

ELETRICOS PTAP

ADECUACIONES ELÉCTRICAS EN LA PTAP

1. Objetivos del proyecto
2. Normatividad aplicada a las adecuaciones eléctricas
3. Diseño detallado (RETIE)

4. Cálculos adicionales

5. Detalles diseño eléctrico sub Nº1

6. Detalles diseño eléctrico sub Nº2

7. Características técnicas de equipos

8. Manual de mantenimiento

9. Planos eléctricos

Carrera 80c No 40 -41 PBX: (574) 322 40 15 / 411 12 76 Móvil: 312 754 43 14 Medellín, Colombia

ELETRICOS PTAP

TABLA DE CONTENIDO

ESPEC	IFICACIONES ELECTRICAS EN LA PTAP	6
1.	OBJETIVOS DEL PROYECTO	6
2.	NORMATIVIDAD APLICADA A LAS ADECUACIONES ELÉCTRIC	CAS
3.	DISEÑO DETALLADO (RETIE)	7
3.1	A: ANÁLISIS Y CUADROS DE CARGAS INICIALES Y FUTURAS	8
3.1.1	sUBESTACIÓN Nº1	8
3.1.2	sUBESTACIÓN Nº2	8
3.2	C: ANÁLISIS DE CORTOCIRCUITO Y FALLA A TIERRA	9
3.3	D: ANÁLISIS DE NIVEL DE RIESGO POR RAYOS	9
3.3.1	MEDIDAS DE PROTECCIÓN	10
3.3.2	aplicación de la matriz de riesgos	12
3.3.3	INTERPRETACIÓN DE LOS RESULTADOS	15
3.4	E: ANÁLISIS DE RIESGO DE ORIGEN ELÉCTRICO	19
3.5 ARMÓI	H: CÁLCULO DE TRANSFORMADORES INCLUYENDO LOS EFECTO NICOS Y FACTOR DE POTENCIA DE LA CARGA	
3.5.1	subestación nº 1	22
3.5.2	subestación nº 2	22
3.6	I: CÁLCULO DEL SISTEMA DE PUESTA A TIERRA	23
	3.7 J, O Y P: CÁLCULO ECONÓMICO DE CONDUCTORES TENIEND	
	A LOS FACTORES DE PERDIDAS	
3.7.1	subestación nº 1	
3.7.2	subestación nº 2	
	3.8 M: CÁLCULO Y COORDINACIÓN DE PROTECCIONES CO SOBRECORRIENTE	
3.8.1	DIAGRAMA UNIFILAR GENERAL	28
3.8.2	subestación nº 1	29
3.8.3	subestación nº 2	31
ENCER	3.9 : N: CÁLCULO DE CANALIZACIONES Y VOLUMENE	
	SUBESTACIÓN Nº1	

ELETRICOS PTAP

3.9.2	SUBESTACIÓN Nº2	. 34
4.	CÁLCULOS ADICIONALES	35
5.	DETALLES DISEÑO ELÉCTRICO SUB Nº1	35
5.1	CONJUNTO EN H PARA SOPORTE DEL TRAFO 225 KVA	. 35
5.2	MALLA A TIERRA LATERAL	. 35
5.3	EQUIPOTENCIALIZACIÓN DE SUBESTACIÓN Y CASETA	. 35
5.4	SUBESTACION EN POSTE 225 KVA	. 36
5.5	ACOMETIDA A TGBT 460 V	. 36
5.6	PANEL GENERAL 460 V.	
5.7	VARIADORES DE VELOCIDAD A BOMBAS 75 HP	
5.8	ALIMENTADORES A BOMBAS 75 HP	
5.9	DISTRIBUCCIÓN INTERNA CASETA DE BOMBAS	
5.10	SERVICIOS 220 V SUBESTACIÓN Nº1	
5.11	ILUMINACIÓN PERIMETRAL	
5.12	APANTALLAMIENTO TANQUE ELEVADO	
5.13	LUCES DE OBSTRUCCIÓN EN TANQUE ELEVADO	
6.	DETALLES DISEÑO ELÉCTRICO SUB Nº2	38
6.1	RED DE MEDIA TENSIÓN A SUBEST Nº 2 (35 ML)	. 38
6.2	CONJUNTO EN H PARA SOPORTE DEL TRAFO 225 KVA	. 38
6.3	MALLA A TIERRA LATERAL	. 38
6.4	EQUIPOTENCIALIZACIÓN DE SUBESTACIÓN Y CASETA	. 38
6.5	SUBESTACIÓN EN POSTE 225 KVA	. 38
6.6	ACOMETIDA A TGBT 460 V	
6.7	PANEL GENERAL 460 V	. 39
6.8	VARIADORES DE VELOCIDAD A BOMBAS 30 HP	. 39
6.9	ALIMENTADORES A BOMBAS 30 HP	. 39
6.10	OTRAS CARGAS A 460 V	. 39
6.11	DISTRIBUCCIÓN INTERNA CASETA DE BOMBAS	
6.12	SERVICIOS 220 V SUBESTACIÓN Nº2	
6.13	CARGAS 220 V SUBESTACIÓN Nº2	
6.14	ILUMINACIÓN PERIMETRAL	. 40

ELETRICOS PTAP

7.	CARACTERISTICAS TÉCNICAS DE EQUIPOS	41
7.1	MALLA DE PUESTA A TIERRA	41
7.2	TRANSFORMADOR CONV ACEITE 225 KVA	41
7.3	PANELES GENERALES A 460 V	41
7.4	ARRANCADOR POR VARIADOR BOMBAS Nº 75 HP	41
7.5	ARRANCADOR POR VARIADOR BOMBAS Nº 30 HP	42
7.6	PLANTA DE EMERGENCIA	42
8.	MANUAL DE MANTENIMIENTO	42
9.	PLANOS ELECTRICOS	43
10.	MATRICULA PROFESIONAL	44
	LISTADO DE TA	ABLAS
Tabla 2 Tabla 3 Tabla 4 Tabla 5 Tabla 6 Tabla 7 Tabla 8 Tabla 9 Tabla 1	Cálculos eléctricos subestación Nº1	8 10 15 21 21 22 22
Tabla 1	1 Cálculo del transformador 460 – 220 – 127 V	23

PBX: (574) 322 40 15 / 411 12 76 Móvil: 312 754 43 14 Medellín, Colombia

ELETRICOS PTAP

INDICE DE FIGURAS

Figura -1 Nivel de tormentas		12
-	ısadas por una descarga	
Figura -3 Pérdidas económicas causadas	s por una descarga atmosférica	14
Figura -4 Pérdidas en servicios públicos		15
-	lios	
•	3	
•		
•		
	ador T2	
•	al	
•	zador T1	

ELETRICOS PTAP

ESPECIFICACIONES ELECTRICAS EN LA PTAP

1. OBJETIVOS DEL PROYECTO

El presente diseño soluciona las necesidades eléctricas requeridas en la PTAP, debido al aumento de carga eléctrica consecuente con los nuevos requerimientos del P.M.A.A diseñado para la cuidad de LETICIA (AMAZONAS).

El aumento de carga de 150 kva existentes, a 450 kva planeados, exige por norma la adecuación a norma RETIE de toda la instalación eléctrica.

2. NORMATIVIDAD APLICADA A LAS ADECUACIONES ELÉCTRICAS

Aplicamos en el presente estudio, la norma RETIE y la norma NTC 2050 a las instalaciones que se implementarán para el OBJETIVO DEL PROYECTO.

Móvil: 312 754 43 14 Medellín, Colombia

ELETRICOS PTAP

3. DISEÑO DETALLADO (RETIE)

LISTADO D	E CHEQUEO DE	DISEÑO DETALI	ADO		
NOMBRE DEL PROYECTO	DISEÑO ELÉC	TRICO P.T.A.P	LETICIA(AMAZONAS)		
DESCRIPCION	APUCA	NO APLICA	OBSERVACIONES		
Análisis y cuadros de cargas iniciales y futuras, incluyendo análisis de factor de potencia y armónicos.	Х		VER CUADRO DE CALCULOS EN PLANOS		
b. Análisis de coordinación de aislamiento eléctrico.		X	NO ES UNA SUBESTACION MT-MT NI DE PATIO QUE EXIJA CALCULOS DE DISTANCIAS DE SEGURIDAD ENTRE EQUIPOS		
с. Análisis de cortocircuito y falla a tierra.	X		SE ADJUNTA		
d. Análisis de nivel de riesgo por rayos y medidas de protección contra rayos.	X		SE ADJUNTA MATRIZ DE RIESGOS Y DISEÑO DE APANTALLAMIENTO		
 e. Análisis de riesgos de origen eléctrico y medidas para mitigarlos. Para un análisis de riesgos de origen eléctrico, el diseñador debe hacer una descripción de los factores de riesgos potenciales o presentes en la instalación y las recomendaciones para minimizarlos. 	х		SE ADJUNTA ANALISIS DE RIESGO ELECTRICO PARA LA RED DE MEDIA TENSION Y SUBESTACIÓN		
f. Análisis del nivel tensión requerido.		Х	NO REQUIERE. YA ESTA DEFINIDO POR LA CARGAS		
g. Cálculo de campos electromagnéticos para asegurar que en espacios destinados a actividades rutinarias de las personas, no se superen los limites de exposición definidos en la Tabla 14.1		X	SUBESTACIÓN INTEMPERIE NO APLICA A NUESTRO CRITERIO		
h. Cálculo de transformadores incluyendo los efectos de los armónicos y factor de potencia en la carga.	x		SE ADJUNTA CALCULO DE POTENCIA		
i. Cálculo del sistema de puesta a tierra.	X		SE ADJUNTA CALCULO Y ESQUEMA DE CONSTRUCCION		
j. Cálculo económico de conductores, teniendo en cuenta todos los factores de pérdidas, las cargas resultantes y los costos de la energía.	Х		SE ADJUNTA CALCULO ECONOMICO DE CONDUCTOR DE ACOMETIDA Y ALIMENTADORES A TODAS LAS CARGAS		
k. Verificación de los conductores, teniendo en cuenta el tiempo de disparo de los interruptores, la corriente de cortocircuito de la red y la capacidad de corriente del conductor de acuerdo con la norma IEC 60909, IEEE 242, capítulo 9 o equivalente.	х		SE ADJUNTA CMO UN TODO EN LA MEMORIA DE CALCULO DE ACOMETIDAS Y DE ALIMENTADORES.		
I. Cálculo mecânico de estructuras y de elementos de sujeción de equipos.		Х	NO SE CONSTRUIRÁN REDES AÉREAS QUE REQUIERAN CALCULOS MECANICOS.		
m. Cálculo y coordinación de protecciones contra sobrecorrientes. En baja tensión se permite la coordinación con las características de limitación de corriente de los dispositivos según IEC 60947-2 Anexo A.	Х		SE ADJUNTA REPORTE DE COORDINACION DE PROTECCIONES		
n. C álculos de canalizaciones (tubo, ductos, canaletas y electroductos) y volumen de encerramientos (cajas, tableros, conduletas, etc.).	Х		SE ADJUNTA CALCULO DEDUCTOS Y BANDEJAS.		
O. Cálculos de pérdidas de energía, teniendo en cuenta los efectos de armónicos y factor de potencia.	X		SE REALIZO JUNTO CON NUMERAL J.		
p. Cálculos de regulación.	X		SE REALIZO JUNTO CON NUMERAL J.		
q. C lasificación de áreas.		Х	NO HAY AREAS CLASIFICADAS		
r. E laboración de diagramas unifilares.	X		SE ADJUNTA PLANO		
s. E laboración de planos y esquemas eléctricos para construcción.	Х		SE ADJUNTAN		
t. E specificaciones de construcción complementarias a los planos, incluyendo las de tipo técnico de equipos y materiales y sus condiciones particulares.	Х		SE ADJUNTAN		
u. E stablecer las distancias de seguridad requeridas.	Х		SE ADJUNTAN		
v. Justificación técnica de desviación de la NTC 2050 cuando sea permitido, siempre y cuando no comprometa la seguridad de las personas o de la instalación.		Х	NO HAY DESVIACIONES DE LA NTC 2050		
w. Los demás estudios que el tipo de instalación requiera para su correcta y segura operación, tales como condiciones sísmicas, acústicas, mecánicas o térmicas.		X	NO SE REQUIEREN		

