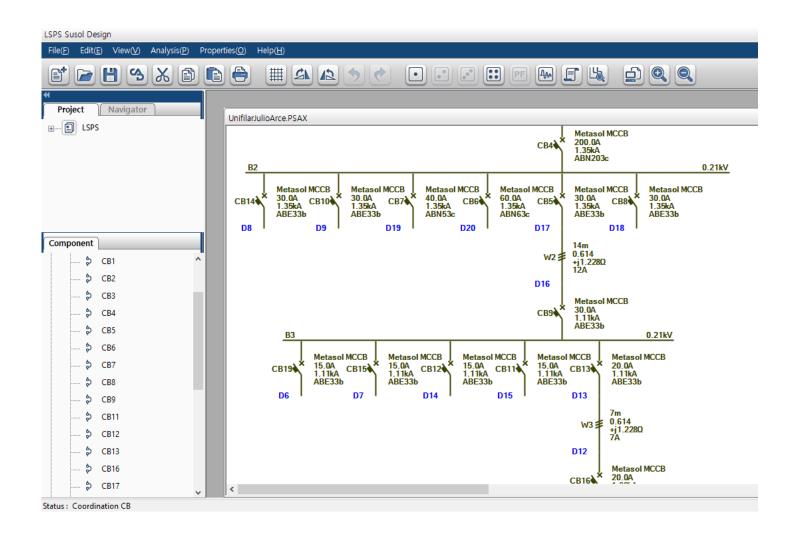
El cálculo y coordinación de protecciones se encuentra dentro de las exigencias establecidas por RETIE 2013 en el artículo 10.1 literal m, como se evidencia a continuación:

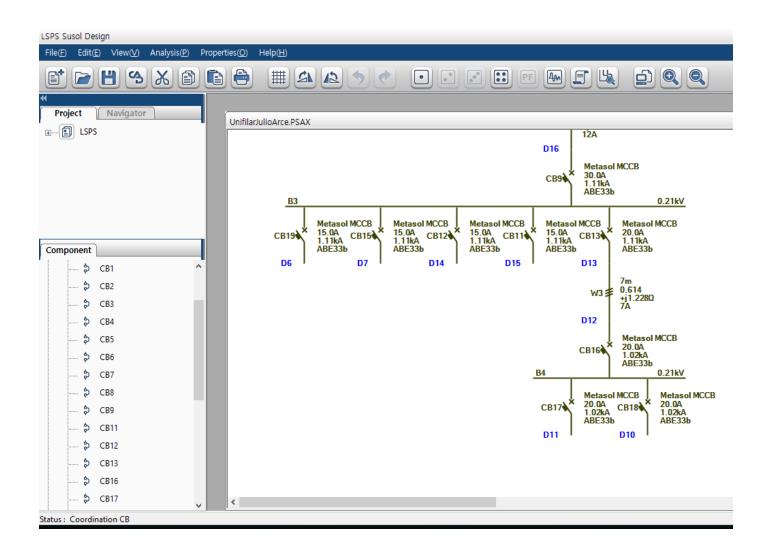

10.1 DISEÑO DE LAS INSTALACIONES ELÉCTRICAS

Toda instalación eléctrica a la que le aplique el RETIE, debe contar con un diseño realizado por un profesional o profesionales legalmente competentes para desarrollar esa actividad. El diseño podrá ser detallado o simplificado según el tipo de instalación.

