AJUSTES A LOS DISEÑOS DE DETALLE DEL ALCANTARILLADO SANITARIO, EBAR Y PTAR PARA EL ÁREA URBANA PRINCIPAL DEL MUNICIPIO DE BAJO BAUDO (PIZARRO)

CONSORCIO CONSTRUYENDO BAJO BAUDÓ

AJUSTE A LOS DISEÑOS DE DETALLE PARA LA CONSTRUCCIÓN DE LA RED DE ALCANTARILLADO SANITARIO, EBAR Y PTAR PARA EL ÁREA URBANA PRINCIPAL DEL MUNICIPIO DE BAJO BAUDÓ (PIZARRO)

INFORME DE DISEÑO HIDRÁULICO EBAR

BOGOTÁ D.C., AGOSTO DE 2015

VIACON SAS

Calle 134 F No. 53B-46 Tels. 6140142 - Bogotá D.C.

Nit- 900.656.298-8

AJUSTES A LOS DISEÑOS DE DETALLE DEL ALCANTARILLADO SANITARIO, EBAR Y PTAR PARA EL ÁREA URBANA PRINCIPAL DEL MUNICIPIO DE BAJO BAUDO (PIZARRO)

TABLA DE CONTENIDO

1		1A	NTE	CEDENTES	1
2 A				LIZACIÓN DE LOS POZOS DE SUCCIÓN EN EL DISEÑO DE RILLADO	
3		C	ONF	GURACIÓN DE POZOS DE SUCCION	3
4		PE	ERÍC	DDO Y CAUDAL DE DISEÑO	7
	4.	1	Pei	riodo de diseño	7
	4.	2	Ca	udales de bombeo	7
5		DI	SEÑ	NO HIDRÁULICO DE LA ESTACIÓN DE BOMBEO	8
	5.	1	Cál	culo del diámetro de la tubería de impulsión para cada bomba	8
	5.	2	Din	nensionamiento de pozos de succión	9
	5.	3	Dis	eño de las bombas	. 11
		5.	3.1	Cálculo de la potencia bombas	. 15
		5.	3.2	Altura de succión positiva (N.P.S.H.)	. 16
6		Re	esur	nen de resultados	. 17
7		LI	STA	DO DE PLANOS	. 18

Nit- 900.656.298-8

AJUSTES A LOS DISEÑOS DE DETALLE DEL ALCANTARILLADO SANITARIO, EBAR Y PTAR PARA EL ÁREA URBANA PRINCIPAL DEL MUNICIPIO DE BAJO BAUDO (PIZARRO)

CONTENIDO DE TABLAS

Tabla 1 Coordenadas de pozos de succión1
Tabla 2 Caudales evaluados del sistema de alcantarillado que llegan a las estaciones de impulsión
Tabla 3 Caudales evaluados para las estacione elevadoras 8
CONTENIDO DE CUADROS
Cuadro 1 Relación de planos HIDRÁULICOS18
CONTENIDO DE FIGURAS
Figura 1 Localización de pozos de succión1
Figura 2 Esquema de pozo elevador típico3
Figura 3 (Continuación) Esquema de pozo elevador típico
Figura 4 Esquema de pozo de impulcion principal5
Figura 5 (Continuación) Esquema de pozo de impulcion principal 6
Figura 6 Esquema de niveles superiores para instalación de los pozos 11
ANEXOS
Anexo N° 1 Memorias De Cálculo Anexo N° 2 Informe Electrico Anexo N° 3 Informe Eléctrico Foto Voltaico Anexo N° 4 Plano

AJUSTES A LOS DISEÑOS DE DETALLE DEL ALCANTARILLADO SANITARIO, EBAR Y PTAR PARA EL ÁREA URBANA PRINCIPAL DEL MUNICIPIO DE BAJO BAUDO (PIZARRO)