ELETRICOS PTAP

3.1 A: ANÁLISIS Y CUADROS DE CARGAS INICIALES Y FUTURAS

3.1.1 SUBESTACIÓN Nº1

Tabla 1 Cálculos eléctricos subestación Nº1

CARGA A INSTALAR TRAFO PRINCIPAL 460V

DETALLE	CARGA UNIT (KVA)	CANT	TOTAL (KVA)	
BOMBA SUMERG No 1 -75 HP (460V)	84,39	1	84,4	42,5%
BOMBA SUMERG No 2 -75 HP (460V)	84,39	1	84,4	42,5%
BOMBA SUMERG No 3 -75 HP (460V)(STAND-BY)	84,39	0	0,0	0,0%
TRANSFORMADOR 460/220-127	30,00	1	30,0	15,1%
TOTAL CARGA INSTALADA			198,78	100%

Stand - by

3.1.2 SUBESTACIÓN Nº2

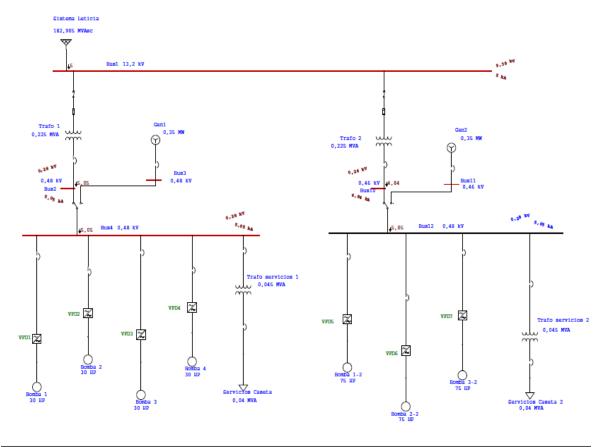
Tabla 2 Cálculos eléctricos subestación Nº2

CARGA A INSTALAR TRAFO PRINCIPAL 460V

DETALLE	CARGA UNIT (KVA)	CANT	TOTAL (KVA)	
BOMBA SUMERG No 1 -30 HP (460V)	33,76	1	33,8	16,9%
BOMBA SUMERG No 2 -30 HP (460V)	33,76	1	33,8	16,9%
BOMBA SUMERG No 3 -30 HP (460V)	33,76	1	33,8	16,9%
BOMBA SUMERG No 4 -30 HP (460V)	33,76	1	33,8	16,9%
BOMBA LODOS No 1 -22 HP	24,75	1	24,8	12,4%
TRANSFORMADOR 460/220-127	40,00	1	40,0	20,0%
TOTAL CARGA NSTALADA			199,80	100%

Son en total dos, una en stand - by

PBX: (574) 322 40 15 / 411 12 76 Móvil: 312 754 43 14



ELETRICOS PTAP

3.2 C: ANÁLISIS DE CORTOCIRCUITO Y FALLA A TIERRA

One-Line Diagram - OLV1 (Short-Circuit Analysis)

19:53:21 die. 03, 2016 Project File: PTAPLETICIA

Para observar la imagen anterior en una mejor resolución ver Anexo Cortocircuito

3.3 D: ANÁLISIS DE NIVEL DE RIESGO POR RAYOS

Para el análisis de riesgo en el tanque de agua potable de la PTAP se contempla la aplicación de la matriz de riesgos derivada de la Norma Internacional IEC 62305-2, en varios escenarios posibles buscando la opción óptima desde el punto de vista técnico y económico.

Se plantean también las acciones para la mitigación del riesgo asociado con descargas atmosféricas, se diagnostica si requiere diseño de apantallamiento y se determina en cuál de los cuatro niveles es requerido.

ELETRICOS PTAP

El diseño, en caso de requerirse, deberá estar en consonancia con este estudio y atemperarse a sus recomendaciones.

3.3.1 MEDIDAS DE PROTECCIÓN

La Norma IEC 62305-2 define cinco estados de protección de una estructura.

Tabla 3 Niveles y elementos de la protección contra descargas atmosféricas

NIVEL DE PROTECCIÓN	SE COMPONE DE:
Nivel 0 (SPCR)	Sin ningún tipo de protección ni externa ni interna.
Nivel I	Con protección externa captora mediante puntas y/o conductores, bajantes, sistema de electrodo complejo, con protección interna mediante TVSS coordinados y con protección para garantizar compatibilidad electromagnética.
Nivel II	Con protección externa captora mediante puntas o conductores, bajantes, sistema de electrodo complejo y con protección interna mediante TVSS en la entrada.
Nivel III	Con protección externa mediante puntas o conductores, bajantes, sistema de electrodo sencillo y con protección interna mediante TVSS solo en la entrada.
Nivel IV	Con protección externa mediante puntas o conductores, bajantes y sistema de electrodo sencillo.

Tabla 4 parámetros básicos utilizados en este estudio

PARAMETROS DEL ESTUDIO PTAP LETICIA										
DIMENSIONES DE LA ESTRUCTO	JRA	INFLUENCIAS AMBIENTALES								
Longitud en metros	14	Situacion con relacion al entorno	AISLADA							
Ancho en metros	14	Factor ambiental	URBANO							
Alto al plano del tejado en metros	40	Densidad de descargas/Km²	3,96							
Area total protegida en metros ²	52.155	Numero de dias de tormenta al año	144							
CARACTERISTICAS DE LA ESTRUC		PERDIDAS POR VIDAS HUMANAS								
Riesgo de incendio y daños	NINGUNO	Riesgos especiales	SIN RIESGOS ESPECIALES							
Apantallamiento por la estructura misma	MEDIO	Riesgo por incendios	OTRAS							
Tipo de cableado interno	NO APANTALLADO	Riesgo por sobretensiones	NO APLICA							
PERDIDAS POR SERVICIOS ESENC	IALES	PERDIDAS ECONOMICAS								
Por incendio en servicios	ACUEDUCTO	Por perdidas especiales	SIN RIESGOS ESPECIALES							
Por sobretensiones en servicios	ACUEDUCTO	Por incendios	OTRAS							
PERDIDAS POR PATRIMONIO CUL	TURAL	Por sobretensiones	SIN RIESGO DE SHOCK							
Debidas a incendios	NO HAY	Riesgo tolerable en pérdidas económicas	1 en 1000 años							

La escogencia de los anteriores parámetros en matriz de riesgos obedece a las siguientes razones:

ELETRICOS PTAP

> CARACTERÍSTICAS DE LA ESTRUCTURA.

Riesgo de incendio y daños bajo: Este parámetro está en función del tipo de materiales con que se construye la estructura. Si los materiales son combustibles como la madera, el riesgo es alto, pero si son poco combustibles, como lo son el acero y el ladrillo, el riesgo es bajo. Como esta construcción tiene estructura en mampostería el nivel seleccionado es **BAJO**

Apantallamiento por la estructura misma: Si la estructura tiene cubierta y columnas metálicas o si tiene cubierta metálica y columnas en concreto con hierro de refuerzo y hay conexión metálica entre esta última y la estructura metálica de la cubierta, la estructura, pero se, configura una Jaula de Faraday y provee un apantallamiento natural. En caso contrario el auto apantallamiento sería catalogado como Medio o Bajo. Por ello nuestra selección fue **BUENO.**

Tipo de cableado interno. Si todos los conductores que se utilizan en el cableado interno tienen algún tipo de blindaje o apantallamiento, complementan el auto apantallamiento de la estructura o si se utilizan conductores desprovistos de este apantallamiento, estos no complementan el auto apantallamiento. Como en nuestro medio no se utilizan conductores apantallados, nuestra selección es **NO APANTALLADO.**

Perdidas de servicios esenciales: Si el inmueble, objeto del estudio, aloja en su interior estaciones de energía, acueducto, telecomunicaciones, hospitales, etc que son proveedores de servicios esenciales para la comunidad, obligan a tener en consideración que las pérdidas de cualquier índole ocasionadas por descargas sobre ese inmueble, impactan mayormente a la comunidad, que si no proveen servicios públicos o comunitarios. Como esta instalación provee estos servicios, nuestra selección es **SERVICIO DE ACUEDUCTO**.

Perdidas de patrimonio cultural: Si el inmueble, objeto del estudio, es un patrimonio Histórico o Cultural, si es un monumento, un teatro, una biblioteca, un museo, etc que son proveedores de servicios culturales para la comunidad, obligan a tener en consideración que las pérdidas de cualquier índole ocasionadas por descargas sobre este inmueble, impactan a la comunidad ocasionando pérdidas culturales irremplazables o irrecuperables. Como esta instalación es un Conjunto Residencial, nuestra selección es **Sin Valor Histórico**.

INFLUENCIAS AMBIENTALES.

La situación con relación al entorno: Esto determina si la estructura es más o menos "atractiva" para las descargas como tal. Por ello nuestra selección es alturas similares ya que las otras opciones no aplican.

Factor ambiental: hace relación a si el estudio se hace para una locación rural o urbana. Por estar fuera del perímetro urbano, nuestra selección es Urbana.

ELETRICOS PTAP

Densidad de descargas por Km² y número de tormentas al año: La selección de la densidad de descargas y el número de tormentas al año NO debe ser arbitraria ya que este parámetro es de los que más impacta en la necesidad o no de tener un apantallamiento y del nivel de protección que se debe lograr. Por ello corresponde a los datos históricos que tiene el IDEAM para la ciudad en la cual está el inmueble objeto de estudio. En caso de no tener el dato de la ciudad, se debe tomar el de una ciudad cercana y similar a la del estudio, con base en el plano de niveles será únicos de Colombia. Estos datos se muestran en la Figura N° 1, para la ciudad de Leticia.

La expresión válida para calcular la DDT en Colombia es la siguiente, la cual, para el caso específico de Leticia, nos arroja un resultado aproximado a 144 días de tormenta y lluvias razón por la cual afectaremos este dato por un factor menor a uno para calcular el DDT ya que este se basa en los días de tormenta y no de lluvia solamente. La fórmula válida para Colombia según el CIGRE es la siguiente:

$$DDT = 0.0017*NC^{1.56} = 4$$

Estos datos se muestran en la siguiente figura, para la ciudad de Leticia.

REPÚBLICA DE COLOMBIA												
MINISTERIO DE MEDIO AMBIENTE, VIVIENDA Y DESARROLLO TERRITORIAL										AÑO: 2016		
INSTITUTO DE HIDROLOGÍA, METEOROLOGÍA Y ESTUDIOS AMBIENTALES ** I D E A M **										MES: OCTUBRE		
	GRUPO DE METEOROLOGÍA AERONÁUTICA								DIA: 2			
		В	OLETÍN	DIARIO D	EL EST	ADO DE	L TIEMPO		TEMPERATURA (°C)			
	PI	RECIPITACIÓN	l(mm)		DIAS CO	N LLUVIA		FENÓMENO	MED	MAX	MIN	
ESTACION	DIA	ACUMULADO	PROMEDIO	ACUMULADO	PROM EDIO	PROM EDIO	DDT	METEOROLÓGICO	DIA	DIA	DIA	
AEROPUERTO	2	EN EL MES	MENSUAL	EN EL MES	EN EL MES MENSUAL ANUAL CALCULADO RELEVANTE							
Leticia	8.4	55.1	257.3	2	20	144	4.00	Tormenta y Lluvias	24.6	27.0	23.3	

Figura -1 Nivel de tormentas

3.3.2 APLICACIÓN DE LA MATRIZ DE RIESGOS

Adjunto al presente encontrarán los reportes de la aplicación de la matriz de riesgos en cada uno de los siguientes escenarios posibles:

- El primer escenario no contempla protección contra descargas atmosféricas (SPCR) de ninguna clase, no se cuenta con sistemas de protección contra incendios y tampoco se tienen protecciones contra sobretensiones (TVSS) instalados.
- 2. El segundo escenario no contempla protección contra descargas atmosféricas (SPCR) de ninguna clase, se cuenta con sistemas de protección manual contra incendios y no se tienen protecciones contra sobretensiones (TVSS).
- 3. El tercer escenario no contempla protección contra descargas atmosféricas (SPCR) de ninguna clase, se cuenta con sistemas de protección contra incendios

ELETRICOS PTAP

manual y se tienen protecciones contra sobretensiones (TVSS) instalados solo en la entrada de servicios.