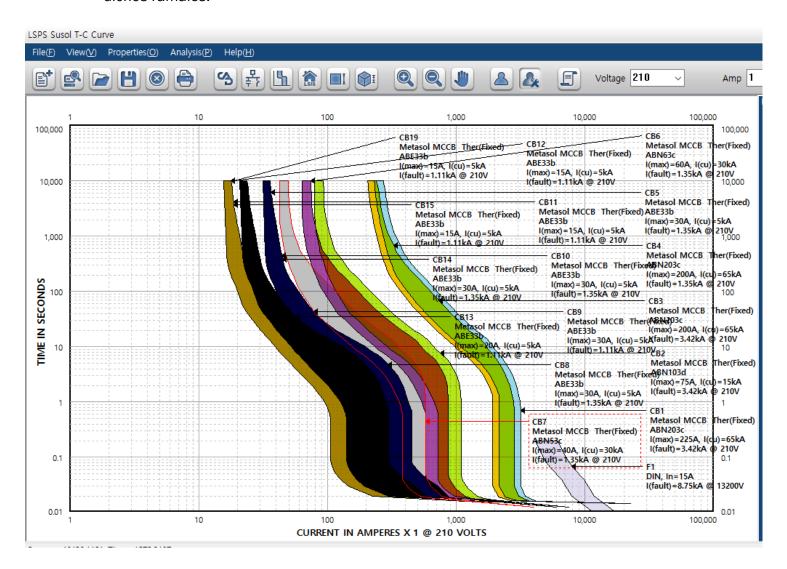

m. Cálculo y coordinación de protecciones contra sobrecorrientes. En baja tensión se permite la coordinación con las características de limitación de corriente de los dispositivos según IEC 60947-2 Anexo A.

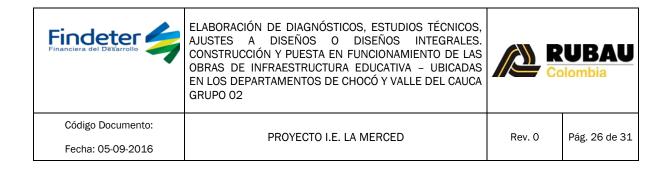
Findeter Financiera del Desarrollo	ELABORACIÓN DE DIAGNÓSTICOS, ESTUDIOS TÉCNICOS, AJUSTES A DISEÑOS O DISEÑOS INTEGRALES. CONSTRUCCIÓN Y PUESTA EN FUNCIONAMIENTO DE LAS OBRAS DE INFRAESTRUCTURA EDUCATIVA - UBICADAS EN LOS DEPARTAMENTOS DE CHOCÓ Y VALLE DEL CAUCA GRUPO 02	R	UBAU
Código Documento:	PROYECTO I.E. LA MERCED	Rev. 0	Pág. 21 de 31
Fecha: 05-09-2016	PROTECTO I.E. LA MERCED	Rev. U	rag. 21 de 31


SIMULACIÓN PARA CÁLCULO DE LOS NIVELES DE CORTOCIRCUITO:


Findeter Financiera del Desarrollo	ELABORACIÓN DE DIAGNÓSTICOS, ESTUDIOS TÉCNICOS, AJUSTES A DISEÑOS O DISEÑOS INTEGRALES. CONSTRUCCIÓN Y PUESTA EN FUNCIONAMIENTO DE LAS OBRAS DE INFRAESTRUCTURA EDUCATIVA - UBICADAS EN LOS DEPARTAMENTOS DE CHOCÓ Y VALLE DEL CAUCA GRUPO 02	R	UBAU
Código Documento:	PROYECTO I.E. LA MERCED	Rev. 0	Pág. 22 de 31
Fecha: 05-09-2016	PROTECTO I.E. LA WIERCED	Rev. 0	Pag. 22 de 31

Findeter Financiera del Desarrollo	ELABORACIÓN DE DIAGNÓSTICOS, ESTUDIOS TÉCNICOS, AJUSTES A DISEÑOS O DISEÑOS INTEGRALES. CONSTRUCCIÓN Y PUESTA EN FUNCIONAMIENTO DE LAS OBRAS DE INFRAESTRUCTURA EDUCATIVA - UBICADAS EN LOS DEPARTAMENTOS DE CHOCÓ Y VALLE DEL CAUCA GRUPO 02	R	UBAU
Código Documento:	PROYECTO I.E. LA MERCED	Day O	Dág 22 do 24
Fecha: 05-09-2016	PROTECTO I.E. LA MERCED	Rev. 0	Pág. 23 de 31


Findeter Financiera del Desarrollo	ELABORACIÓN DE DIAGNÓSTICOS, ESTUDIOS TÉCNICOS, AJUSTES A DISEÑOS O DISEÑOS INTEGRALES. CONSTRUCCIÓN Y PUESTA EN FUNCIONAMIENTO DE LAS OBRAS DE INFRAESTRUCTURA EDUCATIVA - UBICADAS EN LOS DEPARTAMENTOS DE CHOCÓ Y VALLE DEL CAUCA GRUPO 02	R	UBAU
Código Documento:	PROYECTO I.E. LA MERCED	Day O	Dág 24 do 24
Fecha: 05-09-2016	PROTECTO I.E. LA MERCED	Rev. 0	Pág. 24 de 31