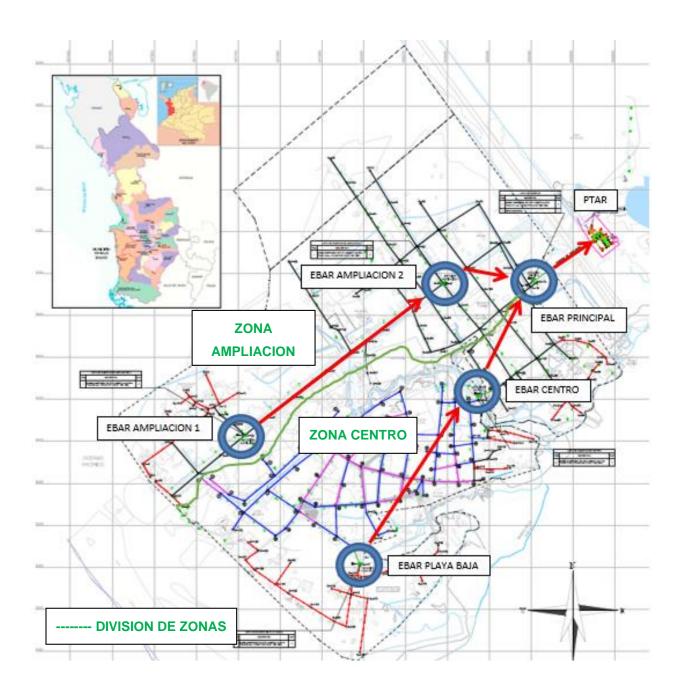
1 ANTECEDENTES

El Sistema de alcantarillado proyectado para Bajo Baudó presnta las siguientes características topológicas de la red planteada y el terreno a intervenir. La topografía del área urbana presenta mínimas variaciones de nivel, alto nivel freático (en general a menos de un metro bajo el nivel del terreno), un suelo con matriz arenosa y la propia longitud de los colectores principales, conlleva a que cualquier configuración de alcantarillado convencional totalmente por gravedad presente apreciables profundidades en sus tramos finales, con altos costo en procesos constructivos. Por lo anterior, el diseño del sistema de alcantarillado proyectado incluye la localización estratégica de pozos con bombas para aguas residuales de caudal que permiten conservar mínimas profundidades de implantación de tuberías en toda la red proyectada, reduciendo de esta manera los costos de construcción antes indicados y en general, logrando la optimización del sistema de alcantarillado con un aumento razonable en los costos de operación y mantenimiento.

2 LOCALIZACIÓN DE LOS POZOS DE SUCCIÓN EN EL DISEÑO DEL ALCANTARILLADO

Todos los pozos de succión se ubican sobre vía pública con un dimensionamiento similar al de un pozo de inección típico, excepto por la EBAR principal, la cual se encuentra en un predio contiuo al aeropuerto pues el requerimiento de espacio para la misma así lo demanda. En el Tabla No. 1 se presenta la localización de cada pozo elevador y en la figura No. 1 se presenta un esquema con su localización en la red de alcantarillado proyectada.

Tabla 1 Coordenadas de pozos de succión


POZO	DENOMINACIÓN	NORTE	ESTE	COTA RASANTE
D-147	Pozo elev. Playa Baja	967991.225	1039306.137	2.60 m.s.n.m.
D-108	Pozo elev. Centro	968272.487	1039707.363	3.19 m.s.n.m.
D-30	Pozo elev. Ampliación 1	969189.585	1039976.058	2.92 m.s.n.m.
D-62	Pozo elev. Ampliación 2	967716.718	1039614.829	3.50 m.s.n.m.
EBAR	EBAR principal	968403.964	1039981.839	3.15 m.s.n.m.

Fuente: El Consultor

Figura 1 Localización de pozos de succión

Nit- 900.656.298-8

AJUSTES A LOS DISEÑOS DE DETALLE DEL ALCANTARILLADO SANITARIO, EBAR Y PTAR PARA EL ÁREA URBANA PRINCIPAL DEL MUNICIPIO DE BAJO BAUDO (PIZARRO)

AJUSTES A LOS DISEÑOS DE DETALLE DEL ALCANTARILLADO SANITARIO, EBAR Y PTAR PARA EL ÁREA URBANA PRINCIPAL DEL MUNICIPIO DE BAJO BAUDO (PIZARRO)

3 CONFIGURACIÓN DE POZOS DE SUCCION

Los pozos de succión contendrán los siguientes componentes:

- Base en material plástico para colocación de bombas (Excepto para la estación de bombeo principal, la cual será en concreto).
- Cilindro del pozo en PVC, excepto la EBAR principal que es en concreto.
- Tapa prefabricada.
- Bombas sumergibles tipo centrífuga.
- Tubería y accesorios para elevación del fluido
- Válvula de retención tipo check en PVC
- Válvula de corte tipo compuerta metálica con juntas hidráulicas en extremos para conexión con PVC
- Uniones universales en PVC

En la figura No. 2 se incluye un esquema tipo de pozo elevador.

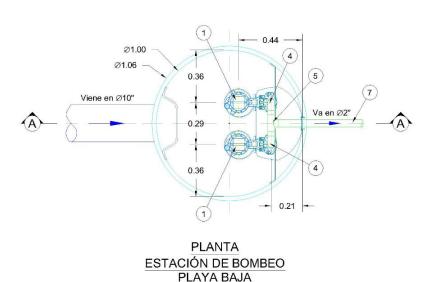


Figura 2 Esquema de pozo elevador típico

AJUSTES A LOS DISEÑOS DE DETALLE DEL ALCANTARILLADO SANITARIO, EBAR Y PTAR PARA EL ÁREA URBANA PRINCIPAL DEL MUNICIPIO DE BAJO BAUDO (PIZARRO)