- 4. El cuarto escenario no contempla protección contra descargas atmosféricas (SPCR), se cuenta con sistemas de protección contra incendios manual y se tienen protecciones contra sobretensiones (TVSS).
- 5. El quinto escenario contempla protección contra descargas atmosféricas (SPCR) Nivel IV, no se cuenta con sistemas de protección contra incendios y no se tienen protecciones contra sobretensiones (TVSS).
- 6. El sexto escenario contempla protección contra descargas atmosféricas (SPCR) Nivel IV, se cuenta con sistemas de protección manual contra incendios y no se tienen protecciones contra sobretensiones (TVSS).
- 7. El séptimo escenario contempla protección contra descargas atmosféricas (SPCR) Nivel IV, se cuenta con sistemas de protección manual contra incendios y se tienen protecciones contra sobretensiones (TVSS) solo en la entrada de los servicios.
- 8. El octavo escenario contempla protección contra descargas atmosféricas (SPCR) Nivel IV, se cuenta con sistemas de protección manual contra incendios y se tienen protecciones contra sobretensiones (TVSS) coordinados según IEC.

El resultado de la aplicación de la matriz de riesgos en cada uno de estos escenarios se presenta a continuación para dos condiciones críticas.

PBX: (574) 322 40 15 / 411 12 76 Móvil: 312 754 43 14 Medellín, Colombia

ELETRICOS PTAP

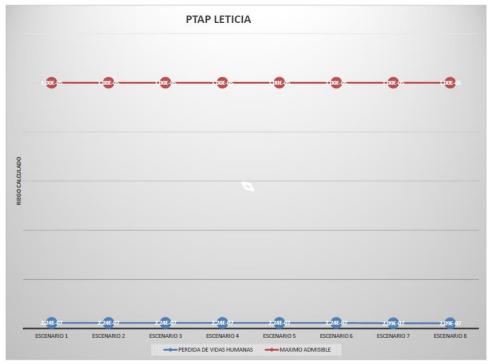


Figura -2 Pérdida de vidas humanas causadas por una descarga

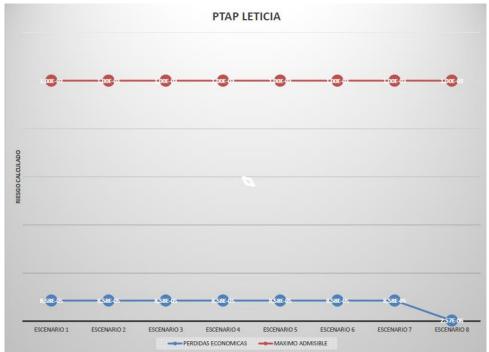


Figura -3 Pérdidas económicas causadas por una descarga atmosférica

Móvil: 312 754 43 14 Medellín, Colombia

ELETRICOS PTAP

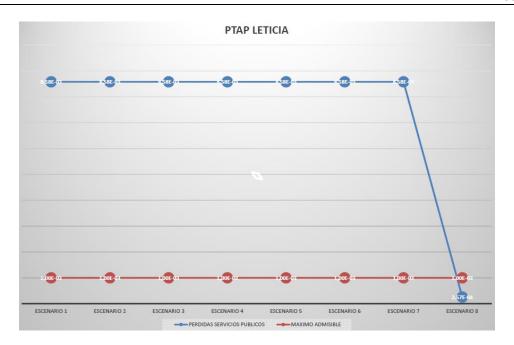


Figura -4 Pérdidas en servicios públicos

3.3.3 INTERPRETACIÓN DE LOS RESULTADOS

Los resultados obtenidos muestra que solo se logró obtener valores por debajo de los niveles máximos permitidos por la norma IEC 62305-2 para el escenario 8, el cual corresponde a la siguiente situación:

Tabla 5 Condiciones de la protección

Nivel de Protección:	IV
Protección contra incendios:	Manual.
Protección contra sobretensiones:	Coordinados según IEC 62305-4

De conformidad con lo anterior, se requiere diseñar una protección contra descargas atmosféricas la cual debe tener protección externa mediante puntas y/o conductores, bajantes y sistema de electrodo, además de las indicadas en la tabla anterior, además debe tener protección manual contra incendio y protección contra sobretensiones coordinadas.

ELETRICOS PTAP

Figura -5 Sistema manual contra incendios

Figura -6 Sistema de protección externa

ELETRICOS PTAP

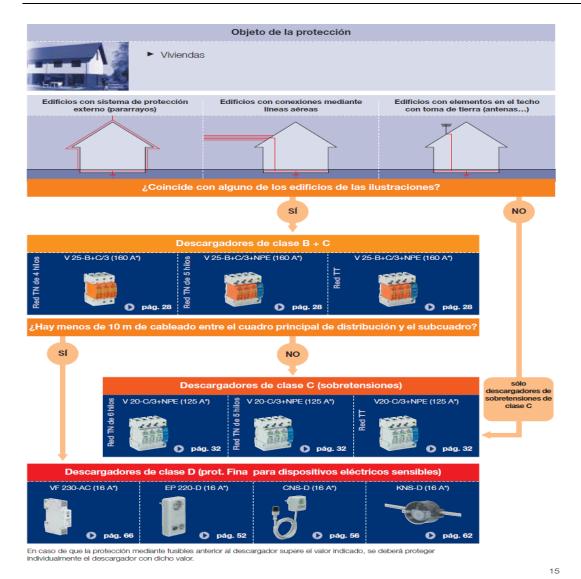


Figura -7 Sistema coordinado de TVSS

Con base a las consideraciones expuestas anteriormente, recomendamos realizar el diseño correspondiente a este análisis.

Por lo anterior se propone la instalación de un sistema de conductores en la parte más alta de la estructura, la instalación de un sistema de bajantes que rematen en tanques con hidrosolta y contrapesos similares al electrodo tipo A.

ELETRICOS PTAP

Aun cuando la matriz de riesgos indica que se deben instalar al menos dos bajantes, la ubicación de los mismos se deberá determinar en el diseño específico, teniendo en cuenta las limitantes arquitectónicas y estructurales de la edificación.

ESTUDIOS PARA LA ACTUALIZACIÓN Y COMPLEMENTACIÓN UT Ingenieros DE ACUEDUCTO Y ALCANTARILLADO Y DISEÑOS A DETA DE LA CABECERA MUNICIPAL DE LETICIA, AMAZONAS

ELETRICOS PTAP

3.4 E: ANÁLISIS DE RIESGO DE ORIGEN ELÉCTRICO

	MATRIZ DE RIESGO ELECTRICO DE PTAP LETICIA											
TIPO DE RIESGO		ARCO ELE	CTRICO		AUSENCIA DE TENSION				CONTACTO DIRECTO			
UBICACIÓN/ CONSECUENCIA	EN PERSONAS NO TECNICAS: QUEMADURAS	PERDIDAS ECONOMICAS EN EQUIPOS	DAÑO MEDIO AMBIENTAL . NO APLICA	EN IMAGEN DE LA EMPRESA. NO APLICA	EN PERSONAS POR NO FUNCIONAMIENTO DE EQUIPOS DE VIDA	PERDIDAS ECONOMICAS POR DAÑOS EN INSUMOS QUE REQUIEREN REFRIGERACION	DAÑO MEDIO AMBIENTAL . NO APLICA	EN IMAGEN DE LA EMPRESA. NO APLICA	EN PERSONAS TECNICA Y NO TECNICAS: QUEMADURAS O ELECTROCUCION	PERDIDAS ECONOMICAS POR INCAPACIDAD TEMPORAL	DAÑO MEDIO AMBIENTAL. NO APLICA	EN IMAGEN DE LA EMPRESA. NO APLICA
RED AEREA EN MEDIA TENSION	5E	4E	1E	1E	1E	1E	1E	1E	5E	4E	1E	1E
TRANSFORMADORES EN PLATAFORMA CON SISTEMA DE MEDIDA	5E	4 E	1E	1E	1E	1E	1E	1E	5E	4E	1E	1E
TABLEROS EN CUARTO ELECTRICO	5E	4E	1E	1E	1E	1E	1E	1E	5E	4E	1E	1E
RECOMENDACIÓN	ACEPTARLO	ACEPTARLO	VIGILAR	VIGILAR	VIGILAR	VIGILAR	VIGILAR	VIGILAR	ACEPTARLO	ACEPTARLO	VIGILAR	VIGILAR
					•			•				
TIPO DE RIESGO		CONTACTO I	NDIRECTO			CORTOCIRCUITO	0			ELECTRICIDAI	DESTATICA	
UBICACIÓN/ CONSECUENCIA	EN PERSONAS NO TECNICAS ELECTROCUCION MENOR POR MANIPULACION INDEBIDA	PERDIDAS ECONOMICAS: POR ALTO CONSUMO DE ENERGIA. NO APLICA	DAÑO MEDIO AMBIENTAL . NO APLICA	EN IMAGEN DE LA EMPRESA. NO APLICA	EN PERSONAS NO TECNICAS POR MANIPULACION DE LA INSTALACION	PERDIDAS ECONOMICAS	DAÑO MEDIO AMBIENTAL . NO APLICA	EN IMAGEN DE LA EMPRESA	EN PERSONAS TECNICAS Y NO TECNICAS	PERDIDAS ECONOMICAS	DAÑO MEDIO AMBIENTAL . NO APLICA	EN IMAGEN DE LA EMPRESA. NO APLICA
RED AEREA EN MEDIA TENSION	5E	1E	1E	1E	5E	4E	1E	1E	1E	1E	1E	1E
TRANSFORMADORES EN PLATAFORMA CON SISTEMA DE MEDIDA	5E	1E	1E	1E	5E	4 E	1E	1E	1E	1E	1E	1E
TABLEROS EN CUARTO ELECTRICO	5E	1E	1E	1E	5E	4 E	1E	1E	1E	1E	1E	1E
RECOMENDACIÓN	ASUMIRLO	ASUMIRLO	VIGILAR	VIGILAR	ACEPTARLO	ACEPTARLO	VIGILAR	VIGILAR	VIGILAR	VIGILAR	VIGILAR	VIGILAR

ESTUDIOS PARA LA ACTUALIZACIÓN Y COMPLEMENTACIÓN DE UT Ingenieros DE ACUEDUCTO Y ALCANTARILLADO Y DISEÑOS A DETALLI DE LA CABECERA MUNICIPAL DE LETICIA, AMAZONAS