Findeter Financiera del Desarrollo	ELABORACIÓN DE DIAGNÓSTICOS, ESTUDIOS TÉCNICOS, AJUSTES A DISEÑOS O DISEÑOS INTEGRALES. CONSTRUCCIÓN Y PUESTA EN FUNCIONAMIENTO DE LAS OBRAS DE INFRAESTRUCTURA EDUCATIVA - UBICADAS EN LOS DEPARTAMENTOS DE CHOCÓ Y VALLE DEL CAUCA GRUPO 02	R	UBAU
Código Documento:	PROYECTO I.E. LA MERCED	Rev. 0	Pág. 25 de 31
Fecha: 05-09-2016	PROTECTO I.E. LA WIERGED	Nev. U	rag. 23 de 31

COMPORTAMIENTO TERMOMAGNÉTICO DE LAS REFERENCIAS DE INTERRUPTORES MARCA LS DE LG:

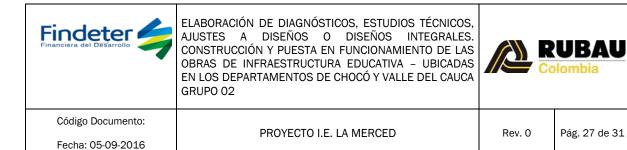
Los Interruptores que se muestran a continuación cumplen los niveles de lcu e lcs calculados mediante el software LSPS, y se han escogido como referencia para la coordinación de protecciones exigida por el RETIE 2013 en el artículo 10.1 literal m. A continuación se muestran los ramales más representativos del proyecto; superponiendo las curvas termomagnéticas de todos los Interruptores presentes en dichos ramales.

SELECCIÓN DE LA MARCA DE INTERRUPTORES Y ESPECIFICACIONES TÉCNICAS.

Como se evidenció en los numerales anteriores; la marca que se seleccionó como referencia desde el diseño para la coordinación de protecciones es LS de LG; sin embargo en caso de que se utilice otra marca diferente; esta debe presentar características técnicas iguales o superiores y tener un precio en el mercado igual o inferior dicha marca seleccionada para estos cálculos.

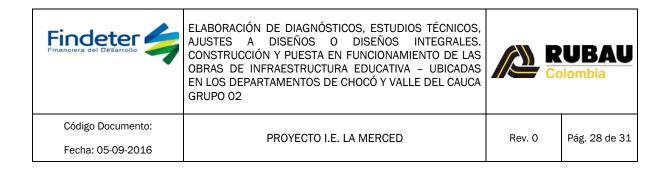
Además debe contar con software de coordinación de protecciones para la adecuada selección de referencias y sus respectivas curvas termomagnéticas; con el fin evidenciar de forma gráfica la asertiva selectividad entre las protecciones de los diferentes ramales del sistema; ya que las curvas y especificaciones técnicas varían entre los diferentes fabricantes.

Aclaración importante: Para efectos de garantizar Alta Confiabilidad y Robustez Técnica de los interruptores seleccionados en el proyecto ante eventuales sobrecargas o cortocircuitos reiterativos en el sistema; todos los Interruptores MCCB fijos hasta 800Amperios, deben garantizar cumplir con las condiciones técnicas que indiquen: lcs = 100lcu, Ue>= 750Voltios e Uimp>= 8KV; donde bajo Norma IEC60947-2 indican lo siguiente:


- Ics (Corriente de corte en servicio) última)

- Icu (Capacidad de Ruptura

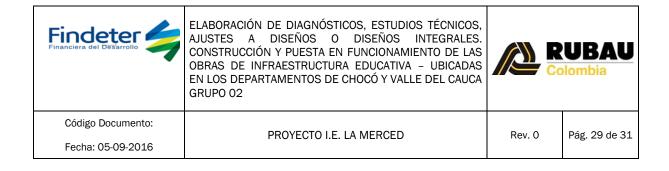
- Ue (Tensión de Aislamiento)