31.00 3040 Cono Concertico EDVBAS N+2.80 N+2.60 0.30 NIVEL DE TERRENO 0.40 0.69 PLANTA N-2.11 0.18 PLANTA (7) Superor H+1.803 (1) N+1.753 Elevedor Tipo Espigo-Espigo (Plastico) (3) Escalara de Cato-(e) N ±0.00 N-0.57 Viere en 310° N-0.72 NIVEL MIXIMO \$40.62 Bomba Hidroselo Injerior NIVEL MÍNIMO DE ARRANQUE 0.03 1 0.16 0.38 50 0.18 N4.55 NIVEL PISO POZO DE SUCCIÓN CORTE A - A ESTACIÓN DE BOMBEO PLAYA BAJA

Figura 3 (Continuación) Esquema de pozo elevador típico

AJUSTES A LOS DISEÑOS DE DETALLE DEL ALCANTARILLADO SANITARIO, EBAR Y PTAR PARA EL ÁREA URBANA PRINCIPAL DEL MUNICIPIO DE BAJO BAUDO (PIZARRO)

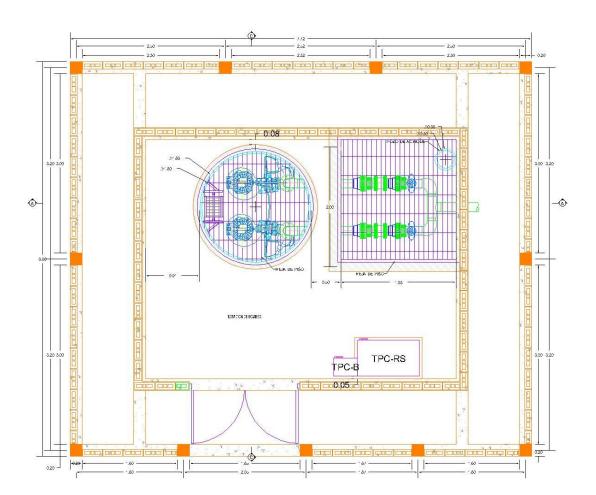
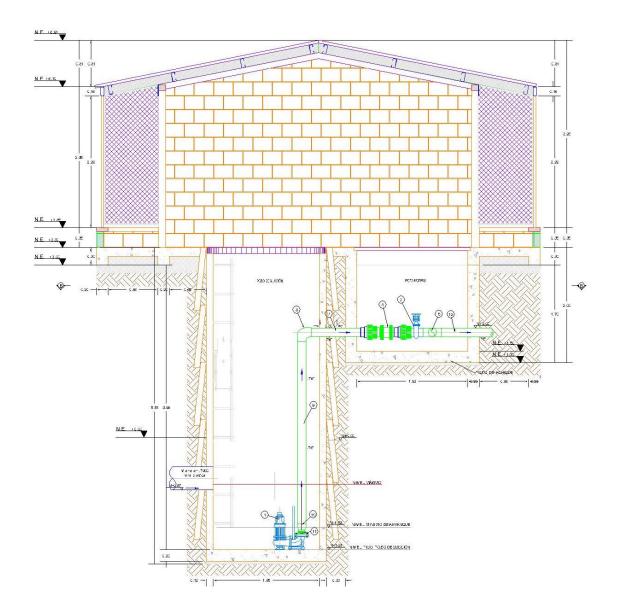



Figura 4 Esquema de pozo de impulcion principal

AJUSTES A LOS DISEÑOS DE DETALLE DEL ALCANTARILLADO SANITARIO, EBAR Y PTAR PARA EL ÁREA URBANA PRINCIPAL DEL MUNICIPIO DE BAJO BAUDO (PIZARRO)

Figura 5 (Continuación) Esquema de pozo de impulcion principal

AJUSTES A LOS DISEÑOS DE DETALLE DEL ALCANTARILLADO SANITARIO, EBAR Y PTAR PARA EL ÁREA URBANA PRINCIPAL DEL MUNICIPIO DE BAJO BAUDO (PIZARRO)

4 PERÍODO Y CAUDAL DE DISEÑO

4.1 Periodo de diseño

El periodo de diseño depende del nivel de complejidad del sistema, para nuestro caso, el nivel de complejidad del sistema de alcantarillado es Medio, por lo anterior y acorde a lo indicado en el artículo 69 de la Resolución 2320 de 2009, se **selecciona un periodo de diseño de 25 años**, para el diseño de los distintos components del sistema de alcantarillado del proyecto.