ELETRICOS PTAP

TIPO DE RIESGO		EQUIPO DEF	ECTUOSO			DESCARGAS ATMOSFI	ERICAS		SOBRECARGA DE CIRCUITOS					
UBICACIÓN/ CONSECUENCIA	EN PERSONAS NO TECNICAS: QUEMADURAS	PERDIDAS ECONOMICAS EN EQUIPOS	DAÑO MEDIO AMBIENTAL . NO APLICA	EN IMAGEN DE LA EMPRESA. NO APLICA	EN PERSONAS TECNICAS Y NO TECNICAS POR EXPOSICION INDEBIDA	PERDIDAS ECONOMICAS POR DAÑOS EN INSTALACIONES Y EQUIPOS	DAÑO MEDIO AMBIENTAL . NO APLICA	EN IMAGEN DE LA EMPRESA. NO APLICA	EN PERSONAS: NO APLICA	PERDIDAS ECONOMICAS POR DAÑO EN EQUIPOS	DAÑO MEDIO AMBIENTAL . NO APLICA	EN IMAGEN DE LA EMPRESA. NO APLICA		
RED AEREA EN MEDIA TENSION	5E	4E	1E	1E	5E	4E	1E	1E	5E	4E	1E	1E		
TRANSFORMADORES EN PLATAFORMA CON SISTEMA DE MEDIDA	5E	4E	1E	1E	5E	4E	1E	1E	5E	4E	1E	1E		
TABLEROS EN CUARTO ELECTRICO	5E	4E	1E	1E	5E	4E	1E	1E	5E	4E	1E	1E		
RECOMENDACIÓN	ASUMIRLO	ASUMIRLO	VIGILAR	VIGILAR	ACEPTARLO	ACEPTARLO	VIGILAR	VIGILAR	ACEPTARLO	ACEPTARLO	VIGILAR	VIGILAR		
TIPO DE RIESGO	TEN	SION DE CONTACTO	= CONTACTO DIRECT	0		TENSION DE PAS	0		TOTAL CONDICION MAS CRITICA					
UBICACIÓN/ CONSECUENCIA	EN PERSONAS TECNICA Y NO TECNICAS:	PERDIDAS ECONOMICAS POR	DAÑO MEDIO AMBIENTAL . NO	EN IMAGEN DE LA EMPRESA, NO	EN PERSONAS TECNICAS Y NO TECNICAS POR EFECTO DE	PERDIDAS ECONOMICAS	DAÑO MEDIO AMBIENTAL . NO	EN IMAGEN DE	EN PERSONAS TECNICAS Y NO TECNICAS POR LOS	PERDIDAS	DAÑO MEDIO	EN IMAGEN DE LA		
ODICACIONY CONSECUENCIA	QUEMADURAS O ELECTROCUCION	INCAPACIDAD TEMPORAL	APLICA	APLICA	DESCARGAS ATMOSFERICAS CERCANAS	PERDIDAS ECONOMICAS	APLICA	LA EMPRESA	MOTIVOS INDICADOS ANTERIORMENTE	ECONOMICAS	AMBIENTAL . NO APLICA	EMPRESA. NO APLICA		
RED AEREA EN MEDIA TENSION	QUEMADURAS O				DESCARGAS ATMOSFERICAS	PERDIDAS ECONOMICAS 4E	-	LA EMPRESA	MOTIVOS INDICADOS	ECONOMICAS 4E				
,	QUEMADURAS O ELECTROCUCION	TEMPORAL	APLICA	APLICA	DESCARGAS ATMOSFERICAS CERCANAS		APLICA		MOTIVOS INDICADOS ANTERIORMENTE		APLICA	APLICA		
RED AEREA EN MEDIA TENSION TRANSFORMADORES EN PLATAFORMA CON SISTEMA DE	QUEMADURAS O ELECTROCUCION 5E	TEMPORAL 4E	APLICA 1E	APLICA 1E	DESCARGAS ATMOSFERICAS CERCANAS	4E	APLICA 1E	1E	MOTIVOS INDICADOS ANTERIORMENTE 5E	4E	APLICA 1E	APLICA 1E		

NOTAS:

1. SE RECOMIENDA NO MANIPULAR LA INSTALACION POR PERSONAL NO TECNICO.

2. SE RECOMIENDA AL PERSONAL TECNICO TRABAJAR SIN TENSION.

3. EN CASO ESTRICTAMENTE NECESARIO DE TRABAJAR CON TENSION SE DEBERAN UTILIZAR EPP CLASE 2 SEGÚN RETIE ART.13.4 g

Carrera 80c No 40 -41 PBX: (574) 322 40 15 / 411 12 76

PBX: (574) 322 40 15 / 411 12 76 Móvil: 312 754 43 14

Tabla 6 Matriz para análisis de riesgo

ı			por (al) o (en)									
	RIESGO A EVALUAR:		ОЕГЕСТО		(C	DE RIESGO AUSA)			FUENTE			
⊢		(E): Quer	maduras)	(E	: Arc	o eléctrico)		(5)	Celda de 13,8 k	V)		
	POTEN	CIAL		REAL				FRECUENCIA				
						E	D	С	В	Α		
c	En personas	Económicas	Ambientales	En la imagen de la empresa		No ha ocurrido en el sector	Ha ocurrido en el sector	Ha ocurrido en la Empresa	Sucede varias veces al año en la Empresa	Sucede varias veces al mes en la Empresa		
O N	Una o más muertes	Daño grave en infraestructura. Interrupción regional.	Contaminación irreparable	Internacional	5	MEDIO	ALTO	ALTO	ALTO	MUY ALTO		
S E C	Incapacidad parcial permanente	Daños mayores, Salida de Subestación	Contaminación mayor	Nacional	4	MEDIO	MEDIO	MEDIO	ALTO	ALTO		
E	incapacidad temporal (>1 dia)	Daños severos. Interrupción temporal	Contaminación localizada	Regional	3	BAJO	MEDIO	MEDIO	MEDIO	ALTO		
C I A	Lesión menor (sin incapacidad)	Daños Importantes. Interrupción breve	Efecto menor	Local	2	BAJO	BAJO	MEDIO	MEDIO	MEDIO		
S	Molestia funcional (afecta rendimiento laboral)	Daños leves, No interrupción	Sin efecto	Interna	1	MUY BAJO	BAJO	BAJO	BAJO	MEDIO		
Eva	luador:					MP:		Fecha:				

Tabla 7 Decisiones y acciones para controlar el riesgo

COLOR	NIVEL DE RIESGO	DECISIONES A TOMAR Y CONTROL	PARA EJECUTAR LOS TRABAJOS
	Muy alto	Inadmisible para trabajar. Hay que eliminar fuentes potenciales, hacer reingeniería o minimizarlo y volver a valorarlo en grupo, hasta reducirlo. Requiere permiso especial de trabajo.	
	Alto	Minimizarlo. Buscar alternativas que presenten menor riesgo. Demostrar cómo se va a controlar el riesgo, aislar con barreras o distancia, usar EPP. Requiere permiso especial de trabajo.	
	Medio	Aceptarlo. Aplicar los sistemas de control (minimizar, aislar, suministrar EPP, procedimientos, protocolos, lista de verificación, usar EPP). Requiere permiso de trabajo.	
	Bajo	Asumirio. Hacer control administrativo rutinario. Seguir los procedimientos establecidos. Utilizar EPP. No requiere permiso especial de trabajo.	El lider del trabajo debe verificar: • ¿Qué puede salir mal o fallar? • ¿Qué puede causar que algo salga mal o falle? • ¿Qué podemos hacer para evitar que algo salga mal o falle?
	Muy bajo	Vigilar posibles cambios	No afecta la secuencia de las actividades.

lóvil: 312 754 43 14 Medellín, Colombia

ELETRICOS PTAP

3.5 H: CÁLCULO DE TRANSFORMADORES INCLUYENDO LOS EFECTOS DE ARMÓNICOS Y FACTOR DE POTENCIA DE LA CARGA

3.5.1 SUBESTACIÓN Nº 1

Tabla 8 Cálculo del transformador 460 V

DATOS: CARGA INSTALADA	C.I =	198,78	KVA	
FACTOR DE DEMANDA (ASUMIDO)	FD	1,0		
CARGA DEMANDADA (KVA)	C.DX.FD	198,78	KVA	
TRANSFORMADOR OF FOCTON		225	1014	12200/460 265
TRANSFORMADOR SELECCIONA	NDO	225	KVA	13200/460-265
RESERVA TECNICA		26,22	KVA	11,65%

Tabla 9 Cálculo del transformador 460 - 220 - 127 V

	Tabla 9 Calculo del Clalisioni	ilaudi 400	- 220 - 1	.2/ V	
DATOS:	CARGA INSTALADA (P SUB Nº 1)	C.I =	10,69	KVA	
	FACTOR DE DEMANDA (ASUMIDO)	FD	0,8		
	CARGA DEMANDADA (KVA)	C.DX.FD	8,55	KVA	
				_	
	TRANSFORMADOR SELECCIONA	DO	30	KVA	13200/220-127v
	RESERVA TECNICA		21,45	KVA	71,49%

3.5.2 SUBESTACIÓN Nº 2

Tabla 10 Cálculo del transformador 460 V

DATOS:	CARGA INSTALADA	C.I =	199,78	KVA	
	FACTOR DE DEMANDA (ASUMIDO)	FD	1,0		
	CARGA DEMANDADA (KVA)	C.DX.FD	199,78	KVA	
	TRANSFORMADOR SELECCIONA	DO	225	KVA	13200/460-265
	RESERVA TECNICA		25,22	KVA	11,21%

ELETRICOS PTAP

	Tabla 11 Cálculo del transformador 460 – 220 – 127 V										
DATOS:	CARGA INSTALADA	C.I =	37,79	KVA							
	FACTOR DE DEMANDA (ASUMIDO)	FD	0,8								
	CARGA DEMANDADA (KVA)	C.DX.FD	30,23	KVA							
	TRANSFORMADOR SELECCIONA	DO	40	KVA	13200/220-127v						
	RESERVA TECNICA	•	9,77	KVA	24,42%						

3.6 I: CÁLCULO DEL SISTEMA DE PUESTA A TIERRA

Item	Descripción	Indice	Soldada	Pernada
	DATOS DE ENTRADA			
1	Capacidad del Transformador	KVAb	225	225
2	Tensión base lado AT (Voltios)	VbAT	13200	13200
3	Tensión base lado de BT (Voltios)	VbBT	440	440
4	Nivel de corto en punto de conexion.	Ig (KA)	3,7	3,7
5	Z trafo (p.u.)	Zt	0,040	0,040
6	Carga de motores conectados (HP)	Pmot	150	150
7	Resistividad del terreno (ohm-m) Grava humeda minimo = 200 Ω*m	Ro	200	200
8	Resistividad de la superficie (ohm-m Roca máximo = 10.000 Ω*m	Ro1	10000	10000
9	Factor de expansión y asimetría.	Fc	1,25	1,25
10	Operations of fellowering (a)	If	9.438	9,438
	CONFIGURACION DE LA MALLA Largo de la malla (m) Ancho de la malla(m)	iii	Cumple requ	iisitos!!!
11	Largo de la malla (m)	Lx (m)	12	12
12	Ancho de la malla(m)	Ly (m)	12	12
13	Profundidad de enterramiento (cm)	h (cm)	60	60
14	Separacion cables en cuadricula (m)	Di (m)	1,5	1,5
15	Profundidad de la capa superficial (cm) (OJO VER NOTA 5)	Hs (cm)	15	15
16	Longitud del electrodo a utilizar - mìnimo 2,4 metros (m)	lv.	2,4	2,4
17	Longitud de las colas (m)	Lcola	20	20
18 19	Longitud de contrapesos (m) Cantidad de electrodos	Lcont #electrod.	9	9
20		≠electroa.	200	200
21	Tiempo de despeje de la falla (ms) 200 miliseg Longitud de cable enterrado (SIN LOS ELECTRODOS) (m)	Ls	236	236
22	Longitud total de la malla - inlcuye electrodos, contrapesos y colas (m)	Ls	258	258
23	Sección del conductor calculada (mm2)	Seco	15,10	25,19
24	Calibre conductor calculado	Secc	4 AWG	4 AWG
	Conductor seleccionado (mínimo 2/0 AWG) *		4/0 AWG	4/0 AWG
25	Conductor selectionado (minimo 2/0 AWG)		4/0 AWG	4/0 AWG
	Valor aproximado de la malla \$21.008.084		4/0 AWG ▼	4/0 AWG 🔻
	Para actualizar precios presione aquí 💢			,,,,,,,,
	RESULTADOS			
27	Valor resistencia de la malla (Ohm)	Rm	7,55	7,55
	Se verifica que la resistencia de la malla es inferior a 10 ohmios - Tabla No. 24 - RETIE		SI	SI
28	Tensión transferida	GPR	53.069	53.069
	La tensión transferida es inferior a la tensión de contacto tolerable ? Si la tensión transferida > Tensión de contacto se debe calcular las tensiones de paso y de contacto y luego compararlas con las tolerables		NO	NO
29	Tensión de paso en caso de falla (Voltios)	Vpc	9,490	8.932
30	Tensión de paso tolerable (Voltios)	Vpt	16.651	16.651
	CONCLUSION: La tensión de paso es inferior al tolerable ?	.,,,	SI	SI
31	Tensión de malla en caso de falla (V)	Vcc	4.307	4.054
32	Tensión de contacto tolerable (V)	Vc	4.426	4,426
-	CONCLUSION: La tensión de malla es inferior a la tensión de contacto tolerable ?		SI	SI