-Uimp (Tensión de Impulso)

Interruptores Tipo Abierto ACB - has	ta 1600 Amperios
Caracteristica técnica	Solicitado
Tamaño ACB Fijo AnchoxAltoxProfundo en (mm)	300x300x295
Tamaño ACB Extraible AnchoxAltoxProfundo en (mm)	430x334x375
Rango de ajuste de la corriente del Interruptor	(0.4 hasta 1) x Inom
Tensión de Aislamiento Ui (Voltios)	1000
Tensión Nominal Ue (Voltios)	690
Máxima Tensión de Pico Uimp (KV)	12
Poder de Corte último Icu (KA Sym) bajo IEC 60947-2	65
Poder de Corte en Servicio Ics (KA) bajo IEC 60947-2	100% de Icu
Poder de Corte en Cortocircuito (KA pico)	143
Intensidad asignada de corta duración Icw (KA)	1seg/50KA , 2Seg/42KA , 3Seg/36KA
Tiempo Máximo de Corte (mseg)	40
Tiempo Máximo de Cierre (mseg)	80
Ciclo de Vida Mecánica/Electrica (Nro Operaciones)	20000/5000
Certificaciones y Homologaciones	KS / KEMA / KERI / GOST
Certificaciones para ambientes agresivos / Marinos	LR / ABS / DNV / KR / BV / GL / RINA/ NK
Accesorios suministrados con el Interruptor sin costo adicional	
Mando Motorizado	Si
Protección falla a Tierra en la Unidad electrónica	Si
Display en Unidad Electrónica con visualización de Corrientes	SI
Bobina de Disparo y Bobina de Apertura	Si
Bobina de Mínima Tensión	Si
Contactos Auxiliares	3NO/3NC

Interruptores Tipo Abierto ACB - 2000 hasta 4000 Amperios		
Caracteristica técnica	Solicitado	
Tamaño ACB Fijo AnchoxAltoxProfundo en (mm)	300x378x295	
Tamaño ACB Extraible AnchoxAltoxProfundo en (mm)	430x412x375	
Rango de ajuste de la corriente del Interruptor	(0.4 hasta 1) x Inom	
Tensión de Aislamiento Ui (Voltios)	1000	
Tensión Nominal Ue (Voltios)	690	
Máxima Tensión de Pico Uimp (KV)	12	
Poder de Corte último Icu (KA Sym) bajo IEC 60947-2	85	
Poder de Corte en Servicio Ics (KA) bajo IEC 60947-2	100% de Icu	
Poder de Corte en Cortocircuito (KA pico)	187	
Intensidad asignada de corta duración Icw (KA)	1seg/85KA , 2Seg/75KA , 3Seg/65KA	
Tiempo Máximo de Corte (mseg)	40	
Tiempo Máximo de Cierre (mseg)	80	
Ciclo de Vida Mecánica/Electrica (Nro Operaciones)	15000/5000	
Certificaciones y Homologaciones	KS / KEMA / KERI / GOST	
Certificaciones para ambientes agresivos / Marinos	LR / ABS / DNV / KR / BV / GL / RINA/ NK	
Accesorios suministrados con el Interruptor sin costo adicional		
Mando Motorizado		
Protección falla a Tierra en la Unidad electrónica	Si	
Display en Unidad Electrónica con visualización de Corrientes	SI	
Comunicación Modbus	Si	
Bobina de Disparo y Bobina de Apertura	Si	
Bobina de Mínima Tensión	Si	
Contactos Auxiliares	3NO/3NC	