4.2 Caudales de bombeo

En la Tabla No. 2 a continuación, se muestran los caudales obtenidos en el diseño del sistema de alcantarillado. Ver NFORME DE DISEÑO HIDRÁULICO ALCANTARILLADO BAJO BAUDO V2.1

Tabla 2 Caudales evaluados del sistema de alcantarillado que llegan a las estaciones de impulsión

POZ O	DENOMINACIÓ N	Pozo al que bombe a	Població n servida (hab)	Qmd (I/s)	Q infiltracion (I/s)	Q conexiones erradas (I/s)	QMH (I/s)	Q dis Alcantarill ado (l/s)
D-147	PLAYA BAJA	26	230	0.27	0.89	0.89	0.82	2.60
D-108	CENTRO	68	4094	4.85	6.71	38.95	14.5 4	60.2
D-30	AMPLIACION 1	D-30	712	0.89	1.68	0.97	2.67	5.32
D-62	AMPLIACION 2	D-62	2523	3.16	9.07	3.43	9.48	21.98
ELV	PRINCIPAL	PTAR	8471	10.3 6	16.11	5.95	31.0 7	53.14

A partir de los anteriores caudales, se establece los caudales de diseño de las estaciones de bombeo, los cuales corresponderán en cada caso a dos veces el caudal medio diario como se ilustran Tabla No. 3.

AJUSTES A LOS DISEÑOS DE DETALLE DEL ALCANTARILLADO SANITARIO, EBAR Y PTAR PARA EL ÁREA URBANA PRINCIPAL DEL MUNICIPIO DE BAJO BAUDO (PIZARRO)

Tabla 3 Caudales evaluados para las estacione elevadoras

Item	Unidad	Pz Ampliación 1	Pz Ampliación 2	Pz Centro	Pz Playa baja	Pz principal
Caudal medio diario	l/s	0,8900	3,1600	4,8500	0,2700	10,3600
(Qmd)	m3/s	0,0009	0,0032	0,0049	0,0003	0,0104
Caudal de bombeo (Qb)	m3/s	0,0018	0,0063	0,0097	0,0005	0,0207

5 DISEÑO HIDRÁULICO DE LA ESTACIÓN DE BOMBEO

5.1 Cálculo del diámetro de la tubería de impulsión para cada bomba

Para el cálculo del diámetro de la tubería de impulsion en cada estacón de Bombeo (EB), se tiene en cuenta que la velocidad en la tubería no supere los 1.5 m/s y que su diámetro interno sea correspondiente con los diámetros internos comerciales existentes en el mercado. El cálculo se realizó por medio de la siguiente formula:

$$v = \frac{Q * 4}{\pi D^2}$$

Donde:

v: Velocidad en (m/s)

Q: caudal en (m3/s)

D: diámetro interno de la tubería en (m)

En la tabla No. 4 se presentan los datos de cálculo y el resultado obtenido.

Tabla 4 Velocidad en la tubería de impulsion

Item	unid ades	Pz Ampliación 1	Pz Ampliación 2	Pz Centro	Pz Playa baja	Pz principal
Cantidad de bombas (+ 1 de reserva)	Und	1	1	1	1	1
Velocidad máxima*	m/s	1,5	1,5	1,5	1,5	1,5
Velocidad minima **	m/s	0,45	0,45	0,45	0,45	0,45
material seleccionado		PVC***	PVC***	polietilen o	polietileno	polietileno
Diámetro nominal	pul	2	4	4	2	6

Nit- 900.656.298-8

AJUSTES A LOS DISEÑOS DE DETALLE DEL ALCANTARILLADO SANITARIO, EBAR Y PTAR PARA EL ÁREA URBANA PRINCIPAL DEL MUNICIPIO DE BAJO BAUDO (PIZARRO)

Diametro efectivo	m	0,04420	0,10190	0,1019	0,04420	0,18500
Velocidad	m/s	1,1601	0,7750	1,1894	0,3519****	0,7708

^{*}Según experiencia de la consultoría

5.2 Dimensionamiento de pozos de succión

El pozo de bombeo será del tipo húmedo, su dimensionamiento se realizará acorde con las recomendaciones dadas en el título D del reglamento Técnico del Sector de de Agua Potable y Saneamiento Básico (RAS-2000), en particular las contenidas en el numeral D.7.4.6

Las estaciones de bombeo de Ampliación 1, Ampliación 2, Centro y Playa baja, tienen un pozo de impulsión de tipo prefabricado, con un diámetro estándar de 1m, motivo por el cual su capacidad de retención esta limitada por esta condición, por ello, además del volumen disponible en el pozo, se considerará un volumen adicional en el ultimo tramo de alcantarillado que llega a cada estación de bombeo, para esto, se toma como nivel máximo de bombeo la cota batea del pozo inicial del tramo de alcantarillado que llega cada estación.

La altura de retención en el pozo de bombeo se calculará por medio de la ecuación:

$$hp = \frac{t * Q}{\pi D^2}$$

Donde:

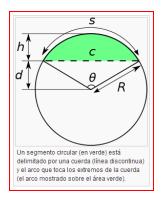
hp: Altura de retención del pozo de bombeo (m)

t : Tiempo mínimo requerido entre arranques (s)

Q: Capacidad de descarga de las bombas (m3/s)

D: diámetro del pozo de bombeo (m)

^{**}Según RAS-2000 título B.