Móvil: 312 754 43 14 Medellín, Colombia

ELETRICOS PTAP

3.7 J, O Y P: CÁLCULO ECONÓMICO DE CONDUCTORES TENIENDO EN CUENTA LOS FACTORES DE PERDIDAS

3.7.1 SUBESTACIÓN Nº 1

NOMBRE DEL	PROYECTO	SUBESTACI	IÓN No 1 -BOMBAS	CENTRIF 75 HP
TENSION DE SERVICIO	460 Voltios LL	TEMPERATU	36-40	
NOMBRE	POTENCIA	UNIDAD	TIPO DE SISTEMA	CONDICION CARGA
TRAFO-TGBT	225	kVA 🔻	3Ø(3Ø-3H y 3Ø-4H) ▼	CONTINUA 🕝
TGBT A BOMBA 1	75	HP •	3Ø(3Ø-3H y3Ø-4H) 🔽	CONTINUA 🔻
TGBT A BOMBA 2	75	HP •	3Ø(3Ø-3H y 3Ø-4H) ▼	CONTINUA 🖸
TGBT A BOMBA 3	75	HP ▼	3Ø(3Ø-3H y 3Ø-4H) ■	CONTINUA 💌
TGBT A TRAF 30 KVA	30	kVA 🔻	3Ø(3Ø-3H y 3Ø-4H) ▼	NO CONTINUA 🔻
		HP ▼	3Ø(3Ø-3H y 3Ø-4H) ▼	NO CONTINUA 🕞
		kVA 💌	3Ø(3Ø-3H y 3Ø-4H) ■	NO CONTINUA 🔻

ELETRICOS PTAP

	metida y aliment	adores en Co	nauctores ae	cobre todos id						
NOMBRE DEL PROYECTO:							MBAS CENTR			
DESCRIPCION	TRAFO-1	<u>rgbt</u>	TGBT A	BOMBA 1	TGBT A B	OMBA 2	TGBT A	BOMBA 3	TGBT A TR	AF 30 KVA
DEGOINII GIGIN	Valor	Unidad	Valor	Unidad	Valor	Unidad	Valor	Unidad	Valor	Unidad
Carga a Concectar	225	kVA	75	HP	75	HP	75	HP	30	kVA
Factor de Potencia de la carga	0,85	0,85	0,85	0,85	0,85	0,85	0,85	0,85	0,90	0,90
Carga total en Kva	225,0	kVA	65,8	HP	65,8	HP	65,8	HP	30,0	kVA
Temperatura Ambiente en °C	40	٥C	40	۰C	40	۰C	40	۰C	40	۰C
La carga es contínua	FACTOR	25%	FACTOR	25%	FACTOR	25%	FACTOR	25%	FACTOR	09
Tensión de Alimentación	460	VOLTIOS	460	VOLTIOS	460	VOLTIOS	460	VOLTIOS	460	VOLTIOS
Corriente nominal calculada	282	Amperios	83	Amperios	83	Amperios	83	Amperios	38	Amperios
Corriente para Calculo del Conductor (Factor de seguridad)	353	Amperios	104	Amperios	104	Amperios	104	Amperios	38	Amperios
Corriente por Hilo de cada fase con factor de seguridad	177	Amperios	104	Amperios	104	Amperios	104	Amperios	38	Amperios
Tipo de conductor a utilizar	CONDUC	CTOR	COND	JCTOR	CONDU	CTOR	CONDU		CONDU	
Calibre (Conductores de l	ase v neutro	Calculados po	or el criterio de	Carga v tipo de	carga				
Conductor de Fase THWN/THHN o THW en ducto (Rateados a 75°C)	250 KCM	126.67	2 AWG	33.62	2 AWG	33.62	2 AWG	33.62	8 AWG	8,36
Número de Hilos por fase	2	120,01	1		1	00,02	1		1	
Tipo de Tubería utilizada	PVC	-	PVC		PVC		PVC		Conduit Metálica	
Cargas no lineales en % de la carga total	90%	4 F	100%	4 F	100%	4 F	100%	4 E F	50%	4
Calibre del conductor neutro	219.14	350 KCM	58.16	1/0 AWG	58.16	1/0 AWG	58.16	1/0 AWG	14.46	6 AWG
Conductor de proteccion (Alimentadores o ramales) Tabla 250-95	4 AWG	21.14 mm ²	8 AWG	8.36 mm ²	8 AWG	8.36 mm ²	8 AWG	8.36 mm ²	10 AWG	5.25 mm ²
	alibre Conductor					0.00 111111	071110	0.00 11111	1071110	0.20 111111
Calibre de la Acometida o del Alimentador	350 KCM ▼	_		▼ 67.44	2/0 AWG ▼	67.44	2/0 AWG	67.44	6 AWG ▼	13.29
Area total de los conductores de acometida	354,68	mm²	67.44	mm²	67.44	mm²	67.44	mm²	13.29	mm²
Conductor del electrodo de puesta a tierra (Acometidas) Tabla 250-94	1/0 AV	VG	4 AWG 4 A		VG	4 A'	WG	8 A\	WG	
	Co	mprobación	por el Criterio	le Regulación			•			
Calibre escogido para comprobacion por Regulación	350 KCM ▼	177.34	2/0 AWG	67.44	2/0 AWG	67.44	2/0 AWG	67.44	6 AWG ▼	13.29
Longitud del Conductor por Hilo	40	Metros	22	Metros	24	Metros	26	Metros	8	Metros
Longitud total del conductor	320		88		96	1	104		32	1
Momento Eléctrico	9000	Kva-metro	1650	Kva-metro	1800	Kva-metro	1950	Kva-metro	240	Kva-metro
Constante de Regulación	0,0414		0,1673		0,1673		0,1673		0,7283	
Caída de Tensión entre bornes y carga	0,37	%	0,65	%	0,67	%	0,7	%	0,54	%
	С	omprobaciór	por el Criterio							
Calibre escogido	177.34 mm² (350 KCM)	▼	67.44 mm² (2/0 AWG	· ·	67.44 mm² (2/0 AWG)	~	67.44 mm² (2/0 AW)	5)	13.29 mm² (6 AWG)	•
Tarifa pagada por energía	250	\$/Kwhr	250	\$/Kwhr	250	\$/Kwhr	250	\$/Kwhr	250	\$/Kwhr
Costo del Conductor por Kgr de peso	16000	\$/Kgr	16000	\$/Kgr	16000	\$/Kgr	16000	\$ / Kgr	16000	\$/Kgr
Tiempo de Servicio del Conductor	8760	Horas / Año	5840	Horas / Año	5840	Horas / Año	5840	Horas / Año	5840	Horas / Año
Interes corriente % Anual Efectivo	26%	÷	26%	*	26%	*	26%	- - -	26%	<u></u>
% Carga estimado en el conductor	80%		70%	-	70%	÷	70%	-	38%	•
Corriente de Trabajo promedia del Conductor	282	Amperios	73	Amperios	73	Amperios	73	Amperios	14	Amperios
Area Mínima Calculada (Ac)	306,72	mm²	64,83	mm²	64,83	mm²	64,83	mm²	12,43	mm²
Area del Conductor Escogido Ae (Ae>Ac)	354,68	mm²	67,44	mm²	67,44	mm²	67,44	mm²	13,29	mm²
Cumple por Pérdidas ?	CUMP	LE	CUN	IPLE	CUMF	PLE	CUM	PLE	CUM	PLE
Comprobación por el Criterio de Corto Circ	uito									
Corriente de corto circuito en el punto de instalacion en kAmp	3,70	←	3,69	←	3,70	←	3,69	←	4,45	4
Tiempo de duracion de la falla en segundos	0,02	÷	0,01	÷	0,01	÷	0,01	÷	0,1	÷
Temperatura máxima en condiciones de Corto sin dañar el aislamiento	200	°C	20	00 °C	200	°C	200 °C		200 °C	
Area minima calculada para estas condiciones	0,56	mm²	0,2	28 mm²	0,28	mm²	0,28	mm²	3,4	1 mm²
Cumple por Cortocircuito?	CUMP	l F	CHI	IPLE	CUMF) F	0,28 mm² CUMPLE		CUM	PI F

Carrera 80c No 40 -41 PBX: (574) 322 40 15 / 411 12 76 Móvil: 312 754 43 14

ELETRICOS PTAP

3.7.2 SUBESTACIÓN Nº 2

NOMBRE DEL	PROYECTO	CALCULOS EQUIPOS A 460V SUB 2								
TENSION DE SERVICIO	460 Voltios LL	TEMPERATU	36-40							
NOMBRE	POTENCIA	UNIDAD	TIPO DE SISTEMA	CONDICION CARGA						
TRAFO-TGBT	225	kVA 🔽	3Ø(3Ø-3H y 3Ø-4H) ▼	CONTINUA 🖸						
TGBT - Arrancadores	30	HP ■	3Ø(3Ø-3Н у3Ø-4Н) 🔽	CONTINUA 🔻						
Arranc 1 a Bomba 1	30	HP ▼	3Ø(3Ø-3H y 3Ø-4H) ▼	CONTINUA •						
Arranc 2 a Bomba 2	30	HP ▼	3Ø(3Ø-3H y 3Ø-4H) ■	CONTINUA 🔻						
Arranc 3 a Bomba 3	30	HP ▼	3Ø(3Ø-3H y 3Ø-4H) ▼	CONTINUA 🔻						
Arranc 4 a Bomba 4	30	HP ▼	3Ø(3Ø-3H y 3Ø-4H) ▼	CONTINUA 🗨						
TGBT- B.Lodos	16	k₩	3Ø(3Ø-3H y 3Ø-4H) ■	CONTINUA 🔻						