Interruptores Tipo Abierto ACB - 4000 hasta 6300 Amperios		
Caracteristica técnica	Solicitado	
Tamaño ACB Fijo AnchoxAltoxProfundo en (mm)	300x751x295	
Tamaño ACB Extraible AnchoxAltoxProfundo en (mm)	460x785x375	
Rango de ajuste de la corriente del Interruptor	(0.4 hasta 1) x Inom	
Tensión de Aislamiento Ui (Voltios)	1000	
Tensión Nominal Ue (Voltios)	690	
Máxima Tensión de Pico Uimp (KV)	12	
Poder de Corte último Icu (KA Sym) bajo IEC 60947-2	85	
Poder de Corte en Servicio Ics (KA) bajo IEC 60947-2	100% de Icu	
Poder de Corte en Cortocircuito (KA pico)	220	
Intensidad asignada de corta duración Icw (KA)	1seg/85KA , 2Seg/75KA , 3Seg/65KA	
Tiempo Máximo de Corte (mseg)	40	
Tiempo Máximo de Cierre (mseg)	80	
Ciclo de Vida Mecánica/Electrica (Nro Operaciones)	10000/2000	
Certificaciones y Homologaciones	KS / KEMA / KERI / GOST	
Certificaciones para ambientes agresivos / Marinos	LR / ABS / DNV / KR / BV / GL / RINA/ NK	
Accesorios suministrados con el Interruptor sin costo adicional		
Mando Motorizado	Si	
Protección falla a Tierra en la Unidad Electrónica	Si	
Display en Unidad Electrónica con visualización de Corrientes	SI	
Bobina de Disparo y Bobina de Apertura	Si	
Bobina de Mínima Tensión	Si	
Contactos Auxiliares	3NO/3NC	


INTERRUPTORES TIPO CAJA MOLDEADA (MCCB) HASTA 800A.

Interruptores Caja Moldeada MCCB Fijos hasta 800 Amperios		
Caracteristica técnica	<u>Solicitado</u>	
Tensión de Aislamiento Ui (Voltios)	750	
Tensión Nominal Ue (Voltios)	690	
Máxima Tensión de Pico Uimp (KV)	8	
Poder de Corte en Servicio Ics (KA) bajo IEC 60947-2	100% de Icu	
Certificaciones y Homologaciones	KS / KEMA / IEC / CE	

MiniBreakers Riel Din MCB - hasta 63 Amperios		
Caracteristica técnica	<u>Solicitado</u>	
Tensión Nominal Ue (Voltios)	400VAC @50/60HZ	
Temperatura ambiente de conformidad a IEC 60898	-5°C to +40°C	
Poder de Corte último Icu (KA Sym) @230/400VAC bajo IEC 60898	10KA	
Curva característica	Curva B, Curva C, Curva D	
Tipo de disparo	Magnético-Térmico	
Tipo de terminal	Tipo dual (Túnel & Bornes)	
Sección del cable	Cable hasta 25mm2	
Instalación	Montaje en riel DIN de 35mm	
Ancho	17.8mm por polo	
Durabilidad en operaciones	8000	

INTERRUPTORES TIPO ENCHUFABLES HASTA 50A.

Interruptor Enchfable - hasta 50 Amperios		
Caracteristica técnica	<u>Solicitado</u>	
Tensión Nominal Ue (Voltios)	1polo 230VAC / 2,3polos 400VAC	
Poder de Corte último Icu (KA Sym) @230/400VAC bajo IEC 60947-2	10KA	
Curva característica	Curva B, Curva C, Curva D	
Tipo de disparo	Magnético-Térmico	
Tipo de terminal	Túnel (14 - 6 AWG)	
Sección del cable	Cable hasta 25mm2	
Ranura	60mm	
Ancho	56mm	
Durabilidad en operaciones	10000	

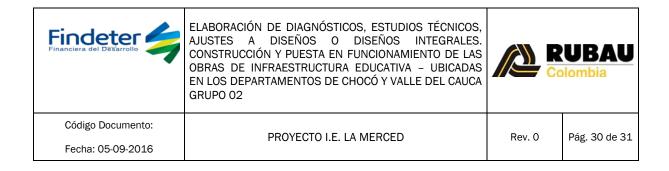
16. Clasificación de áreas

El proyecto no cuenta con ningún tipo de área clasificada estipulada en la NTC 2050 capítulo 5. Por lo tanto este estudio no es necesario.