^{***}La EB Ampliación 1 y Ampliacion 2, en razón a que actúan como elevadoras de las ARD hacia la tubería a gravedad conectada a cada EB en su parte superior.

^{****} Aunque la velocidad de la tubería en esta estación no cumple con los parámetros de la norma RAS 2000 esta estación de bombeo está diseñada con el diámetro mínimo comercial permitido para el empate con las bombas el cual es de 2".

AJUSTES A LOS DISEÑOS DE DETALLE DEL ALCANTARILLADO SANITARIO, EBAR Y PTAR PARA EL ÁREA URBANA PRINCIPAL DEL MUNICIPIO DE BAJO BAUDO (PIZARRO)

Adicionamente, para determinar la altura de retención en el tramo de alcantarillado que llega a cada estación de bombeo se utilizará la siguiente fórmula:

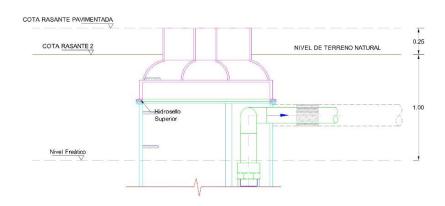
- Radio R = h + d
- Altura $h = R(1 \cos\frac{\theta}{2})$
- Angulo $\theta = 2 \arccos \frac{d^2}{R}$ Área $A = R^2 \cdot \frac{\theta}{2} \frac{R^2 \sin \theta}{2} = \frac{R^2}{2} = (\theta = \sin \theta)$

Donde se puede determinar la altura (ht) que sumada a la altura de retención del pozo de bombeo determina el nivel máximo de bombeo del pozo y el volumen final de retención del imsmo. En la Tabla 5 a continuación, se muestran los resultados

$$ht = hp + h$$

Tabla 5 Cotas y niveles

Item	Unidad	Pz Ampliación 1	Pz Ampliación 2	Pz Centro	Pz Playa baja	Pz principal
Diámetro de Succion (Ds)*	pg	2	3	2	2	3
Sumergencia (S)*	m	0,23	0,29	0,23	0,23	0,29
Distancia de succion al fondo (hf)*	m	0,1	0,1	0,1	0,1	0,1
Altura de nivel minimo de bombeo, hm = S + hf	m	0,33	0,39	0,33	0,33	0,39
Nivel de terreno	msnm	2,92	3,5	3,19	2,6	3,15
Nivel de cota batea de entrada	msnm	-0,73	-0,83	-0,20	-0,82	-0,87
Nivel de alarma = nivel máximo	msnm	-0,63	-0,73	-0,10	-0,72	-0,77
diferencia entre maximo y minimo	m	0,50	0,95	0,70	0,50	0,75
Nivel de parada bomba	msnm	-1,13	-1,68	-0,80	-1,22	-1,52
Nivel del fondo	msnm	-1,46	-2,07	-1,13	-1,55	-1,91
cota batea de salida	msnm	2,32	2,15	1,67	1,753	2,00


^{*}Según datos de proveedores de bombas sumergibles

FUENTE: EL CONSULTOR

Nit- 900.656.298-8

AJUSTES A LOS DISEÑOS DE DETALLE DEL ALCANTARILLADO SANITARIO, EBAR Y PTAR PARA EL ÁREA URBANA PRINCIPAL DEL MUNICIPIO DE BAJO BAUDO (PIZARRO)

Figura 6 Esquema de niveles superiores para instalación de los pozos

5.3 Diseño de las bombas

El caudal requerido por cada bomba varía entre 0.0018 m3/s y 0.0207 m3/s según la Tabla 3, en cuanto a la cabeza dinámica total, esta se calculó sumando la cabeza total estática y las pérdidas de energía ocurridas en la impulsión del flujo.

La cabeza estática fue calculada como la diferencia de niveles entre la cota correspondiente al nivel mínimo del fluido en el pozo de succión y la de entrega del sistema al pozo correspondiente o a la PTAR.

Las pérdidas de energía ocurridas en el transporte del flujo son función del recorrido del caudal a la salida de la estación de bombeo (línea de impulsión), para lo cual se consideran dos tipos de pérdidas en el flujo: pérdidas localizadas (por accesorios) y pérdidas por fricción (en la tubería).

Todas las pérdidas localizadas se han evaluado mediante el producto de la cabeza de velocidad y de un factor de pérdidas que depende del tipo de accesorio.