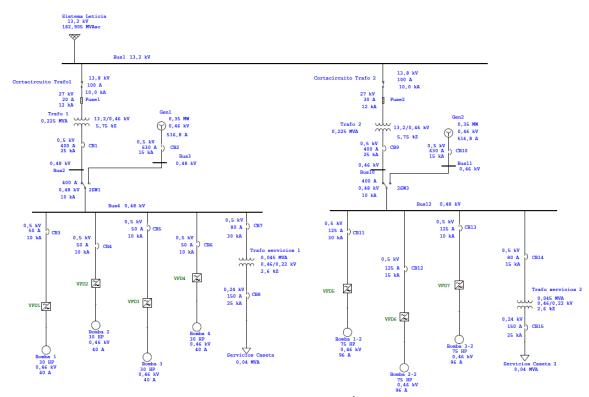
Móvil: 312 754 43 14 Medellín, Colombia

ELETRICOS PTAP

	Calc	ulo de Acom	etida y alimenta	dores en Con	ductores de Co									
NOMBRE DEL PROYECTO:					CALC	ULOS EQUIP	OS A 460V SUI	B 2						
DESCRIPCION	TRAFO-	TGBT	TGBT - Arra	ancadores	Arranc 1 a	Bomba 1	Arranc 2 a	Bomba 2	Arranc 3 a	Bomba 3	Arranc 4 a	Bomba 4	TGBT- F	B.Lodos
DESCRIPCION	Valor	Unidad	Valor	Unidad	Valor	Unidad	Valor	Unidad	Valor	Unidad	Valor	Unidad	Valor	Unidad
Carga a Concectar	225	kVA	30	HP	16	kW								
Factor de Potencia de la carga	0.85	0,85	0.85	0,85	0.85	0,85	0.85	0,85	0.85	0,85	0.85	0,85	0.85	0,85
Carga total en Kva	225,0	kVA	26,3	HP	18,8	kW								
Temperatura Ambiente en °C	40	۰C	40	۰C	40	۰C	40	٥C	40	۰C	40	۰C	40	°C
La carga es contínua	FACTOR	25%	FACTOR	25%	FACTOR	25%	FACTOR	25%	FACTOR	25%	FACTOR	25%	FACTOR	25%
Tensión de Alimentación	460	VOLTIOS	460	VOLTIOS	460	VOLTIOS	460	VOLTIOS	460	VOLTIOS	460	VOLTIOS	460	VOLTIOS
Corriente nominal calculada	282	Amperios	33	Amperios	33	Amperios	33	Amperios	33	Amperios	33	Amperios	24	Amperios
Corriente para Calculo del Conductor (Factor de seguridad)	353	Amperios	41	Amperios	41	Amperios	41	Amperios	41	Amperios	41	Amperios	30	Amperios
Corriente por Hilo de cada fase con factor de seguridad	177	Amperios	41	Amperios	41	Amperios	41	Amperios	41	Amperios	41	Amperios	30	Amperios
Tipo de conductor a utilizar	CONDU	CTOR	CONDU	JCTOR	COND	JCTOR	CONDU	JCTOR	CONDU	JCTOR	COND	JCTOR	CONDI	UCTOR
Calibre (Conductores de	Fase v neutro	Calculados po	r el criterio de	Carga v tipo d	e carga								
Conductor de Fase THWN/THHN o THW en ducto (Rateados a 75°C)	250 KCM	126.67	8 AWG	8,36	10 AWG	5,25								
Número de Hilos por fase	2	120,01	1		1		1		1		1		1	
Tipo de Tubería utilizada	PVC		PVC		PVC		PVC		PVC		Conduit Metálica	-	Conduit Metálica	
Cargas no lineales en % de la carga total	70%	()	100%	()	100%	4 h	100%	4 E F	100%	()	100%	()	100%	
Calibre del conductor neutro	219.14	350 KCM	14.46	6 AWG	9.08	8 AWG								
Conductor de proteccion (Alimentadores o ramales) Tabla 250-95	4 AWG	21.14 mm ²	10 AWG	5.25 mm ²										
	Calibre Conducto	del Electrod	de puesta a ti		ra acometidas									
Calibre de la Acometida o del Alimentador	350 KCM	4	2 AWG	33.62	8 AWG	▼ 8.36								
Area total de los conductores de acometida	354,68	mm²	33.62	mm²	33.62	mm²	33.62	mm²	33.62	mm²	33.62	mm²	8.36	mm²
Conductor del electrodo de puesta a tierra (Acometidas) Tabla 250-94	1/0 A\	1	33,02 8 A\		33,02 8 A		33,02 8 A		33,02 8 A\		33,02 8 A			AWG
Conductor del cicolicato de paesta a lleria (Moonicilado) Tabia 200 04			or el Criterio d		071		<u> </u>		071		071	110		1110
Calibre escogido para comprobacion por Regulación	350 KCM		2 AWG	¬	2 AWG	33.62	2 AWG	33,62	2 AWG	33.62	2 AWG	33.62	6 AWG	▼ 33,62
Longitud del Conductor por Hilo	18	Metros	15	Metros	128	Metros	121	Metros	95	Metros	92	Metros	55	Metros
Longitud total del conductor	144	IVICTIOS	60	IVICTIOS	512	IVICTIOS	484	IVICTIOS	380	IVICTIOS	368	IVICUOS	220	IVICTIOS
Momento Eléctrico	4050	Kva-metro	450	Kva-metro	3840	Kva-metro	3630	Kva-metro	2850	Kva-metro	2760	Kva-metro	880	Kva-metro
Constante de Regulación	0,0414	TOTAL INICIA	0.2873	TOTAL TITOLO	0,2873	TVU IIIOUO	0.2873	TV4 IIICUO	0.2873	TVW IIICUO	0.3105	TWG IIICUO	0.6994	TWG IIIOUO
Caída de Tensión entre bornes y carga	0.17	%	0.3	%	1.27	%	1.21	%	0.99	%	1.03	%	0.62	%
	C	omprobación	por el Criterio	de Pérdidas	.,		-,		-,		.,		-,	,,,
Calibre escogido	177.34 mm² (350 KCM)		33.62 mm² (2 AWG)	_	33.62 mm² (2 AWG)	▼	33.62 mm² (2 AWG)	•	33.62 mm² (2 AWG)	▼	33.62 mm² (2 AWG)	▼	13.29 mm² (6 AWG)	, ,
Tarifa pagada por energía	250	\$/Kwhr	250	\$/Kwhr	250	\$/Kwhr	250	\$/Kwhr	250	\$/Kwhr	250	\$/Kwhr	250	\$/Kwhr
Costo del Conductor por Kar de peso	16000	\$/Kar	16000	\$/Kar	16000	\$/Kar	16000	\$/Kar	16000	\$/Kar	16000	\$/Kar	16000	\$/Kar
Tiempo de Servicio del Conductor	8760	Horas / Año	8760	Horas / Año	8760	Horas / Año	8760	Horas / Año	8760	Horas / Año	8760	Horas / Año	8760	Horas / Año
Interes corriente % Anual Efectivo	26%	7	26%	7	26%	*	26%	- ÷	26%	÷	26%	110100771110	26%	11010077111
% Carga estimado en el conductor	80%	-	65%		65%	-	65%		65%		65%		40%	
Corriente de Trabaio promedia del Conductor	282	Amperios	27	Amperios	27	Amperios	27	Amperios	27	Amperios	27	Amperios	12	Amperios
Area Mínima Calculada (Ac.)	306.72	mm ²	29.37	mm ²	29.37	mm ²	29.37	mm ²	29.37	mm ²	29.37	mm ²	13.05	mm²
Area del Conductor Escogido Ae (Ae>Ac)	354,68	mm²	33.62	mm²	33.62	mm²	33.62	mm²	33.62	mm²	33.62	mm²	13.29	mm²
Cumple por Pérdidas ?	CUMF		CUM		CUN		CUM	_	CUM		,	IPLE	-, -	MPLE
Comprobación por el Criterio de Corto Circ			30111						50111		. 3011			
	3.70	()	3.69	()	3.70	()	3.69	()	3.65	←	3.66	←	3,70	(
Corriente de corto circuito en el punto de instalación en kAmp		L	0,00		0,70		0,00		0,00		0,00		0,70	
		•	0.01	•	0.01		0.01		0.1	-	0.1	-	0.05	
Corriente de corto circuito en el punto de instalacion en kAmp Tiempo de duracion de la falla en segundos Temperatura máxima en condiciones de Corto sin dañar el aislamiento	0,02	÷	0,01	0 °C	0,01	0°C	0,01	-	0,1	÷	0,1		0,05	0.00
	0,02	;) °C 6 mm²	20	0 °C 8 mm²	20	0 °C 8 mm²	200	°C B mm²	200	°C mm²	200	°C 9 mm²	200	00 °C

Carrera 80c No 40 -41

PBX: (574) 322 40 15 / 411 12 76 Móvil: 312 754 43 14 Medellín, Colombia



ELETRICOS PTAP

3.8 M: CÁLCULO Y COORDINACIÓN DE PROTECCIONES CONTRA SOBRECORRIENTE.

3.8.1 DIAGRAMA UNIFILAR GENERAL

One-Line Diagram - OLV1 (Load Flow Analysis)

Para observar la imagen anterior en una mejor resolución ver Anexo Diagrama unifilar

ELETRICOS PTAP

3.8.2 SUBESTACIÓN Nº 1

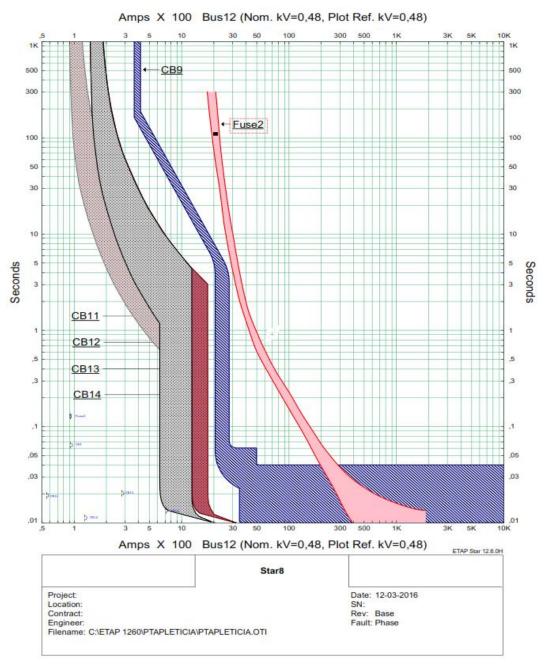


Figura -8 Coordinación total T2

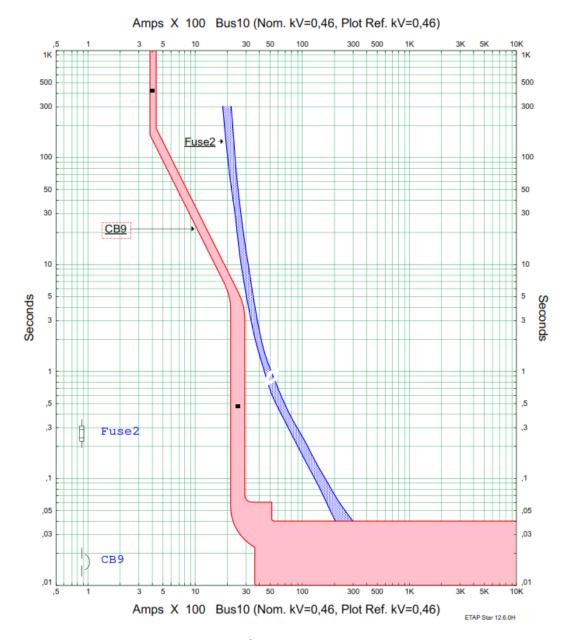


Figura -9 Coordinación Fusible - Totalizador T2

Móvil: 312 754 43 14 Medellín, Colombia

ELETRICOS PTAP

3.8.3 SUBESTACIÓN Nº 2

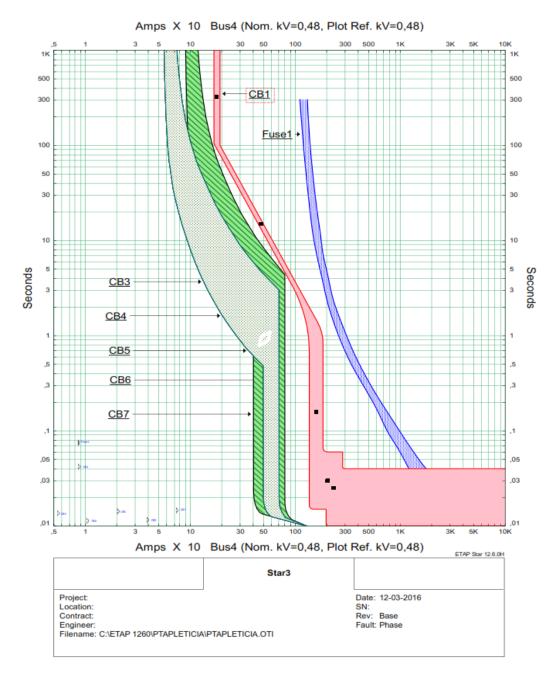
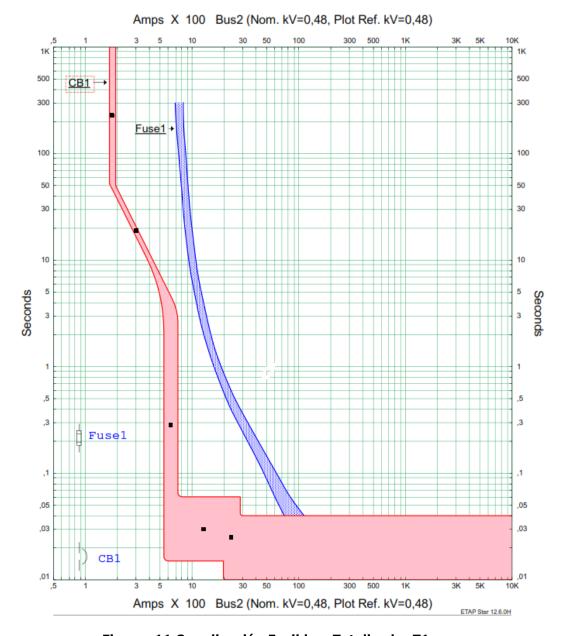
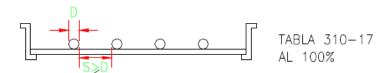