17. Distancias de seguridad requerida

La red aérea existente de media tensión a 13.2KV cumple con las distancias mínimas de seguridad en zonas con construcciones exigidas por el artículo 13 del RETIE, según la tabla 15 de la siguiente manera:

- Distancia vertical sobre techos y proyecciones para tensión nominal entre fases de 13.2 KV: Distancia 3,8m.
- Distancia horizontal a muros, proyecciones, ventanas para tensión nominal entre fases de 13.2 KV: Distancia 2.3m.

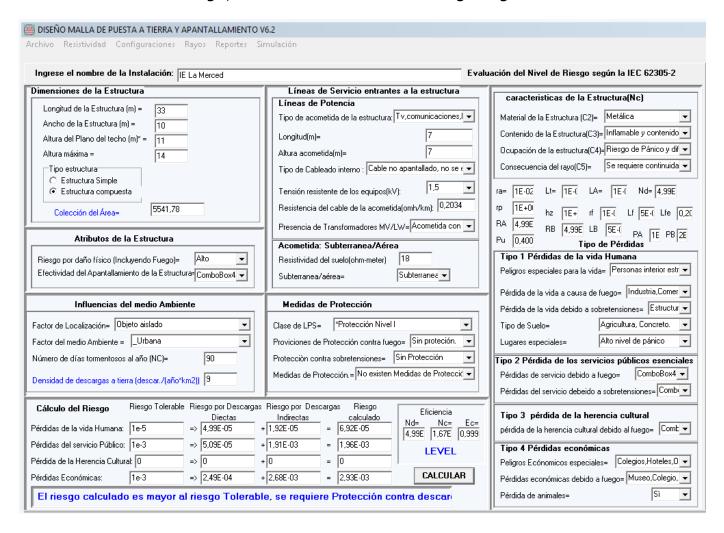

Dado que la acometida de B.T. del proyecto es subterránea se resta las distancias de seguridad establecidas en la tabla 13.1 del Retie.

Para la instalación del TGA, se debe cumplir con las distancias de seguridad según la norma NTC2050 sección 110, artículo 110-16 de Espacio alrededor de equipos eléctricos (para 600V nominales o menos):

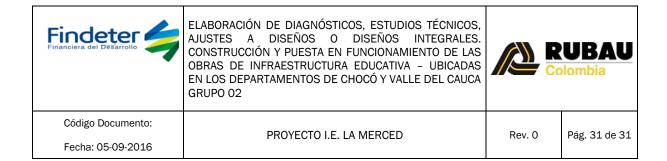
- a). Según tabla 110-16 a) espacio de trabajo para tensión nominal entre 151-600V la profundidad mínima del espacio de trabajo a respetar es de 0,9m.
- b). El ancho del espacio de trabajo debe ser el ancho del equipo o 0,75m, el que sea mayor, en este caso es el ancho del equipo de 1.20m.

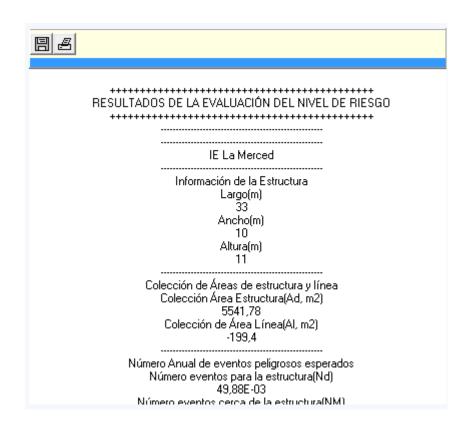
El TGA debe estar protegido contra el contacto accidental por personal no autorizado, en este caso en un cuarto eléctrico.

Debe estar marcado con señales de advertencia visibles que prohíban el acceso a personal no calificado, por medio de avisos acrílicos de advertencia de peligro de muerte, ubicadas sobre las puertas del cuarto y de los equipos según norma.



Desviación de la NTC 2050


Todo el diseño fue realizado bajo la normatividad Colombiana NTC 2050 y no se hizo ninguna desviación de la norma.


19. Análisis del nivel de riesgo por rayos:

Simulación del riesgo, Evaluación del nivel de riesgo según IEC 62305-2.

"EL RIESGO CALCULADO ES MAYOR AL RIESGO TOLERABLE, SE REQUIERE PROTECCIÓN CONTRA DESCARGAS ATMOSFÉRICAS".