Las pérdidas por fricción se calcularon mediante la ecuación de Darcy-Weisbach la cual se describe a continuación:

$$h = f \frac{L}{D} * \frac{V^2}{2g}$$

AJUSTES A LOS DISEÑOS DE DETALLE DEL ALCANTARILLADO SANITARIO, EBAR Y PTAR PARA EL ÁREA URBANA PRINCIPAL DEL MUNICIPIO DE BAJO BAUDO (PIZARRO)

h: perdidas por friccion en (m)

f: factor de friccion

L: longitud de la tubería en (m)

D: diámetro interno de la tubería en (m)

V: velocidad media en la tubería en (m/seg)

Para aplicar la formula de Darcy-Weisbach se calculo el factor de friccion mediante la ecuación de Swamee-Jain la cual se define como:

$$f = \frac{0.25}{\left[Log\left(\frac{ks}{3.7d} + \frac{5.74}{Re^{0.9}}\right)\right]^2}$$

Ks: rugosidad absoluta

Re: numero de Reynolds

Para cada una de las configuraciones consideradas se ha calculado el diámetro de la tubería de impulsión y la velocidad del flujo teniendo en cuenta que esta se encuentre en el rango de; 0.45 m/seg a 1.5 m/seg, según lo ya expuesto en tabla 4, la cual igualmente contiene el caudal de diseño para cada estación de bombeo. Con todo lo anterior, se procede a determinar las pérdidas de la línea de impulsión en cada configuración.

En la Tabla 6 se encuentran los factores de perdidas por accesorio para cada estación de bombeo y en la Tabla 7 las pérdidas por fricción en la longitud de la tubería de impulsión y las perdidas por accesorios, obteniendo una longitud total de tubería que multiplicada por la pérdida de carga unitaria obtendremos la pérdida de carga total en la impulsión.

AJUSTES A LOS DISEÑOS DE DETALLE DEL ALCANTARILLADO SANITARIO, EBAR Y PTAR PARA EL ÁREA URBANA PRINCIPAL DEL MUNICIPIO DE BAJO BAUDO (PIZARRO)

Tabla 6 Factores de pérdidas por accesorio

PZ AMPLIACION 1

Diámetro en el tramo (2")			
Accesorio	Cantidad	Factor	Total
Codos a 90°	2	0,9	1,8
Tee paso de lado	1	1,8	1,8
válvula compuerta	1	0,2	0,2
válvula cheque	1	6,5	6,5
Codo 45°	0	0,1	0
yee	0	0,05	0,00
Ampliación 4X6	0	1,87	0
		Total	10,3

PZ AMPLIACION 2

Diámetro e	en el tramo	(4")
------------	-------------	------

Accesorio	Cantidad	Factor	Total
Codos a 90°	2	0,9	1,8
Tee paso de lado	1	1,8	1,8
válvula compuerta	1	0,2	0,2
válvula cheque	1	6,5	6,5
Codo 45°	0	0,1	0,00
yee	0	0,05	0,00
Ampliación 4X6	0	1,87	0
		Total	10,3

PZ CENTRO

Diámetro	an a	l tramo	<i>(1</i> "\
Diallicuo	CII C	ı ıramı	(4)

Diamono en el tiamo (+)			
Accesorio	Cantidad	Factor	Total
Codos a 90°	4	0,9	3,6
Tee paso de lado	1	1,8	1,8
válvula compuerta	1	0,2	0,2
válvula cheque	1	6,5	6,5
Codo 45°	2	0,1	0,20
yee	0	0,05	0,00
Ampliación 4X6	0	1,87	0
		Total	12,3

Nit- 900.656.298-8

AJUSTES A LOS DISEÑOS DE DETALLE DEL ALCANTARILLADO SANITARIO, EBAR Y PTAR PARA EL ÁREA URBANA PRINCIPAL DEL MUNICIPIO DE BAJO BAUDO (PIZARRO)

PZ PLAYA BAJA

Diámetro en e	el tramo	(2")
---------------	----------	------

Accesorio	Cantidad	Factor	Total
Codos a 90°	3	0,9	2,7
Tee paso de lado	1	1,8	1,8
válvula compuerta	1	0,2	0,2
válvula cheque	1	6,5	6,5
Codo 45°	4	0,1	0,40
yee	0	0,05	0,00
Ampliación 4X6	0	1,87	0
		Total	11,6

PZ PRINCIPAL

Diámetro en el tramo (6")

Accesorio	Cantidad	Factor	Total
Codos a 90°	3	0,9	2,7
Tee paso de lado	3	1,8	5,4
válvula compuerta	1	0,2	0,2
válvula cheque	1	6,5	6,5
Codo 45°	2	0,1	0,20
yee	4	0,05	0,20
Ampliación 4X6	1	1,87	1,87
		Total	17,07

Tabla 7 perdidas totales

		Pz Ampliación	Pz Ampliación		Pz Playa	Pz
Item	Unidad	1	2	Pz Centro	baja	principal
Viscocidad de					8,930E-	8,930E-
fluido	m2/s	8,930E-07	8,930E-07	8,930E-07	07	07
ks en mm	mm	0,01	0,01	0,01	0,01	0,01
ks en m	m	1,00E-05	1,00E-05	1,00E-05	1,00E-05	1,00E-05
Numero de Reynolds (Re)		1299074,7	867815,4	1331931,9	394101,3	863187,1
Factor de						
friccion f		0,01486	0,01364	0,01318	0,01607	0,01297
Temperatura	°C	20	20	20	20	20