Figura -10 Coordinación tablero principal

Móvil: 312 754 43 14 Medellín, Colombia




Figura -11 Coordinación Fusible - Totalizador T1

ELETRICOS PTAP

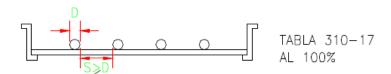
3.9 : N: CÁLCULO DE CANALIZACIONES Y VOLUMENES DE ENCERRAMIENTOS

3.9.1 SUBESTACIÓN Nº1

CALCULO DE BANDEJAS						
Calibre AWG	Calibre mm²	Diámetro del conductor con aislamiento en mm	Tipo y uso del Conduct	tor	Cantidad Conductores	Espacio necesario en mm
14 AWG	2,08	2,55	THHN, THWN	▾		0,00
12AWG	3,30	3,01	THHN, THWN	☑		0,00
10 AWG	5,25	3,87	THHN, THWN			0,00
8 AWG	8,36	5,11	THHN, THWN	▾		0,00
6 AWG	13,29	6,04	THHN, THWN	lacksquare		0,00
4 AWG	21,14	7,75	THHN, THWN	▾		0,00
2 AWG	33,62	9,74	THHN, THWN	▾		0,00
1/0 AWG	53,50	11,42	THHN, THWN	▾		0,00
2/0 AWG	67,44	12,50	THHN, THWN	◂	9	112,50
3/0 AWG	85,02	13,73	THHN, THWN	▾		0,00
4/0 AWG	107,21	15,10	THHN, THWN	▾		0,00
250 KCM	126,67	17,22	THHN, THWN	▾		0,00
300 KCM	152,01	18,56	THHN, THWN	◂		0,00
350 KCM	177,34	19,82	THHN, THWN	▾		0,00
400 KCM	202,68	20,98	THHN, THWN	▾		0,00
500 KCM	253,35	23,08	THHN, THWN	▾		0,00
Diámetro - en mm - total de los conductores alojados en la Bandeja					112,50	
Sección transversal o escuadría de la Bandeja requerida					225,00	

RECUERDE QUE EN BANDEJAS TIPO ESCALERA SOLO SE DEBEN INSTALAR CONDUCTORES DE CALIBRE MAYOR O IGUAL AL 1/0 AWG RECUERDE QUE EN BANDEJAS DIFERENTES A LAS TIPO BATEA O CUBIERTAS CON TAPAS SE DEBEN UTILIZAR CONDUCTORES ROTULADOS "TC"

Bandeja seleccionada: 30 cm tipo malla galvanizada en caliente.


PBX: (574) 322 40 15 / 411 12 76 Móvil: 312 754 43 14

ELETRICOS PTAP

3.9.2 SUBESTACIÓN Nº2

CALCULO DE BANDEJAS						
Calibre AWG	Calibre mm²	Diámetro del conductor con aislamiento en mm	Tipo y uso del Conduc	tor	Cantidad Conductores	Espacio necesario en mm
14 AWG	2,08	2,55	THHN, THWN	▼		0,00
12AWG	3,30	3,01	THHN, THWN			0,00
10 AWG	5,25	3,87	THHN, THWN			0,00
8 AWG	8,36	5,11	THHN, THWN			0,00
6 AWG	13,29	6,04	THHN, THWN	lacksquare	3	18,12
4 AWG	21,14	7,75	THHN, THWN	lacksquare	3	23,25
2 AWG	33,62	9,74	THHN, THWN		15	146,10
1/0 AWG	53,50	11,42	THHN, THWN			0,00
2/0 AWG	67,44	12,50	THHN, THWN	lacksquare		0,00
3/0 AWG	85,02	13,73	THHN, THWN	lacksquare		0,00
4/0 AWG	107,21	15,10	THHN, THWN			0,00
250 KCM	126,67	17,22	THHN, THWN	lacksquare		0,00
300 KCM	152,01	18,56	THHN, THWN	lacksquare		0,00
350 KCM	177,34	19,82	THHN, THWN	lacksquare		0,00
400 KCM	202,68	20,98	THHN, THWN	lacksquare		0,00
500 KCM	253,35	23,08	THHN, THWN	lacksquare		0,00
Diámetro - en mm - total de los conductores alojados en la Bandeja					187,47	
Sección transversal o escuadría de la Bandeja requerida					374,94	

RECUERDE QUE EN BANDEJAS TIPO ESCALERA SOLO SE DEBEN INSTALAR CONDUCTORES
DE CALIBRE MAYOR O IGUAL AL 1/0 AWG

RECUERDE QUE EN BANDEJAS DIFERENTES A LAS TIPO BATEA O CUBIERTAS CON TAPAS SE DEBEN UTILIZAR CONDUCTORES ROTULADOS "TC"

Bandeja seleccionada: 40 cm tipo malla galvanizada en caliente.

Móvil: 312 754 43 14 Medellín, Colombia

4. CÁLCULOS ADICIONALES

En los anexos adjuntos a este archivo se encuentra los siguientes cálculos adicionales:

- Cuadros de cargas 220 v subestaciones 1 y 2
- Cuadro de regulación cargas 220 v subestación 2.
- Reporte de coordinación de protecciones subestaciones 1 y 2.
- Cálculos de acometidas y alimentadores subestaciones 1 y 2.
- > Reporte de arc flash del sistema.
- Cálculo plantas de emergencia.

5. DETALLES DISEÑO ELÉCTRICO SUB Nº1

5.1 CONJUNTO EN H PARA SOPORTE DEL TRAFO 225 KVA

Se diseñó subestaciones al aire soportadas sobre dos apoyos en concreto de 12×510 kg. Transformador tipo convencional de 225 kva 13200/440-254v sostenido por medio de dos vigas en "I" de 3 ml de largo y 140*73 mm galvanizadas en caliente y dos juegos de bases triangulares metálicas galvanizadas en caliente, aseguradas a los postes mediante abrazaderas galvanizadas de 8 y 10" con tornillos, Los DPS de protección van montados sobre el transformador y los cortocircuitos se instalan en cruceta galv de 2.4ml encima del transformador (ver plano).

5.2 MALLA A TIERRA LATERAL

Se diseñó una malla a tierra de 12 ml x 12 ml con nueve varillas Cu-Cu de 2,4 ml y cuadriculas de 1,5 ml en cable desnudo 4/0 Cu, la cual estará ubicada en frente de la subestación (ver plano LET-AMZ-DIS-ELET-3 - Malla a tierra y detalles).

5.3 EQUIPOTENCIALIZACIÓN DE SUBESTACIÓN Y CASETA.

Se llevarán colas en calibre 4/0 Cu desde el punto más cercano de la malla hasta la subestación en poste y un barraje de tierra dispuesto en la caseta de bombas de la subestación Nº 1.

ELETRICOS PTAP

5.4 SUBESTACION EN POSTE 225 KVA

De acuerdo con la potencia y la tensión de trabajo de las cargas a instalar, se diseña una subestación de 225 kVA 13200/460-265v DYN5 tipo poste.

5.5 ACOMETIDA A TGBT 460 V

Se diseña una acometida compartida en dos ductos de 3" por economía en la escogencia de los conductores. La acometida se encuentra sobre dimensionada vista desde el criterio de carga y regulación de tensión, pero es adecuada para el criterio de pérdidas de energía.

5.6 PANEL GENERAL BAJA TENSIÓN 460 V.

Celda metálica 220*80*60 cms (ver detalles diagrama unifiliar y apu). Se toma como referencia para interruptores y transferencia automática la marca SCHNEIDER o similares. Se diseña un panel general a 460v, con protección general y parcial dependiendo de las cargas.

5.7 VARIADORES DE VELOCIDAD A BOMBAS 75 HP

Se diseña arranque de bombas centrífugas de 75 Hp 460 por medio de variadores de velocidad. Cada variador de velocidad va instalado en celda independiente de 220*40*60cm, con controles de arranque, parada y señalización en la puerta. Las celdas de variadores van alimentadas por su parte superior desde el tablero general de 460v por bandeja tipo malla alojada en la parte superior de la estructura de la pared.

5.8 ALIMENTADORES A BOMBAS 75 HP

Los alimentadores a bombas centrífugas se diseñan con criterio de pérdidas de energía en cable de Cu No 2/0.thwn awg. En canalizaciones por bandeja y tubo IMC de 2", terminando en la bomba con una canalización flexible tipo coraza LT.

5.9 DISTRIBUCCIÓN INTERNA CASETA DE BOMBAS

Se diseñan una (1) salidas de220v trifásicas, cuatro salidas 120 v, salidas de iluminación led, salidas de iluminación led de emergencia y salidas de iluminación externas a la caseta. Se utilizará tubería tipo Galv EMT liviana y cables del tipo THWN No 12 a menos que el diseño indique calibres diferentes.

Las lámparas a instalar serán del tipo led de colgar, cerradas de 50 w 220v. las salidas de iluminación se construirán con cajas tipo FS de 2x4" con tomacorriente doble. Las lámparas se conectarán por medio de un cable del tipo encauchetado 3x14 y una clavija aérea de tres polos. Las conexiones internas dentro de las cajas Fs y Plásticas se realizará mediante conectores tipo resorte.

ELETRICOS PTAP

5.10 SERVICIOS 220 V SUBESTACIÓN Nº1

Se diseña un transformador baja-baja de 30 kva y panel de servicios generales de 220v para esta subestación con cuatro (4) salidas trifásicas de las cuales tres son reserva.

5.11 ILUMINACIÓN PERIMETRAL

La Iluminación perimetral se diseñó mediante proyectores LED de 200 w 220v ubicados en torres de concreto de 10 ml de altura sobre el piso (postes de 12 x 510 kg). (T3, T4 Y T5)

5.12 APANTALLAMIENTO TANQUE ELEVADO

Consecuente con el resultado del estudio de riesgo presentado, se diseña un apantallamiento para el tanque elevado de 40 ml.

Teniendo en cuenta los siguientes aspectos.

- CAPTACIÓN.
 - Corresponde básicamente al conductor Acsr No 1/0 Montado sobre dos soportes galvanizados en la parte más alta del tanque (ver plano diseño)
- BAJANTES.
 - Corresponden a dos cables No 1/0 Acsr seleccionado para bajar desde el cable de captación, sujeto al tanque mediante soportes tipo grapa.
- SISTEMA DE ELECTRODO.
 Corresponde al punto eléctrico (TANQUE DE HIDROSOLTA) donde aterrizamos los dos bajantes provenientes de la captación superior del tanque de almacenamiento de agua. (VER DETALLE CONSTRUCTIVO EN PLANO DE APANTALLAMIENTO)
- EQUIPOTENCIALIZACIÓN.

5.13 LUCES DE OBSTRUCCIÓN EN TANQUE ELEVADO

Se proyectan instalar tres (3) luces de obstrucción en la parte superior del tanque elevado de 40 ml de altura.

5.14 RETIRO SUBESTACIÓN EXISTENTE 150KVA

Se contempla el desmontaje (mano de obra) de los siguientes equipos, una vez se haya construido la subestación No 1 (nueva) pues no se puede dejar sin servicio eléctrico la PTAP.

• Protecciones del transformador 2 Dps + 3 cortacircuitos.

ELETRICOS PTAP

- Un transformador 3f 150 kva.
- Acometida existente 3#4/0 +1#1/0 aprox 35 ml.

5.15 CONEXIONADO DE FUERZA Y CONTROL DE BOMBAS

Las conexiones de fuerza de las bombas de 75 hp se realizarán en las borneras de los motores, mediante conector tipo ojo No 2/0 ponchado con el equipo adecuado.

6. DETALLES DISEÑO ELÉCTRICO SUB Nº2

6.1 RED DE MEDIA TENSIÓN A SUBEST Nº 2 (35 ml)

Se proyecta construir una red trifásica en cable #2 Acsr, mediante tres apoyos en concreto de 12 ml x 510 kg, dos utilizados en le estructura en "h" y uno en el arranque inserto en la línea existente a 13,2 kv.