Nit- 900.656.298-8

AJUSTES A LOS DISEÑOS DE DETALLE DEL ALCANTARILLADO SANITARIO, EBAR Y PTAR PARA EL ÁREA URBANA PRINCIPAL DEL MUNICIPIO DE BAJO BAUDO (PIZARRO)

		Pz Ampliación	Pz Ampliación		Pz Playa	Pz
Item	Unidad	1	2	Pz Centro	baja	principal
Logitud de						
tuberia	m	4,8	5,5	52.67	53.87	550,00
Total factor por						
accesorio		10,30	10,30	12,30	11,60	17,07
H totales (ht)	m	0,81	0,34	1,35	0,19	1,68
H topografia	m	3,40	4,66	4,50	3.00	14,00
Hman	m	4,21	4,84	5,85	4,69	15,68

5.3.1 Cálculo de la potencia bombas

Definidos el caudal y la cabeza dinámica total de las bombas la eficiencia de la bomba y del motor para cada configuración.

$$p \ teorica \ (W) = \rho * g * Q * h \ man$$

• P teorica: potencia teorica de la bomba (W)

• ρ : densidad del agua (kg/m3)

• g: gravedad (m/seg2)

• Q: Caudal (m3/seg)

• h man : altura dinámica (m)

$$p \ real \ (W) = \frac{p \ teorica}{\eta o * \eta m}$$

• P real : potencia real de la bomba (W)

P teorica: potencia teorica de la bomba (W)

ηο : eficiencia de la bomba
ηm : eficiencia del motor

Item	unidades	Pz Ampliación 1	Pz Ampliación 2	Pz Centro	Pz Playa baja	Pz principal
Gravedad g	m/seg2	9,81	9,81	9,81	9,81	9,81
Densidad del agua	kg/m3	997,10	997,10	997,10	997,10	997,10

AJUSTES A LOS DISEÑOS DE DETALLE DEL ALCANTARILLADO SANITARIO, EBAR Y PTAR PARA EL ÁREA URBANA PRINCIPAL DEL MUNICIPIO DE BAJO BAUDO (PIZARRO)

Potencia teorica de la bomba	W	73,31	299,07	555,35	24,76	3178,82
Efe bomba ηo	Adim.	75%	75%	75%	75%	75%
Efe motor ηm	Adim.	90%	90%	90%	90%	90%
Efe total	Adim.	68%	68%	68%	68%	68%
Potencia real	W	108,60	443,07	822,75	36,68	4709,36
Potencia real	kW	0,11	0,44	0,82	0,04	4,71
Potencia final HP	hp	0,15	0,59	1,10	0,05	6,31
Potencia seleccionada	hp	0,50	1,00	1,50	0,50	10,00
Potencia eléctrica a instalar	kw	0,38	0,76	1,13	0,38	7,56

FUENTE: EL CONSULTOR

5.3.2 Altura de succión positiva (N.P.S.H.)

La altura de succión positiva corresponde a la presión absoluta en el centro del álabe, esta presión debe ser mayor a la presión de vapor del agua bombeada, en caso contrario se producirá dentro de la bomba el fenómeno de cavitación, situación que origina una pérdida en la capacidad y eficiencia de la bomba junto con el daño físico de los álabes y en general de la bomba.

En nuestro caso, tenemos una altura a nivel del mar y una temperatura promedio de las aguas residuales de 20°C, lo cual se traduce en lo siguiente:

$$NPSH_A = H_A + h_{ss} - h_{fs} - H_{vp}$$

Donde:

NPSHA = Altura de succión positiva disponible (m.c.a.)

HA = Presión atmosférica

AJUSTES A LOS DISEÑOS DE DETALLE DEL ALCANTARILLADO SANITARIO, EBAR Y PTAR PARA EL ÁREA URBANA PRINCIPAL DEL MUNICIPIO DE BAJO BAUDO (PIZARRO)

hss = Cabeza mínima de succión estática

hfs = Sumatoria de pérdidas menores y por fricción (m.c.a.) Variable

Hvp = Presión de vapor del agua

Para cada una de las configuraciones consideradas obtenemos:

Item	unidades	Pz Ampliación 1	Pz Ampliación 2	Pz Centro	Pz Playa baja	Pz principal
H_A = Presión atmosférica	m.c.a.	10,3322	10,3322	10,3322	10,3322	10,3322
h _{fs} = Sumatoria de pérdidas menores y por fricción (m.c.a.)	m	0,81	0,34	1,35	0,19	1,68
H_{vp} = Presión de vapor del agua	m.c.a.	0,24	0,24	0,24	0,24	0,24
h _{ss} = Cabeza mínima de succión estática	m	0,23	0,29	0,29	0,23	0,29
NPSH _A = Altura de succión positiva disponible (m.c.a.)*	m	9,51	10,04	9,03	10,13	8,70

^{*}Necesario Para La Selección De La Bomba

6 RESUMEN DE RESULTADOS

Item	Unidad	Pz Ampliación 1	Pz Ampliación 2	Pz Centro	Pz Playa baja	Pz principal
Nivel de terreno	msnm	2,92	3,5	3,19	2,6	3,15
Nivel de cota batea de entrada =	msnm	-0,50	-1,00	-1,50	-0,50	-10,00
Nivel de alarma = nivel máximo	msnm	-0,40	-0,90	-1,40	-0,40	-9,90
diferencia entre maximo y minimo	m	0,50	0,95	0,70	0,50	0,75
Nivel de parada bomba	msnm	-0,90	-1,85	-2,10	-0,90	-10,65
Nivel del fondo	msnm	-0,90	-1,85	-2,10	-0,90	-10,65
cota batea de salida	msnm	1,90	1,30	0,35	1,753	2,00
Hman	m	4,21	5,00	5,85	4,69	15,68

AJUSTES A LOS DISEÑOS DE DETALLE DEL ALCANTARILLADO SANITARIO, EBAR Y PTAR PARA EL ÁREA URBANA PRINCIPAL DEL MUNICIPIO DE BAJO BAUDO (PIZARRO)

potencia final HP	hp	0,15	0,61	1,10	0,05	6,31
potencia seleccionada	hp	0,50	1,00	1,50	0,50	10,00
ELECTRICO	kw	0,38	0,76	1,13	0,38	7,56

7 LISTADO DE PLANOS

En el anexo No. 2 corresondientes se presentan los planos relacionados en el Cuadro 1:

CUADRO 1 RELACIÓN DE PLANOS HIDRÁULICOS

	1. PLANOS MECÁNICOS				
BAB-DIS-EBAR-MEC- 01	PLANTA PERFIL CONDUCCIÓN GENERAL EBAR - PTAR				
BAB-DIS-EBAR-MEC- 02	ESTACIÓN DE BOMBEO SUMERGIDA (PRINCIPAL)				
BAB-DIS-EBAR-MEC- 03	ESTACIONES DE BOMBEO SUMERGIDAS (AMPLIACIÓN 1 Y 2)				
BAB-DIS-EBAR-MEC- 04	ESTACIONES DE BOMBEO SUMERGIDAS (CENTRO)				
BAB-DIS-EBAR-MEC- 05	ESTACIONES DE BOMBEO SUMERGIDAS (PLAYA BAJA)				
BAB-DIS-EBAR-MEC- 06	DETALLES GENERALES ESTACIONES DE BOMBEO				
BAB-DIS-EBAR-EST- 011	PLANTA ESTRUCTURAL Y DE TALLES CASETA DE BOMBEO PRINCIPAL				
BAB-DIS-EBAR-EST- 012	DETALLES ESTRUCTURALES CASETA DE BOMBEO PRINCIPAL				
BAB-DIS-EBAR-EST- 013	DETALLES ESTRUCTURALES CASETA DE BOMBEO PRINCIPAL No. 2				
BAB-DIS-EBAR-EST- 014	CERCHA METALICA PARA PASO TUBERÍA EB CENTRO				
BAB-DIS-EBAR-EST- 015	CERCHA METALICA PARA PASO TUBERÍA EB PLAYA BAJA				

FUENTE: EL CONSULTOR

AJUSTES A LOS DISEÑOS DE DETALLE DEL ALCANTARILLADO SANITARIO, EBAR Y PTAR PARA EL ÁREA URBANA PRINCIPAL DEL MUNICIPIO DE BAJO BAUDO (PIZARRO)

ANEXO N° 1

Memorias De Cálculo

AJUSTES A LOS DISEÑOS DE DETALLE DEL ALCANTARILLADO SANITARIO, EBAR Y PTAR PARA EL ÁREA URBANA PRINCIPAL DEL MUNICIPIO DE BAJO BAUDO (PIZARRO)

ANEXO N° 2

Informe Electrico

AJUSTES A LOS DISEÑOS DE DETALLE DEL ALCANTARILLADO SANITARIO, EBAR Y PTAR PARA EL ÁREA URBANA PRINCIPAL DEL MUNICIPIO DE BAJO BAUDO (PIZARRO)

ANEXO N° 3

Informe Eléctrico Foto Voltaico

AJUSTES A LOS DISEÑOS DE DETALLE DEL ALCANTARILLADO SANITARIO, EBAR Y PTAR PARA EL ÁREA URBANA PRINCIPAL DEL MUNICIPIO DE BAJO BAUDO (PIZARRO)

ANEXO N° 4

Planos