6.2 CONJUNTO EN H PARA SOPORTE DEL TRAFO 225 KVA

Se diseñó subestaciones al aire soportadas sobre dos apoyos en concreto de 12×510 kg. Transformador tipo convencional de 225kva 13200/440-254v sostenido por medio de dos vigas en "I" de 3 ml de largo y 140*73mm galvanizadas en caliente y dos juegos de bases triangulares metálicas galvanizadas en caliente, aseguradas a los postes mediante abrazaderas galvanizadas de 8 y 10 "con tornillos. Los DPS de protección van montados sobre el transformador y los cortacircuitos se instalan en cruceta galv de 2.4 ml encima del transformador (ver corte en plano).

6.3 MALLA A TIERRA LATERAL

Se diseñó una malla a tierra de 12 ml x 12 ml con nueve varillas Cu-Cu de 2,4 ml y cuadriculas de 1,5 ml en cable desnudo 4/0 Cu, la cual estará ubicada en frente de la subestación (ver plano LET-AMZ-DIS-ELET-3 - Malla a tierra y detalles).

6.4 EQUIPOTENCIALIZACIÓN DE SUBESTACIÓN Y CASETA.

Se llevarán colas en calibre 4/0 Cu desde el punto más cercano de la malla hasta la subestación en poste y un barraje de tierra dispuesto en la caseta de bombas de la subestación Nº 2.

6.5 SUBESTACIÓN EN POSTE 225 KVA

De acuerdo con la potencia y la tensión de trabajo de las cargas a instalar, se diseña una subestación de 225 kVA 13200/460-265v DYN5 tipo poste.

ELETRICOS PTAP

6.6 ACOMETIDA A TGBT 460 V

Se diseña una acometida compartida en dos ductos de 3" por economía en la escogencia de los conductores. La acometida se encuentra sobre dimensionada vista desde el criterio de carga y regulación de tensión, pero es adecuada para el criterio de pérdidas de energía.

6.7 PANEL GENERAL 460 V.

Celda metálica 220x80x60 cms (ver detalles diagrama unifilar y apu).

Se toma como referencia para interruptores y transferencia automática la marca SCHNEIDER o similares.

Se diseña un panel general a 460v, con protección general y parcial dependiendo de las cargas.

6.8 VARIADORES DE VELOCIDAD A BOMBAS 30 HP

Se diseña arranque de cuatro (4) bombas sumergibles de 30 Hp 460v por medio de variadores de velocidad.

Cada variador de velocidad va instalado en celda independiente de 220x40x60 cms. Con controles de arranque, parada y señalización en la puerta. Las celdas de variadores van alimentadas por su parte inferior desde el tablero gral de 460 v por bandeja tipo malla alojada en cárcamo de concreto enterrado.

6.9 ALIMENTADORES A BOMBAS 30 HP

Los alimentadores a bombas sumergibles se diseñan con criterio de pérdidas de energía en cable de Cu No 2/0.thwn awg. En canalizaciones por cárcamo (caseta sub N°2) y tubo PVC de 1 ½", terminando el registro tipo B2 y B3 afuera de las bombas donde se conectará el alimentador de fuerza y control con los cables que salen del pozo profundo.

6.10 OTRAS CARGAS A 460 V

Otras cargas requeridas y diseñados sus alimentadores y protecciones a 460v son:

Bombas de lodos.

6.11 DISTRIBUCCIÓN INTERNA CASETA DE BOMBAS

Se diseñan una (1) salidas de220v trifásicas, cuatro salidas 120 v , salidas de iluminación led, salidas de iluminación led de emergencia y salidas de iluminación externas a la caseta. Se utilizará tubería tipo Galv EMT liviana y cables del tipo THWN No 12 a menos que el diseño indique calibres diferentes.

Las lámparas a instalar serán del tipo led de colgar, cerradas de 50 w 220v. las salidas de iluminación se construirán con cajas tipo FS de 2x4" con tomacorriente doble. Las lámparas se conectarán por medio de un cable del tipo encauchetado 3x14 y una clavija

ELETRICOS PTAP

aérea de tres polos. Las conexiones internas dentro de las cajas Fs y Plasticas se realizará mediante conectores tipo resorte.

6.12 SERVICIOS 220 V SUBESTACIÓN Nº2

Se diseña un transformador baja-baja de 40 kva y panel de servicios generales de 220v para esta subestación con ocho (8) salidas trifásicas de las cuales cuatro son reserva.

6.13 CARGAS 220 V SUBESTACIÓN Nº2

Otras cargas requeridas y diseñados sus alimentadores y protecciones a 220v son:

- > Panel de Bombas dosificadoras.
- > Panel de laboratorios y oficinas.
- Blower.
- Panel de Subestación Nº 2.

6.14 ILUMINACIÓN PERIMETRAL

La Iluminación perimetral se diseñó mediante proyectores LED de 200 w 220 ν ubicados en torres de concreto de 10 ml de altura sobre el piso (postes de 12 x 510 kg). (T1, T2 Y T6).

6.15 CONEXIONADO DE FUERZA Y CONTROL DE BOMBAS

Las conexiones de fuerza de las bombas de 30 hp se realizarán en las cajas de registro dispuestas en la parte exterior, a un lado de las bombas sumergibles. Las conexiones se harán de manera que se garantice la no penetración de humedad al empalme. El uso de cinta auto fundente (23) y dieléctrica (33) se hace necesario, dichos empalmes deben de quedar en la parte más superior de la caja de registro tratando de evitar el alto nivel freático del sitio.

6.16 PANEL SUBESTACIÓN Nº2-18CTOS.

Tablero de Breakers 3f – 18 ctos 120 amp, con barraje de neutro y tierra, para Breakers enchufables, con puerta y chapa del tipo Squar D o mejor. Dispuesto en la pared a la entrada de la subestación No 2 y fijado por medio de chazos de expansión.

Móvil: 312 754 43 14 Medellín, Colombia

ELETRICOS PTAP

7. CARACTERISTICAS TÉCNICAS DE EQUIPOS

7.1 MALLA DE PUESTA A TIERRA

- Malla a tierra en calibre 4/0 Cu blando desnudo
- Profundidad de enterramiento 60 cm
- Soldaduras exotérmicas de 150grs
- Varillas solidas de cobre 5/8" x 2,4 ml
- Separación de las cuadriculas 1,5 ml
- Nivel de Cortocircuito en punto de conexión; 3,7 ka monofásico.
- Superficie de la Malla en roca muerta.

7.2 TRANSFORMADOR CONV ACEITE 225 KVA.

- Transformador convencional aislado en aceite.
- Trifásico de 225 kva 13200/460-265v
- DYN5
- Marca magnetrón o mejor.

7.3 PANELES GENERALES A 460 V

- Panel general metálico lamina calibre 14-16
- Pintura electrostática IP 65. 1200x700x300 cm
- Breakers con capacidad según diagrama unifilar con ccto de 25 ka.
- Dps incluido clase 1.
- Transferencia automática motorizada 3*400amp
- Barrajes cobre 500amp
- Analizador de redes +3 tc300/5 amp ventana grande

_

7.4 ARRANCADOR POR VARIADOR BOMBAS Nº 75 HP.

- Panel general metálico lamina calibre 14-16
- Pintura electrostática IP 65. 2000x900x300 cms
- Variador serie P-VDF de bombas optimizado 460 v.
- Encerramiento con Filtros, ventilación y extracción de aire.
- Reactor de línea que aumenta la protección contra sobretensiones transitorias y provee un grado de mitigación armónica.
- Filtro de salida para cables.
- Transductor de presión 100 Psi.
- Dps clase 2.
- Controlador lógico programable 24v dc
- Fuente 24v para controlador
- Base y fusibles de acción ultrarrápida

ELETRICOS PTAP

7.5 ARRANCADOR POR VARIADOR BOMBAS Nº 30 HP.

- Panel general metálico lamina calibre 14-16
- Pintura electrostática IP 65. 500x600x300 cms
- Variador serie P-VDF de bombas optimizado 460 v, 3f, 60hz, 30hp.
- Encerramiento con Filtros, ventilación y extracción de aire.
- Reactor de línea que aumenta la protección contra sobretensiones transitorias y provee un grado de mitigación armónica.
- Filtro de salida para cables.
- Transductor de presión 100 Psi.
- Dps clase 2.
- Controlador lógico programable 24vdc
- Fuente 24v para controlador
- Base y fusibles de acción ultrarrápida

7.6 PLANTA DE EMERGENCIA

- Potencia 350 k w PRIME.
- Voltaje 460-265 v
- Tablero de control con interruptor general y arranque automático.
- Acople flexible del motor.
- Amortiguadores de vibración.
- Recalentador de Agua
- Cargador de baterías.
- Cabina de insonorización.
- Motor marca CUMMINS o mejor
- Generador marca STANFORD o mejor

8. MANUAL DE MANTENIMIENTO

Presentamos seguidamente un ejemplo de actividades de mantenimiento para los diversos equipos utilizados en el presente proyecto, aunque los proveedores y marcas de los equipos a adquirir priman sobre lo expuesto seguidamente.

Al igual, las empresas dentro de sus planes de calidad tienen la autonomía de establecer políticas de mantenimiento y cuidado de sus equipos diferentes a los presentados.

Tabla 12 Mantenimiento de equipos

Ítem	Equipo	Actividad	Frecuencia (meses)
1	Malla a tierra	Medida de resistencia	12
2	Transformador T/CONV 225 KVA aceite	Revisión visual, limpieza externa, revisión y ajuste de puntos de conexión. Chequeo de parámetros nominales. Revisión visual y apretada de puntos de conexión.	6

correo@hcingenieros.com.co

Carrera 80c No 40 -41 PBX: (574) 322 40 15 / 411 12 76 Móvil: 312 754 43 14

ELETRICOS PTAP

Ítem	Equipo	Actividad	Frecuencia (meses)
3	Paneles baja tensión 460-220 V	Termografía Revisión visual, limpieza externa, revisión y ajuste de puntos de conexión. Chequeo de parámetros nominales. Termografía	6
		Pruebas de incendio automático y manual con carga 15 min	8 días
4	Planta de emergencia	Chequeo de niveles (refrigerante – aceite – combustible-electrolito baterías) Correcta operación del precalentador de agua y cargador de la batería	A diario
		Revisión y limpieza filtro de aire Revisión de batería Cambio de aceite y filtro	8 días 12 250 horas de uso o un año
5	Variadores de velocidad	Limpieza exterior del equipo y de los filtros del encerramiento. Chequeo temperatura del encerramiento y correcto funcionamiento de ventiladores.	1 mes

9. PLANOS ELECTRICOS

Se anexa los siguientes planos:

- ➤ LET-AMZ-DIS-ELET-1 Diagramas unifilares.
- > LET-AMZ-DIS-ELET-2 Planta general de redes
- ➤ LET-AMZ-DIS-ELET-3 Malla a tierra y detalles
- ➤ LET-AMZ-DIS-ELET-4 Detalles casetas

10. MATRICULA PROFESIONAL

ELETRICOS PTAP

CONSEJO PROFESIONAL NACIONAL DE INGENIERIAS ELECTRICA, MECANICA Y PROFESIONES AFINES.

Titular JUAN CARLOS ALONSO CASTAÑEDA 16.692.368 de Cali C.de C.No.

ELECTRICI STA Ingeniero_

VL205--1487 Matricula Prof. No.

021 de 1.989 Resol. C.P.N. No.

CONSEJO PROFESIONAL NACIONAL DE INGENIERIAS ELECTRICA, MECANICA Y PROFESIONES AFINES

Esta tarjeta acredita a su titular el derecho a ejercer la ingenieria en su especialidad en cualquier lugar del país, de acuerdo con la Ley 51 de 1986 y su Decreto Reglamentario Nro. 1167 de 1987.

Para efectos de información adicional al respecto di-ririgirse a la Secrétario del Consejo Profesional Na-cional. Calle 39A No. 14-32. Apartado Aéreo 43067. Teléfonos: 2884623 y 2884820, Bogotá. D. E.